Skip to main content
Top
Published in: Topics in Catalysis 19-20/2016

18-08-2016 | Original Paper

Supported, Ligand-Functionalized Nanoparticles: An Attempt to Rationalize the Application and Potential of Ligands in Heterogeneous Catalysis

Author: Sebastian Kunz

Published in: Topics in Catalysis | Issue 19-20/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The binding of molecules to the surface of nanoparticles (NPs) for the use as ligands to manipulate the catalytic properties of NPs is an emerging research area. Various studies with interesting results have been reported in the past few years, but it seems not clear how these findings could be merged into some kind of unified picture, describing the mechanism of action of ligands in heterogeneous catalysis. The aim of this article is to summarize some of the recent achievements in this field with focus on discussing these results using concepts from heterogeneous and homogeneous catalysis. By this it is attempted to separate the influence of ligands into (i) changing the surface properties and (ii) acting as a function above or perpendicular to the surface. The first aspect can be rationalized by the knowledge from bimetallic catalysis. In contrast, the second proposes the relevance of ligand–reactant interactions, as known from homogeneous catalysis, in order to manipulate adsorption, activation, and conversion of reactants. As the application of ligands in heterogeneous catalysis is still a young research field and the full potential of the approach still unknown, this article does not claim to give a complete summery of all results gained within this field. Instead, the author aims to present a picture that may give some guidance for future studies in this area, based on established knowledge from homo- and heterogeneous catalysis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sonstrom P, Baumer M (2011) Supported colloidal nanoparticles in heterogeneous gas phase catalysis: on the way to tailored catalysts. Phys Chem Chem Phys 13:19270–19284CrossRef Sonstrom P, Baumer M (2011) Supported colloidal nanoparticles in heterogeneous gas phase catalysis: on the way to tailored catalysts. Phys Chem Chem Phys 13:19270–19284CrossRef
2.
go back to reference Tolman CA (1977) Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis. Chem Rev 77:313–348CrossRef Tolman CA (1977) Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis. Chem Rev 77:313–348CrossRef
3.
go back to reference Komarov IV, Borner A (2001) Highly enantioselective or not?—Chiral monodentate monophosphorus ligands in the asymmetric hydrogenation. Angew Chem Int Ed 40:1197–1200CrossRef Komarov IV, Borner A (2001) Highly enantioselective or not?—Chiral monodentate monophosphorus ligands in the asymmetric hydrogenation. Angew Chem Int Ed 40:1197–1200CrossRef
4.
go back to reference Berrisford DJ, Bolm C, Sharpless KB (1995) Ligand-accelerated catalysis. Angew Chem Int Ed 34:1059–1070CrossRef Berrisford DJ, Bolm C, Sharpless KB (1995) Ligand-accelerated catalysis. Angew Chem Int Ed 34:1059–1070CrossRef
5.
go back to reference DOE (Departement of Energy) (2007) Basic research needs: catalysis for energy. United States Department of Energy, Washington DC DOE (Departement of Energy) (2007) Basic research needs: catalysis for energy. United States Department of Energy, Washington DC
6.
go back to reference Roadmap for Catalysis Research in Germany (2010) Roadmap for Catalysis Research in Germany German Catalysis Society (GeCatS) Roadmap for Catalysis Research in Germany (2010) Roadmap for Catalysis Research in Germany German Catalysis Society (GeCatS)
7.
go back to reference Somorjai GA, McCrea K (2001) Roadmap for catalysis science in the 21st century: a personal view of building the future on past and present accomplishments. Appl Catal A 222:3–18CrossRef Somorjai GA, McCrea K (2001) Roadmap for catalysis science in the 21st century: a personal view of building the future on past and present accomplishments. Appl Catal A 222:3–18CrossRef
8.
go back to reference Bezemer GL, Bitter JH, Kuipers H, Oosterbeek H, Holewijn JE, Xu XD, Kapteijn F, van Dillen AJ, de Jong KP (2006) Cobalt particle size effects in the Fischer–Tropsch reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc 128:3956–3964CrossRef Bezemer GL, Bitter JH, Kuipers H, Oosterbeek H, Holewijn JE, Xu XD, Kapteijn F, van Dillen AJ, de Jong KP (2006) Cobalt particle size effects in the Fischer–Tropsch reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc 128:3956–3964CrossRef
9.
go back to reference Galvagno S, Capannelli G, Neri G, Donato A, Pietropaolo R (1991) Hydrogenation of cinnamaldehyde over Ru/C catalysts: effect of Ru particle size. J Mol Catal 64:237–246CrossRef Galvagno S, Capannelli G, Neri G, Donato A, Pietropaolo R (1991) Hydrogenation of cinnamaldehyde over Ru/C catalysts: effect of Ru particle size. J Mol Catal 64:237–246CrossRef
10.
go back to reference Sinfelt JH (1983) Bimetallic catalysts: discoveries, concepts, and applications. Wiley, New York Sinfelt JH (1983) Bimetallic catalysts: discoveries, concepts, and applications. Wiley, New York
11.
go back to reference Edwards JK, Hutchings GJ (2008) Palladium and gold–palladium catalysts for the direct synthesis of hydrogen peroxide. Angew Chem Int Ed 47:9192–9198CrossRef Edwards JK, Hutchings GJ (2008) Palladium and gold–palladium catalysts for the direct synthesis of hydrogen peroxide. Angew Chem Int Ed 47:9192–9198CrossRef
12.
