Skip to main content
Top

2019 | OriginalPaper | Chapter

22. Surface Functionalization of Nanocellulose-Based Hydrogels

Authors : Joanna Lewandowska-Łańcucka, Anna Karewicz, Karol Wolski, Szczepan Zapotoczny

Published in: Cellulose-Based Superabsorbent Hydrogels

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanocellulose is the nanostructured product or extract from the native cellulose found in plants, animals, and bacteria. Three main types of nanocellulose may be identified as cellulose nanocrystals (CNCs), nanofibrillated cellulose (NFC), and bacterial nanocellulose (BNC). Due to the very high surface-to-volume ratio, nanocellulose tends to form hydrogels with exceptionally high water content (>90 wt%). Surface modifications of those nanostructured materials can, e.g., improve their compatibility with different matrices, enable control of water absorption, and release and bring desired chemical functionality expanding utilization of such hydrogel in (bio)nanotechnology-related applications. Various objects including small molecules of biomedical relevance, nano- or microparticles serving as drug carriers, protective/semipermeable coatings, or polymer brushes can be attached onto the surfaces of nanocellulose-based materials in order to prepare various functional nanocomposites. Such composite materials have been successfully applied in, e.g., wound healing and regenerative medicine. Chemical approaches for surface functionalization of nanocellulose-based hydrogels are systematically described in this chapter, together with properties of such formed hydrogel materials and examples of their applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chemie Int Ed 50:5438–5466 Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chemie Int Ed 50:5438–5466
2.
go back to reference Trache D, Hussin MH, Haafiz MKM, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9:1763–1786PubMed Trache D, Hussin MH, Haafiz MKM, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9:1763–1786PubMed
3.
go back to reference Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chemie Int Ed 44:3358–3393 Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chemie Int Ed 44:3358–3393
4.
go back to reference George J, Sabapathi SN (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45–54PubMedPubMedCentral George J, Sabapathi SN (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45–54PubMedPubMedCentral
5.
go back to reference Smyth M, García A, Rader C, Foster EJ, Bras J (2017) Extraction and process analysis of high aspect ratio cellulose nanocrystals from corn (Zea mays) agricultural residue. Ind Crop Prod 108:257–266 Smyth M, García A, Rader C, Foster EJ, Bras J (2017) Extraction and process analysis of high aspect ratio cellulose nanocrystals from corn (Zea mays) agricultural residue. Ind Crop Prod 108:257–266
6.
go back to reference Sacui IA, Nieuwendaal RC, Burnett DJ, Stranick SJ, Jorfi M, Weder C, Foster EJ, Olsson RT, Gilman JW (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces 6:6127–6138PubMed Sacui IA, Nieuwendaal RC, Burnett DJ, Stranick SJ, Jorfi M, Weder C, Foster EJ, Olsson RT, Gilman JW (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces 6:6127–6138PubMed
7.
go back to reference Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994PubMed Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994PubMed
8.
go back to reference Mohamed MA, Salleh WNW, Jaafar J, Asri SEAM, Ismail AF (2015) Physicochemical properties of “green” nanocrystalline cellulose isolated from recycled newspaper. RSC Adv 5:29842–29849 Mohamed MA, Salleh WNW, Jaafar J, Asri SEAM, Ismail AF (2015) Physicochemical properties of “green” nanocrystalline cellulose isolated from recycled newspaper. RSC Adv 5:29842–29849
9.
go back to reference Bettaieb F, Khiari R, Dufresne A, Mhenni MF, Belgacem MN (2015) Mechanical and thermal properties of Posidonia oceanica cellulose nanocrystal reinforced polymer. Carbohydr Polym 123:99–104PubMed Bettaieb F, Khiari R, Dufresne A, Mhenni MF, Belgacem MN (2015) Mechanical and thermal properties of Posidonia oceanica cellulose nanocrystal reinforced polymer. Carbohydr Polym 123:99–104PubMed
10.