go back to reference Englisch M, Jentys A, Lercher JA (1997) Structure sensitivity of the hydrogenation of crotonaldehyde over Pt/SiO2 and Pt/TiO2. J Catal 166:25–35CrossRef Englisch M, Jentys A, Lercher JA (1997) Structure sensitivity of the hydrogenation of crotonaldehyde over Pt/SiO2 and Pt/TiO2. J Catal 166:25–35CrossRef
13.
go back to reference Pang SH, Schoenbaum CA, Schwartz DK, Medlin JW (2013) Directing reaction pathways by catalyst active-site selection using self- assembled monolayers. Nat Commun 4:2448 Pang SH, Schoenbaum CA, Schwartz DK, Medlin JW (2013) Directing reaction pathways by catalyst active-site selection using self- assembled monolayers. Nat Commun 4:2448
14.
go back to reference Witte PT, Berben PH, Boland S, Boymans EH, Vogt D, Geus JW, Donkervoort JG (2012) BASF nanoSelect (TM) technology: innovative supported pd- and pt-based catalysts for selective hydrogenation reactions. Top Catal 55:505–511CrossRef Witte PT, Berben PH, Boland S, Boymans EH, Vogt D, Geus JW, Donkervoort JG (2012) BASF nanoSelect (TM) technology: innovative supported pd- and pt-based catalysts for selective hydrogenation reactions. Top Catal 55:505–511CrossRef
15.
go back to reference Noyori R (2002) Asymmetric catalysis: science and opportunities (nobel lecture). Angew Chem Int Ed 41:2008–2022CrossRef Noyori R (2002) Asymmetric catalysis: science and opportunities (nobel lecture). Angew Chem Int Ed 41:2008–2022CrossRef
16.
go back to reference Knowles WS (2003) Asymmetric hydrogenations (nobel lecture 2001). Adv Synth Catal 345:3–13CrossRef Knowles WS (2003) Asymmetric hydrogenations (nobel lecture 2001). Adv Synth Catal 345:3–13CrossRef
17.
go back to reference Bonnemann H, Richards RM (2001) Nanoscopic metal particles—synthetic methods and potential applications. Eur J Inorg Chem 10:2455–2480CrossRef Bonnemann H, Richards RM (2001) Nanoscopic metal particles—synthetic methods and potential applications. Eur J Inorg Chem 10:2455–2480CrossRef
18.
go back to reference Hirai H, Nakao Y, Toshima N (1978) Preparation of colloidal rhodium in poly(vinyl alcohol) by reduction with methanol. J Macromol Sci Chem A12:1117–1141CrossRef Hirai H, Nakao Y, Toshima N (1978) Preparation of colloidal rhodium in poly(vinyl alcohol) by reduction with methanol. J Macromol Sci Chem A12:1117–1141CrossRef
19.
go back to reference Hirai H, Nakao Y, Toshima N (1979) Preparation of colloidal transition-metals in polymers by reduction with alcohols or ethers. J Macromol Sci Chem A13:727–750CrossRef Hirai H, Nakao Y, Toshima N (1979) Preparation of colloidal transition-metals in polymers by reduction with alcohols or ethers. J Macromol Sci Chem A13:727–750CrossRef
20.
go back to reference Comotti M, Li WC, Spliethoff B, Schuth F (2006) Support effect in high activity gold catalysts for CO oxidation. J Am Chem Soc 128:917–924CrossRef Comotti M, Li WC, Spliethoff B, Schuth F (2006) Support effect in high activity gold catalysts for CO oxidation. J Am Chem Soc 128:917–924CrossRef
21.
go back to reference Reetz MT, Winter M, Breinbauer R, Thurn-Albrecht T, Vogel W (2001) Size-selective electrochemical preparation of surfactant-stabilized Pd-, Ni- and Pt/Pd colloids. Chem Eur J 7:1084–1094CrossRef Reetz MT, Winter M, Breinbauer R, Thurn-Albrecht T, Vogel W (2001) Size-selective electrochemical preparation of surfactant-stabilized Pd-, Ni- and Pt/Pd colloids. Chem Eur J 7:1084–1094CrossRef
22.
go back to reference Toshima N, Yonezawa T (1998) Bimetallic nanoparticles—novel materials for chemical and physical applications. New J Chem 22:1179–1201CrossRef Toshima N, Yonezawa T (1998) Bimetallic nanoparticles—novel materials for chemical and physical applications. New J Chem 22:1179–1201CrossRef
23.
go back to reference Tamura M, Fujihara H (2003) Chiral bisphosphine BINAP-stabilized gold and palladium nanoparticles with small size and their palladium nanoparticle-catalyzed asymmetric reaction. J Am Chem Soc 125:15742–15743CrossRef Tamura M, Fujihara H (2003) Chiral bisphosphine BINAP-stabilized gold and palladium nanoparticles with small size and their palladium nanoparticle-catalyzed asymmetric reaction. J Am Chem Soc 125:15742–15743CrossRef
24.
go back to reference Weare WW, Reed SM, Warner MG, Hutchison JE (2000) Improved synthesis of small (d(CORE) approximate to 1.5 nm) phosphine-stabilized gold nanoparticles. J Am Chem Soc 122:12890–12891CrossRef Weare WW, Reed SM, Warner MG, Hutchison JE (2000) Improved synthesis of small (d(CORE) approximate to 1.5 nm) phosphine-stabilized gold nanoparticles. J Am Chem Soc 122:12890–12891CrossRef
25.
go back to reference Huang WX, Hua Q, Cao T (2014) Influence and removal of capping ligands on catalytic colloidal nanoparticles. Catal Lett 144:1355–1369CrossRef Huang WX, Hua Q, Cao T (2014) Influence and removal of capping ligands on catalytic colloidal nanoparticles. Catal Lett 144:1355–1369CrossRef
26.
go back to reference Kunz S, Iglesia E (2014) Mechanistic evidence for sequential displacement-reduction routes in the synthesis of Pd–Au clusters with uniform size and clean surfaces. J Phys Chem C 118:7468–7479CrossRef Kunz S, Iglesia E (2014) Mechanistic evidence for sequential displacement-reduction routes in the synthesis of Pd–Au clusters with uniform size and clean surfaces. J Phys Chem C 118:7468–7479CrossRef
27.
go back to reference Aliaga C, Park JY, Yamada Y, Lee HS, Tsung CK, Yang PD, Somorjai GA (2009) Sum frequency generation and catalytic reaction studies of the removal of organic capping agents from Pt nanoparticles by UV-ozone treatment. J Phys Chem C 113:6150–6155CrossRef Aliaga C, Park JY, Yamada Y, Lee HS, Tsung CK, Yang PD, Somorjai GA (2009) Sum frequency generation and catalytic reaction studies of the removal of organic capping agents from Pt nanoparticles by UV-ozone treatment. J Phys Chem C 113:6150–6155CrossRef
28.
go back to reference Rioux RM, Hsu BB, Grass ME, Song H, Somorjai GA (2008) Influence of particle size on reaction selectivity in cyclohexene hydrogenation and dehydrogenation over silica-supported monodisperse Pt particles. Catal Lett 126:10–19CrossRef Rioux RM, Hsu BB, Grass ME, Song H, Somorjai GA (2008) Influence of particle size on reaction selectivity in cyclohexene hydrogenation and dehydrogenation over silica-supported monodisperse Pt particles. Catal Lett 126:10–19CrossRef
29.
go back to reference Bratlie KM, Lee H, Komvopoulos K, Yang P, Somorjai GA (2007) Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett 7:3097–3101CrossRef Bratlie KM, Lee H, Komvopoulos K, Yang P, Somorjai GA (2007) Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett 7:3097–3101CrossRef
30.
go back to reference Altmann L, Wang X, Borchert H, Kolny-Olesiak J, Zielasek V, Parisi J, Kunz S, Baumer M (2015) Influence of Sn content on the hydrogenation of crotonaldehyde catalysed by colloidally prepared PtSn nanoparticles. Phys Chem Chem Phys 17:28186–28192CrossRef Altmann L, Wang X, Borchert H, Kolny-Olesiak J, Zielasek V, Parisi J, Kunz S, Baumer M (2015) Influence of Sn content on the hydrogenation of crotonaldehyde catalysed by colloidally prepared PtSn nanoparticles. Phys Chem Chem Phys 17:28186–28192CrossRef
31.
go back to reference Narayanan R, El-Sayed MA (2005) Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J Phys Chem B 109:12663–12676CrossRef Narayanan R, El-Sayed MA (2005) Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J Phys Chem B 109:12663–12676CrossRef
32.
go back to reference González-Gálvez D, Nolis P, Philippot K, Chaudret B, van Leeuwen PWNM (2012) Phosphine-stabilized ruthenium nanoparticles: the effect of the nature of the ligand in catalysis. ACS Catal 2:317–321CrossRef González-Gálvez D, Nolis P, Philippot K, Chaudret B, van Leeuwen PWNM (2012) Phosphine-stabilized ruthenium nanoparticles: the effect of the nature of the ligand in catalysis. ACS Catal 2:317–321CrossRef
33.
go back to reference Castelbou JL, Gual A, Mercade E, Claver C, Godard C (2013) Ligand effect in the Rh–NP catalysed partial hydrogenation of substituted arenes. Catal Sci Technol 3:2828–2833CrossRef Castelbou JL, Gual A, Mercade E, Claver C, Godard C (2013) Ligand effect in the Rh–NP catalysed partial hydrogenation of substituted arenes. Catal Sci Technol 3:2828–2833CrossRef
34.
go back to reference Sawai K, Tatumi R, Nakahodo T, Fujihara H (2008) Asymmetric Suzuki–Miyaura coupling reactions catalyzed by chiral palladium nanoparticles at room temperature. Angew Chem Int Ed 47:6917–6919CrossRef Sawai K, Tatumi R, Nakahodo T, Fujihara H (2008) Asymmetric Suzuki–Miyaura coupling reactions catalyzed by chiral palladium nanoparticles at room temperature. Angew Chem Int Ed 47:6917–6919CrossRef
35.
go back to reference Holland MC, Meemken F, Baiker A, Gilmour R (2015) Chiral imidazolidinone and proline-derived surface modifiers for the Pt-catalysed asymmetric hydrogenation of activated ketones. J Mol Catal A 396:335–345CrossRef Holland MC, Meemken F, Baiker A, Gilmour R (2015) Chiral imidazolidinone and proline-derived surface modifiers for the Pt-catalysed asymmetric hydrogenation of activated ketones. J Mol Catal A 396:335–345CrossRef
36.
go back to reference Ma Z, Zaera F (2005) Role of the solvent in the adsorption-desorption equilibrium of cinchona alkaloids between solution and a platinum surface: correlations among solvent polarity, cinchona solubility, and catalytic performance. J Phys Chem B 109:406–414CrossRef Ma Z, Zaera F (2005) Role of the solvent in the adsorption-desorption equilibrium of cinchona alkaloids between solution and a platinum surface: correlations among solvent polarity, cinchona solubility, and catalytic performance. J Phys Chem B 109:406–414CrossRef
37.