go back to reference Chen L, Zhu JY, Baez C, Kitin P, Elder T (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18:3835–3843 Chen L, Zhu JY, Baez C, Kitin P, Elder T (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18:3835–3843
11.
go back to reference Satyamurthy P, Jain P, Balasubramanya RH, Vigneshwaran N (2011) Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohydr Polym 83:122–129 Satyamurthy P, Jain P, Balasubramanya RH, Vigneshwaran N (2011) Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohydr Polym 83:122–129
12.
go back to reference Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687 Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687
13.
go back to reference Spoljaric S, Genovese A, Shanks RA (2009) Polypropylene-microcrystalline cellulose composites with enhanced compatibility and properties. Compos Part A Appl Sci Manuf 40:791–799 Spoljaric S, Genovese A, Shanks RA (2009) Polypropylene-microcrystalline cellulose composites with enhanced compatibility and properties. Compos Part A Appl Sci Manuf 40:791–799
14.
go back to reference Padalkar S, Capadona JR, Rowan SJ, Weder C, Won YH, Stanciu LA, Moon RJ (2010) Natural biopolymers: novel templates for the synthesis of nanostructures. Langmuir 26:8497–8502PubMed Padalkar S, Capadona JR, Rowan SJ, Weder C, Won YH, Stanciu LA, Moon RJ (2010) Natural biopolymers: novel templates for the synthesis of nanostructures. Langmuir 26:8497–8502PubMed
15.
go back to reference Salajkova M, Berglund LA, Zhou Q (2012) Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts. J Mater Chem 22:19798 Salajkova M, Berglund LA, Zhou Q (2012) Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts. J Mater Chem 22:19798
16.
go back to reference Espino-Pérez E, Bras J, Almeida G, Relkin P, Belgacem N, Plessis C, Domenek S (2016) Cellulose nanocrystal surface functionalization for the controlled sorption of water and organic vapours. Cellulose 23:2955–2970 Espino-Pérez E, Bras J, Almeida G, Relkin P, Belgacem N, Plessis C, Domenek S (2016) Cellulose nanocrystal surface functionalization for the controlled sorption of water and organic vapours. Cellulose 23:2955–2970
17.
go back to reference Biyani MV, Foster EJ, Weder C (2013) Light-healable supramolecular nanocomposites based on modified cellulose nanocrystals. ACS Macro Lett 2:236–240 Biyani MV, Foster EJ, Weder C (2013) Light-healable supramolecular nanocomposites based on modified cellulose nanocrystals. ACS Macro Lett 2:236–240
18.
go back to reference Yin Y, Tian X, Jiang X, Wang H, Gao W (2016) Modification of cellulose nanocrystal via SI-ATRP of styrene and the mechanism of its reinforcement of polymethylmethacrylate. Carbohydr Polym 142:206–212PubMed Yin Y, Tian X, Jiang X, Wang H, Gao W (2016) Modification of cellulose nanocrystal via SI-ATRP of styrene and the mechanism of its reinforcement of polymethylmethacrylate. Carbohydr Polym 142:206–212PubMed
19.
go back to reference Chadila A, Farouk MM (2011) Rapid homogeneous esterification of cellulose extracted from Posidonia induced by microwave irradiation. J Appl Polym Sci 119:3372–3381 Chadila A, Farouk MM (2011) Rapid homogeneous esterification of cellulose extracted from Posidonia induced by microwave irradiation. J Appl Polym Sci 119:3372–3381
20.
go back to reference Lin N, Dufresne A (2013) Supramolecular hydrogels from in situ host-guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin. Biomacromolecules 14:871–880PubMed Lin N, Dufresne A (2013) Supramolecular hydrogels from in situ host-guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin. Biomacromolecules 14:871–880PubMed
21.
go back to reference Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6:7764–7779PubMed Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6:7764–7779PubMed
22.