go back to reference Blaser HU, Studer M (2007) Cinchona-modified platinum catalysts: from ligand acceleration to technical processes. Acc Chem Res 40:1348–1356CrossRef Blaser HU, Studer M (2007) Cinchona-modified platinum catalysts: from ligand acceleration to technical processes. Acc Chem Res 40:1348–1356CrossRef
38.
go back to reference Mallat T, Orglmeister E, Baiker A (2007) Asymmetric catalysis at chiral metal surfaces. Chem Rev 107:4863–4890CrossRef Mallat T, Orglmeister E, Baiker A (2007) Asymmetric catalysis at chiral metal surfaces. Chem Rev 107:4863–4890CrossRef
39.
go back to reference Kubota J, Zaera F (2001) Adsorption geometry of modifiers as key in imparting chirality to platinum catalysts. J Am Chem Soc 123:11115–11116CrossRef Kubota J, Zaera F (2001) Adsorption geometry of modifiers as key in imparting chirality to platinum catalysts. J Am Chem Soc 123:11115–11116CrossRef
40.
go back to reference Hess R, Vargas A, Mallat T, Bürgi T, Baiker A (2004) Inversion of enantioselectivity in the platinum-catalyzed hydrogenation of substituted acetophenones. J Catal 222:117–128CrossRef Hess R, Vargas A, Mallat T, Bürgi T, Baiker A (2004) Inversion of enantioselectivity in the platinum-catalyzed hydrogenation of substituted acetophenones. J Catal 222:117–128CrossRef
41.
go back to reference Ferri D, Burgi T (2001) An in situ attenuated total reflection infrared study of a chiral catalytic solid-liquid interface: cinchonidine adsorption on Pt. J Am Chem Soc 123:12074–12084CrossRef Ferri D, Burgi T (2001) An in situ attenuated total reflection infrared study of a chiral catalytic solid-liquid interface: cinchonidine adsorption on Pt. J Am Chem Soc 123:12074–12084CrossRef
42.
go back to reference Blaser HU, Jalett HP, Monti DM, Baiker A, Wehrli JT (1991) Enantioselective hydrogenation of ethyl pyruvate: effect of catalyst and modifier structure. In: Grasselli RK, Sleight AW (eds) Studies in surface science and catalysis. Elsevier, Amsterdam, pp 147–155 Blaser HU, Jalett HP, Monti DM, Baiker A, Wehrli JT (1991) Enantioselective hydrogenation of ethyl pyruvate: effect of catalyst and modifier structure. In: Grasselli RK, Sleight AW (eds) Studies in surface science and catalysis. Elsevier, Amsterdam, pp 147–155
43.
go back to reference Blaser HU, Jalett HP, Lottenbach W, Studer M (2000) Heterogeneous enantioselective hydrogenation of ethyl pyruvate catalyzed by cinchona-modified Pt catalysts: effect of modifier structure. J Am Chem Soc 122:12675–12682CrossRef Blaser HU, Jalett HP, Lottenbach W, Studer M (2000) Heterogeneous enantioselective hydrogenation of ethyl pyruvate catalyzed by cinchona-modified Pt catalysts: effect of modifier structure. J Am Chem Soc 122:12675–12682CrossRef
44.
go back to reference Mori A, Miyakawa Y, Ohashi E, Haga T, Maegawa T, Sajiki H (2006) Pd/C-catalyzed chemoselective hydrogenation in the presence of diphenylsulfide. Org Lett 8:3279–3281CrossRef Mori A, Miyakawa Y, Ohashi E, Haga T, Maegawa T, Sajiki H (2006) Pd/C-catalyzed chemoselective hydrogenation in the presence of diphenylsulfide. Org Lett 8:3279–3281CrossRef
45.
go back to reference Weng Z, Zaera F (2014) Increase in activity and selectivity in catalysis via surface modification with self-assembled monolayers. J Phys Chem C 118:3672–3679CrossRef Weng Z, Zaera F (2014) Increase in activity and selectivity in catalysis via surface modification with self-assembled monolayers. J Phys Chem C 118:3672–3679CrossRef
46.
go back to reference Kunz S, Schreiber P, Ludwig M, Maturi MM, Ackermann O, Tschurl M, Heiz U (2013) Rational design, characterization and catalytic application of metal clusters functionalized with hydrophilic, chiral ligands: a proof of principle study. Phys Chem Chem Phys 15:19253–19261CrossRef Kunz S, Schreiber P, Ludwig M, Maturi MM, Ackermann O, Tschurl M, Heiz U (2013) Rational design, characterization and catalytic application of metal clusters functionalized with hydrophilic, chiral ligands: a proof of principle study. Phys Chem Chem Phys 15:19253–19261CrossRef
47.
go back to reference Murzin DY, Maki-Arvela P, Toukoniitty E, Salmi T (2005) Asymmetric heterogeneous catalysis: science and engineering. Catal Rev 47:175–256CrossRef Murzin DY, Maki-Arvela P, Toukoniitty E, Salmi T (2005) Asymmetric heterogeneous catalysis: science and engineering. Catal Rev 47:175–256CrossRef
48.
go back to reference Bartok M (2006) Heterogeneous catalytic enantioselective hydrogenation of activated ketones. Curr Org Chem 10:1533–1567CrossRef Bartok M (2006) Heterogeneous catalytic enantioselective hydrogenation of activated ketones. Curr Org Chem 10:1533–1567CrossRef
49.
go back to reference Sinfelt JH, Carter JL, Yates DJC (1972) Catalytic hydrogenolysis and dehydrogenation over copper-nickel alloys. J Catal 24:283–296CrossRef Sinfelt JH, Carter JL, Yates DJC (1972) Catalytic hydrogenolysis and dehydrogenation over copper-nickel alloys. J Catal 24:283–296CrossRef
50.
go back to reference Ponec V, Sachtler WMH (1972) The reactions between cyclopentane and deuterium on nickel and nickel-copper alloys. J Catal 24:250–261CrossRef Ponec V, Sachtler WMH (1972) The reactions between cyclopentane and deuterium on nickel and nickel-copper alloys. J Catal 24:250–261CrossRef
51.
go back to reference Campbell JM, Seimanides S, Campbell CT (1989) Probing ensemble effects in surface reactions. 2. Benzene adsorption on clean and bismuth-covered platinum(111). J Phys Chem 93:815–826CrossRef Campbell JM, Seimanides S, Campbell CT (1989) Probing ensemble effects in surface reactions. 2. Benzene adsorption on clean and bismuth-covered platinum(111). J Phys Chem 93:815–826CrossRef
52.
go back to reference Puddu S, Ponec V (1976) Effect of the ensemble size in the hydrogenation of benzene on Pt and Pt–Au catalysts. Recl Trav Chim Pays-Bas 95:255–257CrossRef Puddu S, Ponec V (1976) Effect of the ensemble size in the hydrogenation of benzene on Pt and Pt–Au catalysts. Recl Trav Chim Pays-Bas 95:255–257CrossRef
53.
go back to reference Pang SH, Medlin JW (2011) Adsorption and reaction of furfural and furfuryl alcohol on Pd(111): unique reaction pathways for multifunctional reagents. ACS Catal 1:1272–1283CrossRef Pang SH, Medlin JW (2011) Adsorption and reaction of furfural and furfuryl alcohol on Pd(111): unique reaction pathways for multifunctional reagents. ACS Catal 1:1272–1283CrossRef
54.
go back to reference Altmann L, Kunz S, Bäumer M (2014) Influence of organic amino and thiol ligands on the geometric and electronic surface properties of colloidally prepared platinum nanoparticles. J Phys Chem C 118:8925–8932CrossRef Altmann L, Kunz S, Bäumer M (2014) Influence of organic amino and thiol ligands on the geometric and electronic surface properties of colloidally prepared platinum nanoparticles. J Phys Chem C 118:8925–8932CrossRef
55.
go back to reference Pang SH, Schoenbaum CA, Schwartz DK, Medlin JW (2014) Effects of thiol modifiers on the kinetics of furfural hydrogenation over Pd catalysts. ACS Catal 4:3123–3131CrossRef Pang SH, Schoenbaum CA, Schwartz DK, Medlin JW (2014) Effects of thiol modifiers on the kinetics of furfural hydrogenation over Pd catalysts. ACS Catal 4:3123–3131CrossRef
56.
go back to reference Chung Y-H, Chung DY, Jung N, Sung Y-E (2013) Tailoring the electronic structure of nanoelectrocatalysts induced by a surface-capping organic molecule for the oxygen reduction reaction. J Phys Chem Lett 4:1304–1309CrossRef Chung Y-H, Chung DY, Jung N, Sung Y-E (2013) Tailoring the electronic structure of nanoelectrocatalysts induced by a surface-capping organic molecule for the oxygen reduction reaction. J Phys Chem Lett 4:1304–1309CrossRef
57.
go back to reference Zhou Z-Y, Kang X, Song Y, Chen S (2012) Ligand-mediated electrocatalytic activity of Pt nanoparticles for oxygen reduction reactions. J Phys Chem C 116:10592–10598CrossRef Zhou Z-Y, Kang X, Song Y, Chen S (2012) Ligand-mediated electrocatalytic activity of Pt nanoparticles for oxygen reduction reactions. J Phys Chem C 116:10592–10598CrossRef
58.
go back to reference Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892CrossRef Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892CrossRef
59.
go back to reference Siahrostami S, Verdaguer-Casadevall A, Karamad M, Deiana D, Malacrida P, Wickman B, Escudero-Escribano M, Paoli EA, Frydendal R, Hansen TW, Chorkendorff I, Stephens IEL, Rossmeisl J (2013) Enabling direct H2O2 production through rational electrocatalyst design. Nat Mater 12:1137–1143CrossRef Siahrostami S, Verdaguer-Casadevall A, Karamad M, Deiana D, Malacrida P, Wickman B, Escudero-Escribano M, Paoli EA, Frydendal R, Hansen TW, Chorkendorff I, Stephens IEL, Rossmeisl J (2013) Enabling direct H2O2 production through rational electrocatalyst design. Nat Mater 12:1137–1143CrossRef
60.
go back to reference Borodzinki A (2006) Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction. Catal Rev 48:91–144CrossRef Borodzinki A (2006) Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction. Catal Rev 48:91–144CrossRef
61.
go back to reference Borodzinski A, Bond GC (2008) Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts, part 2: steady-state kinetics and effects of palladium particle size, carbon monoxide, and promoters. Catal Rev 50:379–469CrossRef Borodzinski A, Bond GC (2008) Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts, part 2: steady-state kinetics and effects of palladium particle size, carbon monoxide, and promoters. Catal Rev 50:379–469CrossRef
62.