go back to reference Bendahou A, Hajlane A, Dufresne A, Boufi S, Kaddami H (2015) Esterification and amidation for grafting long aliphatic chains on to cellulose nanocrystals: a comparative study. Res Chem Intermed 41:4293–4310 Bendahou A, Hajlane A, Dufresne A, Boufi S, Kaddami H (2015) Esterification and amidation for grafting long aliphatic chains on to cellulose nanocrystals: a comparative study. Res Chem Intermed 41:4293–4310
23.
go back to reference Sadeghifar H, Filpponen I, Clarke SP, Brougham DF, Argyropoulos DS (2011) Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J Mater Sci 46:7344–7355 Sadeghifar H, Filpponen I, Clarke SP, Brougham DF, Argyropoulos DS (2011) Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J Mater Sci 46:7344–7355
24.
go back to reference Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542PubMed Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542PubMed
25.
go back to reference Gill U, Sutherland T, Himbert S, Zhu Y, Rheinstädter MC, Cranston ED, Moran-Mirabal JM (2017) Beyond buckling: humidity-independent measurement of the mechanical properties of green nanobiocomposite films. Nanoscale 9:7781–7790PubMed Gill U, Sutherland T, Himbert S, Zhu Y, Rheinstädter MC, Cranston ED, Moran-Mirabal JM (2017) Beyond buckling: humidity-independent measurement of the mechanical properties of green nanobiocomposite films. Nanoscale 9:7781–7790PubMed
26.
go back to reference Zhou Q, Brumer H, Teeri TT (2009) Self-organization of cellulose nanocrystals adsorbed with xyloglucan oligosaccharide-poly(ethylene glycol)-polystyrene triblock copolymer. Macromolecules 42:5430–5432 Zhou Q, Brumer H, Teeri TT (2009) Self-organization of cellulose nanocrystals adsorbed with xyloglucan oligosaccharide-poly(ethylene glycol)-polystyrene triblock copolymer. Macromolecules 42:5430–5432
27.
go back to reference Nagalakshmaiah M, Pignon F, El Kissi N, Dufresne A (2016) Surface adsorption of triblock copolymer (PEO–PPO–PEO) on cellulose nanocrystals and their melt extrusion with polyethylene. RSC Adv 6:66224–66232 Nagalakshmaiah M, Pignon F, El Kissi N, Dufresne A (2016) Surface adsorption of triblock copolymer (PEO–PPO–PEO) on cellulose nanocrystals and their melt extrusion with polyethylene. RSC Adv 6:66224–66232
28.
go back to reference Atifi S, Su S, Hamad WY (2014) Mechanically tunable nanocomposite hydrogels based on functionalized cellulose nanocrystals. Nord Pulp Pap Res J 29:95–104 Atifi S, Su S, Hamad WY (2014) Mechanically tunable nanocomposite hydrogels based on functionalized cellulose nanocrystals. Nord Pulp Pap Res J 29:95–104
29.
go back to reference Wang H, He J, Zhang M, Tam KC, Ni P (2015) A new pathway towards polymer modified cellulose nanocrystals via a “grafting onto” process for drug delivery. Polym Chem 6:4206–4209 Wang H, He J, Zhang M, Tam KC, Ni P (2015) A new pathway towards polymer modified cellulose nanocrystals via a “grafting onto” process for drug delivery. Polym Chem 6:4206–4209
30.
go back to reference Azzam F, Siqueira E, Fort S, Hassaini R, Pignon F, Travelet C, Putaux JL, Jean B (2016) Tunable aggregation and gelation of Thermoresponsive suspensions of polymer-grafted cellulose nanocrystals. Biomacromolecules 17:2112–2119PubMed Azzam F, Siqueira E, Fort S, Hassaini R, Pignon F, Travelet C, Putaux JL, Jean B (2016) Tunable aggregation and gelation of Thermoresponsive suspensions of polymer-grafted cellulose nanocrystals. Biomacromolecules 17:2112–2119PubMed
31.