go back to reference Bos ANR, Westerterp KR (1993) Mechanism and kinetics of the selective hydrogenation of ethyne and ethene. Chem Eng Process 32:1–7CrossRef Bos ANR, Westerterp KR (1993) Mechanism and kinetics of the selective hydrogenation of ethyne and ethene. Chem Eng Process 32:1–7CrossRef
63.
go back to reference McKenna FM, Mantarosie L, Wells RPK, Hardacre C, Anderson JA (2012) Selective hydrogenation of acetylene in ethylene rich feed streams at high pressure over ligand modified Pd/TiO2. Catal Sci Technol 2:632–638CrossRef McKenna FM, Mantarosie L, Wells RPK, Hardacre C, Anderson JA (2012) Selective hydrogenation of acetylene in ethylene rich feed streams at high pressure over ligand modified Pd/TiO2. Catal Sci Technol 2:632–638CrossRef
64.
go back to reference McKenna F-M, Wells RPK, Anderson JA (2011) Enhanced selectivity in acetylene hydrogenation by ligand modified Pd/TiO2 catalysts. Chem Commun 47:2351–2353CrossRef McKenna F-M, Wells RPK, Anderson JA (2011) Enhanced selectivity in acetylene hydrogenation by ligand modified Pd/TiO2 catalysts. Chem Commun 47:2351–2353CrossRef
65.
go back to reference McCue AJ, McKenna F-M, Anderson JA (2015) Triphenylphosphine: a ligand for heterogeneous catalysis too? Selectivity enhancement in acetylene hydrogenation over modified Pd/TiO2 catalyst. Catal Sci Technol 5:2449–2459CrossRef McCue AJ, McKenna F-M, Anderson JA (2015) Triphenylphosphine: a ligand for heterogeneous catalysis too? Selectivity enhancement in acetylene hydrogenation over modified Pd/TiO2 catalyst. Catal Sci Technol 5:2449–2459CrossRef
66.
go back to reference Wang X, Sonstrom P, Arndt D, Stover J, Zielasek V, Borchert H, Thiel K, Al-Shamery K, Baumer M (2011) Heterogeneous catalysis with supported platinum colloids: a systematic study of the interplay between support and functional ligands. J Catal 278:143–152CrossRef Wang X, Sonstrom P, Arndt D, Stover J, Zielasek V, Borchert H, Thiel K, Al-Shamery K, Baumer M (2011) Heterogeneous catalysis with supported platinum colloids: a systematic study of the interplay between support and functional ligands. J Catal 278:143–152CrossRef
67.
go back to reference Kahsar KR, Schwartz DK, Medlin JW (2015) Stability of self-assembled monolayer coated Pt/Al2O3 catalysts for liquid phase hydrogenation. J Mol Catal A 396:188–195CrossRef Kahsar KR, Schwartz DK, Medlin JW (2015) Stability of self-assembled monolayer coated Pt/Al2O3 catalysts for liquid phase hydrogenation. J Mol Catal A 396:188–195CrossRef
68.
go back to reference Sachdev A, Schwank J (1989) Microstructure and reactivitiy of supported bimetallic platinum gold catalysts. J Catal 120:353–369CrossRef Sachdev A, Schwank J (1989) Microstructure and reactivitiy of supported bimetallic platinum gold catalysts. J Catal 120:353–369CrossRef
69.
go back to reference Tao F, Grass ME, Zhang YW, Butcher DR, Renzas JR, Liu Z, Chung JY, Mun BS, Salmeron M, Somorjai GA (2008) Reaction-driven restructuring of Rh–Pd and Pt–Pd core–shell nanoparticles. Science 322:932–934CrossRef Tao F, Grass ME, Zhang YW, Butcher DR, Renzas JR, Liu Z, Chung JY, Mun BS, Salmeron M, Somorjai GA (2008) Reaction-driven restructuring of Rh–Pd and Pt–Pd core–shell nanoparticles. Science 322:932–934CrossRef
70.
go back to reference Herrmann WA, Goossen LJ, Kocher C, Artus GRJ (1996) Chiral heterocyclic carbenes in asymmetric homogeneous catalysis. Angew Chem Int Ed Engl 35:2805–2807CrossRef Herrmann WA, Goossen LJ, Kocher C, Artus GRJ (1996) Chiral heterocyclic carbenes in asymmetric homogeneous catalysis. Angew Chem Int Ed Engl 35:2805–2807CrossRef
71.
go back to reference Rach SF, Kuehn FE (2009) Nitrile ligated transition metal complexes with weakly coordinating counteranions and their catalytic applications. Chem Rev 109:2061–2080CrossRef Rach SF, Kuehn FE (2009) Nitrile ligated transition metal complexes with weakly coordinating counteranions and their catalytic applications. Chem Rev 109:2061–2080CrossRef
72.
go back to reference Long Y-T, Herrwerth S, Eck W, Grunze M (2002) Synthesis and characterization of self-assembled monolayers based on redox-active silane compounds on platinum surfaces. Phys Chem Chem Phys 4:522–526CrossRef Long Y-T, Herrwerth S, Eck W, Grunze M (2002) Synthesis and characterization of self-assembled monolayers based on redox-active silane compounds on platinum surfaces. Phys Chem Chem Phys 4:522–526CrossRef
73.