go back to reference Kloser E, Gray DG (2010) Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueous media. Langmuir 26:13450–13456PubMed Kloser E, Gray DG (2010) Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueous media. Langmuir 26:13450–13456PubMed
32.
go back to reference Zoppe JO, Cavusoglu Ataman NC, Mocny P, Wang J, Moraes J, Klok H-A (2017) Surface-initiated controlled radical polymerization: state-of-the-art, opportunities, and challenges in surface and Interface engineering with polymer brushes. Chem Rev 117:1105–1318PubMed Zoppe JO, Cavusoglu Ataman NC, Mocny P, Wang J, Moraes J, Klok H-A (2017) Surface-initiated controlled radical polymerization: state-of-the-art, opportunities, and challenges in surface and Interface engineering with polymer brushes. Chem Rev 117:1105–1318PubMed
33.
go back to reference Barbey R, Lavanant L, Paripovic D, Schuwer N, Sugnaux C, Tugulu S, Klok H-A (2009) Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 109:5437–5527PubMed Barbey R, Lavanant L, Paripovic D, Schuwer N, Sugnaux C, Tugulu S, Klok H-A (2009) Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 109:5437–5527PubMed
34.
go back to reference Roeder RD, Garcia-Valdez O, Whitney RA, Champagne P, Cunningham MF (2016) Graft modification of cellulose nanocrystals via nitroxide-mediated polymerisation. Polym Chem 7:6383–6390 Roeder RD, Garcia-Valdez O, Whitney RA, Champagne P, Cunningham MF (2016) Graft modification of cellulose nanocrystals via nitroxide-mediated polymerisation. Polym Chem 7:6383–6390
35.
go back to reference Boujemaoui A, Mazières S, Malmström E, Destarac M, Carlmark A (2016) SI-RAFT/MADIX polymerization of vinyl acetate on cellulose nanocrystals for nanocomposite applications. Polym (UK) 99:240–249 Boujemaoui A, Mazières S, Malmström E, Destarac M, Carlmark A (2016) SI-RAFT/MADIX polymerization of vinyl acetate on cellulose nanocrystals for nanocomposite applications. Polym (UK) 99:240–249
36.
go back to reference Lizundia E, Fortunati E, Dominici F, Vilas JL, León LM, Armentano I, Torre L, Kenny JM (2016) PLLA-grafted cellulose nanocrystals: role of the CNC content and grafting on the PLA bionanocomposite film properties. Carbohydr Polym 142:105–113PubMed Lizundia E, Fortunati E, Dominici F, Vilas JL, León LM, Armentano I, Torre L, Kenny JM (2016) PLLA-grafted cellulose nanocrystals: role of the CNC content and grafting on the PLA bionanocomposite film properties. Carbohydr Polym 142:105–113PubMed
37.
go back to reference Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26:4480–4488PubMed Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26:4480–4488PubMed
38.
go back to reference De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing Nanocellulose. Chem Mater 29:4609–4631 De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing Nanocellulose. Chem Mater 29:4609–4631
39.
go back to reference Ureña-Benavides EE, Ao G, Davis VA, Kitchens CL (2011) Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44:8990–8998 Ureña-Benavides EE, Ao G, Davis VA, Kitchens CL (2011) Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44:8990–8998
40.
go back to reference Chau M, Sriskandha SE, Pichugin D, Thérien-Aubin H, Nykypanchuk D, Chauve G, Méthot M, Bouchard J, Gang O, Kumacheva E (2015) Ion-mediated gelation of aqueous suspensions of cellulose nanocrystals. Biomacromolecules 16:2455–2462PubMed Chau M, Sriskandha SE, Pichugin D, Thérien-Aubin H, Nykypanchuk D, Chauve G, Méthot M, Bouchard J, Gang O, Kumacheva E (2015) Ion-mediated gelation of aqueous suspensions of cellulose nanocrystals. Biomacromolecules 16:2455–2462PubMed
41.