go back to reference Castelbou JL, Blondeau P, Claver C, Godard C (2015) Surface characterisation of phosphine and phosphite stabilised Rh nanoparticles: a model study. RSC Adv 5:97036–97043CrossRef Castelbou JL, Blondeau P, Claver C, Godard C (2015) Surface characterisation of phosphine and phosphite stabilised Rh nanoparticles: a model study. RSC Adv 5:97036–97043CrossRef
74.
go back to reference Gonzalez-Galvez D, Lara P, Rivada-Wheelaghan O, Conejero S, Chaudret B, Philippot K, van Leeuwen PWNM (2013) NHC-stabilized ruthenium nanoparticles as new catalysts for the hydrogenation of aromatics. Catal Sci Technol 3:99–105CrossRef Gonzalez-Galvez D, Lara P, Rivada-Wheelaghan O, Conejero S, Chaudret B, Philippot K, van Leeuwen PWNM (2013) NHC-stabilized ruthenium nanoparticles as new catalysts for the hydrogenation of aromatics. Catal Sci Technol 3:99–105CrossRef
75.
go back to reference Lara P, Rivada-Wheelaghan O, Conejero S, Poteau R, Philippot K, Chaudret B (2011) Ruthenium nanoparticles stabilized by N-heterocyclic carbenes: ligand location and influence on reactivity. Angew Chem Int Ed 50:12080–12084CrossRef Lara P, Rivada-Wheelaghan O, Conejero S, Poteau R, Philippot K, Chaudret B (2011) Ruthenium nanoparticles stabilized by N-heterocyclic carbenes: ligand location and influence on reactivity. Angew Chem Int Ed 50:12080–12084CrossRef
76.
go back to reference Lara P, Suarez A, Colliere V, Philippot K, Chaudret B (2014) Platinum N-heterocyclic carbene nanoparticles as new and effective catalysts for the selective hydrogenation of nitroaromatics. ChemCatChem 6:87–90CrossRef Lara P, Suarez A, Colliere V, Philippot K, Chaudret B (2014) Platinum N-heterocyclic carbene nanoparticles as new and effective catalysts for the selective hydrogenation of nitroaromatics. ChemCatChem 6:87–90CrossRef
77.
go back to reference Díez-González S, Marion N, Nolan SP (2009) N-Heterocyclic carbenes in late transition metal catalysis. Chem Rev 109:3612–3676CrossRef Díez-González S, Marion N, Nolan SP (2009) N-Heterocyclic carbenes in late transition metal catalysis. Chem Rev 109:3612–3676CrossRef
78.
go back to reference Clarke ML, Frew JJR (2009) Ligand electronic effects in homogeneous catalysis using transition metal complexes of phosphine ligands. The Royal Society of Chemistry, CambridgeCrossRef Clarke ML, Frew JJR (2009) Ligand electronic effects in homogeneous catalysis using transition metal complexes of phosphine ligands. The Royal Society of Chemistry, CambridgeCrossRef
79.
go back to reference Borner A (2001) The effect of internal hydroxy groups in chiral diphosphane rhodium(I) catalysts on the asymmetric hydrogenation of functionalized olefins. Eur J Inorg Chem 2:327–337CrossRef Borner A (2001) The effect of internal hydroxy groups in chiral diphosphane rhodium(I) catalysts on the asymmetric hydrogenation of functionalized olefins. Eur J Inorg Chem 2:327–337CrossRef
80.
go back to reference Sawamura M, Ito Y (1992) Catalytic asymmetric synthesis by means of secondary interaction between chiral ligands and substrates. Chem Rev 92:857–871CrossRef Sawamura M, Ito Y (1992) Catalytic asymmetric synthesis by means of secondary interaction between chiral ligands and substrates. Chem Rev 92:857–871CrossRef
81.
go back to reference Clapham SE, Hadzovic A, Morris RH (2004) Mechanisms of the H2-hydrogenation and transfer hydrogenation of polar bonds catalyzed by ruthenium hydride complexes. Coord Chem Rev 248:2201–2237CrossRef Clapham SE, Hadzovic A, Morris RH (2004) Mechanisms of the H2-hydrogenation and transfer hydrogenation of polar bonds catalyzed by ruthenium hydride complexes. Coord Chem Rev 248:2201–2237CrossRef
82.
go back to reference Schrader I, Warneke J, Backenköhler J, Kunz S (2015) Functionalization of platinum nanoparticles with l-proline: simultaneous enhancements of catalytic activity and selectivity. J Am Chem Soc 137:905–912CrossRef Schrader I, Warneke J, Backenköhler J, Kunz S (2015) Functionalization of platinum nanoparticles with l-proline: simultaneous enhancements of catalytic activity and selectivity. J Am Chem Soc 137:905–912CrossRef
83.
go back to reference Schrader I, Neumann S, Himstedt R, Zana A, Warneke J, Kunz S (2015) The effect of particle size and ligand configuration on the asymmetric catalytic properties of proline-functionalized Pt-nanoparticles. Chem Commun 51:16221–16224. doi:10.1039/C1035CC06990D CrossRef Schrader I, Neumann S, Himstedt R, Zana A, Warneke J, Kunz S (2015) The effect of particle size and ligand configuration on the asymmetric catalytic properties of proline-functionalized Pt-nanoparticles. Chem Commun 51:16221–16224. doi:10.​1039/​C1035CC06990D CrossRef
84.
go back to reference Schrader I, Neumann S, Schmidt F, Feige F, Kunz S (2016) Publication in preparation Schrader I, Neumann S, Schmidt F, Feige F, Kunz S (2016) Publication in preparation
85.