go back to reference Way AE, Hsu L, Shanmuganathan K, Weder C, Rowan SJ (2012) PH-responsive cellulose nanocrystal gels and nanocomposites. ACS Macro Lett 1:1001–1006 Way AE, Hsu L, Shanmuganathan K, Weder C, Rowan SJ (2012) PH-responsive cellulose nanocrystal gels and nanocomposites. ACS Macro Lett 1:1001–1006
42.
go back to reference Bajpai SK, Pathak V, Soni B, Mohan YM (2014) CNWs loaded poly(SA) hydrogels: effect of high concentration of CNWs on water uptake and mechanical properties. Carbohydr Polym 106:351–358PubMed Bajpai SK, Pathak V, Soni B, Mohan YM (2014) CNWs loaded poly(SA) hydrogels: effect of high concentration of CNWs on water uptake and mechanical properties. Carbohydr Polym 106:351–358PubMed
43.
go back to reference Osorio-Madrazo A, Eder M, Rueggeberg M, Pandey JK, Harrington MJ, Nishiyama Y, Putaux JL, Rochas C, Burgert I (2012) Reorientation of cellulose nanowhiskers in agarose hydrogels under tensile loading. Biomacromolecules 13:850–856PubMed Osorio-Madrazo A, Eder M, Rueggeberg M, Pandey JK, Harrington MJ, Nishiyama Y, Putaux JL, Rochas C, Burgert I (2012) Reorientation of cellulose nanowhiskers in agarose hydrogels under tensile loading. Biomacromolecules 13:850–856PubMed
44.
go back to reference Yang J, Han C, Xu F, Sun R (2014) Simple approach to reinforce hydrogels with cellulose nanocrystals. Nanoscale 6:5934–5943PubMed Yang J, Han C, Xu F, Sun R (2014) Simple approach to reinforce hydrogels with cellulose nanocrystals. Nanoscale 6:5934–5943PubMed
45.
go back to reference De France KJ, Chan KJW, Cranston ED, Hoare T (2016) Enhanced mechanical properties in cellulose nanocrystal-poly(oligoethylene glycol methacrylate) injectable nanocomposite hydrogels through control of physical and chemical cross-linking. Biomacromolecules 17:649–660PubMed De France KJ, Chan KJW, Cranston ED, Hoare T (2016) Enhanced mechanical properties in cellulose nanocrystal-poly(oligoethylene glycol methacrylate) injectable nanocomposite hydrogels through control of physical and chemical cross-linking. Biomacromolecules 17:649–660PubMed
46.
go back to reference Yang J, Zhao JJ, Xu F, Sun RC (2013) Revealing strong nanocomposite hydrogels reinforced by cellulose nanocrystals: insight into morphologies and interactions. ACS Appl Mater Interfaces 5:12960–12967PubMed Yang J, Zhao JJ, Xu F, Sun RC (2013) Revealing strong nanocomposite hydrogels reinforced by cellulose nanocrystals: insight into morphologies and interactions. ACS Appl Mater Interfaces 5:12960–12967PubMed
47.
go back to reference Wang S, Sun J, Jia Y, Yang L, Wang N, Xianyu Y, Chen W, Li X, Cha R, Jiang X (2016) Nanocrystalline cellulose-assisted generation of silver nanoparticles for nonenzymatic glucose detection and antibacterial agent. Biomacromolecules 17:2472–2478PubMed Wang S, Sun J, Jia Y, Yang L, Wang N, Xianyu Y, Chen W, Li X, Cha R, Jiang X (2016) Nanocrystalline cellulose-assisted generation of silver nanoparticles for nonenzymatic glucose detection and antibacterial agent. Biomacromolecules 17:2472–2478PubMed
48.
go back to reference He X, Male KB, Nesterenko PN, Brabazon D, Paull B, Luong JHT (2013) Adsorption and desorption of methylene blue on porous carbon monoliths and nanocrystalline cellulose. ACS Appl Mater Interfaces 5:8796–8804PubMed He X, Male KB, Nesterenko PN, Brabazon D, Paull B, Luong JHT (2013) Adsorption and desorption of methylene blue on porous carbon monoliths and nanocrystalline cellulose. ACS Appl Mater Interfaces 5:8796–8804PubMed
49.
go back to reference Kalashnikova I, Bizot H, Bertoncini P, Cathala B, Capron I (2013) Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions. Soft Matter 9:952–959 Kalashnikova I, Bizot H, Bertoncini P, Cathala B, Capron I (2013) Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions. Soft Matter 9:952–959
50.
go back to reference Xu X, Zhou J, Jiang L, Lubineau G, Ng T, Ooi BS, Liao H-Y, Shen C, Chen L, Zhu JY (2016) Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics. Nanoscale 8:12294–12306PubMed Xu X, Zhou J, Jiang L, Lubineau G, Ng T, Ooi BS, Liao H-Y, Shen C, Chen L, Zhu JY (2016) Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics. Nanoscale 8:12294–12306PubMed
51.
go back to reference Tang L, Li T, Zhuang S, Lu Q, Li P, Huang B (2016) Synthesis of pH-sensitive fluorescein grafted cellulose nanocrystals with an amino acid spacer. ACS Sustain Chem Eng 4: 4842–4849 Tang L, Li T, Zhuang S, Lu Q, Li P, Huang B (2016) Synthesis of pH-sensitive fluorescein grafted cellulose nanocrystals with an amino acid spacer. ACS Sustain Chem Eng 4: 4842–4849
52.
go back to reference Mohanta V, Madras G, Patil S (2014) Layer-by-layer assembled thin films and microcapsules of nanocrystalline cellulose for hydrophobic drug delivery. ACS Appl Mater Interfaces 6:20093–20101PubMed Mohanta V, Madras G, Patil S (2014) Layer-by-layer assembled thin films and microcapsules of nanocrystalline cellulose for hydrophobic drug delivery. ACS Appl Mater Interfaces 6:20093–20101PubMed
53.
go back to reference Schyrr B, Pasche S, Voirin G, Weder C, Simon YC, Foster EJ (2014) Biosensors based on porous cellulose nanocrystal-poly(vinyl alcohol) scaffolds. ACS Appl Mater Interfaces 6:12674–12683PubMed Schyrr B, Pasche S, Voirin G, Weder C, Simon YC, Foster EJ (2014) Biosensors based on porous cellulose nanocrystal-poly(vinyl alcohol) scaffolds. ACS Appl Mater Interfaces 6:12674–12683PubMed
54.
go back to reference Bolloli M, Antonelli C, Molméret Y, Alloin F, Iojoiu C, Sanchez JY (2016) Nanocomposite poly(vynilidene fluoride)/nanocrystalline cellulose porous membranes as separators for lithium-ion batteries. Electrochim Acta 214:38–48 Bolloli M, Antonelli C, Molméret Y, Alloin F, Iojoiu C, Sanchez JY (2016) Nanocomposite poly(vynilidene fluoride)/nanocrystalline cellulose porous membranes as separators for lithium-ion batteries. Electrochim Acta 214:38–48
55.
go back to reference Yu H, Yan C, Yao J (2014) Fully biodegradable food packaging materials based on functionalized cellulose nanocrystals/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites. RSC Adv 4:59792–59802 Yu H, Yan C, Yao J (2014) Fully biodegradable food packaging materials based on functionalized cellulose nanocrystals/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites. RSC Adv 4:59792–59802
56.
go back to reference Xiong R, Hu K, Grant AM, Ma R, Xu W, Lu C, Zhang X, Tsukruk VV (2016) Ultrarobust transparent cellulose nanocrystal-graphene membranes with high electrical conductivity. Adv Mater 28:1501–1509PubMed Xiong R, Hu K, Grant AM, Ma R, Xu W, Lu C, Zhang X, Tsukruk VV (2016) Ultrarobust transparent cellulose nanocrystal-graphene membranes with high electrical conductivity. Adv Mater 28:1501–1509PubMed
57.