go back to reference Noyori R (2003) Asymmetric catalysis: science and opportunities (nobel lecture 2001). Adv Synth Catal 345:15–32CrossRef Noyori R (2003) Asymmetric catalysis: science and opportunities (nobel lecture 2001). Adv Synth Catal 345:15–32CrossRef
86.
go back to reference Noyori R, Ohkuma T (2001) Asymmetric catalysis by architectural and functional molecular engineering: practical chemo- and stereoselective hydrogenation of ketones. Angew Chem Int Ed 40:40–73CrossRef Noyori R, Ohkuma T (2001) Asymmetric catalysis by architectural and functional molecular engineering: practical chemo- and stereoselective hydrogenation of ketones. Angew Chem Int Ed 40:40–73CrossRef
87.
go back to reference Kunz S, Maturi MM, Schrader I, Backenköhler J, Tschurl M, Heiz U (2014) Same ligand—different binding mode: a way to control the binding of N-acetyl-cysteine (NAC) to Pt clusters. J Colloid Interface Sci 426:264–269CrossRef Kunz S, Maturi MM, Schrader I, Backenköhler J, Tschurl M, Heiz U (2014) Same ligand—different binding mode: a way to control the binding of N-acetyl-cysteine (NAC) to Pt clusters. J Colloid Interface Sci 426:264–269CrossRef
88.
go back to reference Kahsar KR, Schwartz DK, Medlin JW (2014) Control of metal catalyst selectivity through specific noncovalent molecular interactions. J Am Chem Soc 136:520–526CrossRef Kahsar KR, Schwartz DK, Medlin JW (2014) Control of metal catalyst selectivity through specific noncovalent molecular interactions. J Am Chem Soc 136:520–526CrossRef
89.
go back to reference Gallezot P, Richard D (1998) Selective hydrogenation of alpha, beta-unsaturated aldehydes. Catal Rev 40:81–126CrossRef Gallezot P, Richard D (1998) Selective hydrogenation of alpha, beta-unsaturated aldehydes. Catal Rev 40:81–126CrossRef
90.
go back to reference Albani D, Vile G, Mitchell S, Witte PT, Almora-Barrios N, Verel R, Lopez N, Perez-Ramirez J (2016) Ligand ordering determines the catalytic response of hybrid palladium nanoparticles in hydrogenation. Catal Sci Technol 6:1621–1631CrossRef Albani D, Vile G, Mitchell S, Witte PT, Almora-Barrios N, Verel R, Lopez N, Perez-Ramirez J (2016) Ligand ordering determines the catalytic response of hybrid palladium nanoparticles in hydrogenation. Catal Sci Technol 6:1621–1631CrossRef
91.
go back to reference Marshall ST, O’Brien M, Oetter B, Corpuz A, Richards RM, Schwartz DK, Medlin JW (2010) Controlled selectivity for palladium catalysts using self-assembled monolayers. Nat Mater 9:853–858CrossRef Marshall ST, O’Brien M, Oetter B, Corpuz A, Richards RM, Schwartz DK, Medlin JW (2010) Controlled selectivity for palladium catalysts using self-assembled monolayers. Nat Mater 9:853–858CrossRef
92.
go back to reference Marshall ST, Schwartz DK, Medlin JW (2011) Adsorption of oxygenates on alkanethiol-functionalized Pd(111) surfaces: mechanistic Insights into the role of self-assembled monolayers on catalysis. Langmuir 27:6731–6737CrossRef Marshall ST, Schwartz DK, Medlin JW (2011) Adsorption of oxygenates on alkanethiol-functionalized Pd(111) surfaces: mechanistic Insights into the role of self-assembled monolayers on catalysis. Langmuir 27:6731–6737CrossRef
93.
go back to reference Makosch M, Lin W-I, Bumbálek V, Sá J, Medlin JW, Hungerbühler K, van Bokhoven JA (2012) Organic thiol modified Pt/TiO2 catalysts to control chemoselective hydrogenation of substituted nitroarenes. ACS Catal 2:2079–2081CrossRef Makosch M, Lin W-I, Bumbálek V, Sá J, Medlin JW, Hungerbühler K, van Bokhoven JA (2012) Organic thiol modified Pt/TiO2 catalysts to control chemoselective hydrogenation of substituted nitroarenes. ACS Catal 2:2079–2081CrossRef
94.
go back to reference Morsbach E, Nesselberger M, Warneke J, Harz P, Arenz M, Baumer M, Kunz S (2015) 1-Naphthylamine functionalized Pt nanoparticles: electrochemical activity and redox chemistry occurring on one surface. New J Chem 39:2557–2564CrossRef Morsbach E, Nesselberger M, Warneke J, Harz P, Arenz M, Baumer M, Kunz S (2015) 1-Naphthylamine functionalized Pt nanoparticles: electrochemical activity and redox chemistry occurring on one surface. New J Chem 39:2557–2564CrossRef
Metadata
Title
Supported, Ligand-Functionalized Nanoparticles: An Attempt to Rationalize the Application and Potential of Ligands in Heterogeneous Catalysis
Author
Sebastian Kunz
Publication date
18-08-2016
Publisher
Springer US
Published in
Topics in Catalysis / Issue 19-20/2016
Print ISSN: 1022-5528
Electronic ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-016-0687-7

Other articles of this Issue 19-20/2016

Topics in Catalysis 19-20/2016 Go to the issue

Premium Partners