go back to reference Grishkewich N, Mohammed N, Tang J, Tam KC (2017) Recent advances in the application of cellulose nanocrystals. Curr Opin Colloid Interface Sci 29:32–45 Grishkewich N, Mohammed N, Tang J, Tam KC (2017) Recent advances in the application of cellulose nanocrystals. Curr Opin Colloid Interface Sci 29:32–45
58.
go back to reference Wang K, Nune KC, Misra RDK (2016) The functional response of alginate-gelatin-nanocrystalline cellulose injectable hydrogels toward delivery of cells and bioactive molecules. Acta Biomater 36:143–151PubMed Wang K, Nune KC, Misra RDK (2016) The functional response of alginate-gelatin-nanocrystalline cellulose injectable hydrogels toward delivery of cells and bioactive molecules. Acta Biomater 36:143–151PubMed
59.
go back to reference Lin N, Gèze A, Wouessidjewe D, Huang J, Dufresne A (2016) Biocompatible double-membrane hydrogels from cationic cellulose nanocrystals and anionic alginate as complexing drugs Codelivery. ACS Appl Mater Interfaces 8:6880–6889PubMed Lin N, Gèze A, Wouessidjewe D, Huang J, Dufresne A (2016) Biocompatible double-membrane hydrogels from cationic cellulose nanocrystals and anionic alginate as complexing drugs Codelivery. ACS Appl Mater Interfaces 8:6880–6889PubMed
60.
go back to reference Zubik K, Singhsa P, Wang Y, Manuspiya H, Narain R (2017) Thermo-responsive poly(N-isopropylacrylamide)-cellulose nanocrystals hybrid hydrogels for wound dressing. Polymers 9:119 Zubik K, Singhsa P, Wang Y, Manuspiya H, Narain R (2017) Thermo-responsive poly(N-isopropylacrylamide)-cellulose nanocrystals hybrid hydrogels for wound dressing. Polymers 9:119
61.
go back to reference Kelly JA, Shukaliak AM, Cheung CCY, Shopsowitz KE, Hamad WY, MacLachlan MJ (2013) Responsive photonic hydrogels based on nanocrystalline cellulose. Angew Chem Int Ed 52:8912–8916 Kelly JA, Shukaliak AM, Cheung CCY, Shopsowitz KE, Hamad WY, MacLachlan MJ (2013) Responsive photonic hydrogels based on nanocrystalline cellulose. Angew Chem Int Ed 52:8912–8916
62.
go back to reference McKee JR, Appel EA, Seitsonen J, Kontturi E, Scherman OA, Ikkala O (2014) Healable, stable and stiff hydrogels: combining conflicting properties using dynamic and selective three-component recognition with reinforcing cellulose nanorods. Adv Funct Mater 24:2706–2713 McKee JR, Appel EA, Seitsonen J, Kontturi E, Scherman OA, Ikkala O (2014) Healable, stable and stiff hydrogels: combining conflicting properties using dynamic and selective three-component recognition with reinforcing cellulose nanorods. Adv Funct Mater 24:2706–2713
63.
go back to reference Boufi S, Gonzalez I, Delgado-Aguilar M, Tarres Q, Angels Pelach M, Mutje P (2016) Nanofibrillated cellulose as an additive in papermaking process: a review. Carbohydr Polym 154:151–166PubMed Boufi S, Gonzalez I, Delgado-Aguilar M, Tarres Q, Angels Pelach M, Mutje P (2016) Nanofibrillated cellulose as an additive in papermaking process: a review. Carbohydr Polym 154:151–166PubMed
64.
go back to reference Zhao Y, Moser C, Lindström ME, Henriksson G, Li J (2017) Cellulose nanofibers from softwood, hardwood, and tunicate: preparation–structure–film performance interrelation. ACS Appl Mater Interfaces 9(15):13508–13519PubMed Zhao Y, Moser C, Lindström ME, Henriksson G, Li J (2017) Cellulose nanofibers from softwood, hardwood, and tunicate: preparation–structure–film performance interrelation. ACS Appl Mater Interfaces 9(15):13508–13519PubMed
65.
go back to reference Abdul Khalil HPS, Davoudpour Y, Nazrul Islam M, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665PubMed Abdul Khalil HPS, Davoudpour Y, Nazrul Islam M, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665PubMed
66.
go back to reference Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169PubMed Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169PubMed
67.
go back to reference Chauhan VS, Chakrabarti SK (2012) Use of nanotechnology for high performance cellulosic and papermaking products. Cellulose Technol 46(5–6):389–400 Chauhan VS, Chakrabarti SK (2012) Use of nanotechnology for high performance cellulosic and papermaking products. Cellulose Technol 46(5–6):389–400
68.
go back to reference Szczęsna-Antczak M, Kazimierczak J, Antczak T (2012) Nanotechnology-methods of manufacturing cellulose nanofibers. Fiber Text East Eur 20(91):8–12 Szczęsna-Antczak M, Kazimierczak J, Antczak T (2012) Nanotechnology-methods of manufacturing cellulose nanofibers. Fiber Text East Eur 20(91):8–12
69.
go back to reference Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercially potential. J Polym Sci 37:815–827 Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercially potential. J Polym Sci 37:815–827
70.
go back to reference Davoudpour Y, Hossain S, Khall HPSA, Haafiz MM, Ishak ZM, Hsan A, Sarker ZI (2015) Optimization of high pressure homogenization parameters for the isolation of cellulosic nanofibers using response surface methodology. Ind Crop Prod 74:381–387 Davoudpour Y, Hossain S, Khall HPSA, Haafiz MM, Ishak ZM, Hsan A, Sarker ZI (2015) Optimization of high pressure homogenization parameters for the isolation of cellulosic nanofibers using response surface methodology. Ind Crop Prod 74:381–387
71.
go back to reference Ferrer A, Filpponen I, Rodriguez A, Laine J, Rojas OJ (2012) Valorization of residual empty palm fruit bunch fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper. Bioresour Technol 125:249–255PubMed Ferrer A, Filpponen I, Rodriguez A, Laine J, Rojas OJ (2012) Valorization of residual empty palm fruit bunch fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper. Bioresour Technol 125:249–255PubMed
72.
go back to reference Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227 Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227
73.
go back to reference Frone AN, Panaitescu DM, Donescu D, Spataru CI, Radovici C, Trusca R, Somoghi R (2011) Preparation and characterization of PVA composites with cellulose nanofibers obtained by ultrasonication. Bioresources 6(1):487–512 Frone AN, Panaitescu DM, Donescu D, Spataru CI, Radovici C, Trusca R, Somoghi R (2011) Preparation and characterization of PVA composites with cellulose nanofibers obtained by ultrasonication. Bioresources 6(1):487–512
74.
go back to reference Uetani K, Yano H (2010) Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules 12:348–353PubMed Uetani K, Yano H (2010) Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules 12:348–353PubMed
75.
go back to reference Abraham E, Deepa B, Pothan L, John M, Narine S, Thomas S, Anandjiwala R (2013) Physicomechanical properties of nanocomposites based on cellulose nanofibre and natural rubber latex. Cellulose 20:417–427 Abraham E, Deepa B, Pothan L, John M, Narine S, Thomas S, Anandjiwala R (2013) Physicomechanical properties of nanocomposites based on cellulose nanofibre and natural rubber latex. Cellulose 20:417–427
76.
go back to reference Cherian BM, Leao AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81:720–725 Cherian BM, Leao AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81:720–725
77.
go back to reference Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983 Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983
78.
go back to reference Leitner J, Hinterstoisser B, Wastyn M, Keckes J, Gindl W (2007) Sugar beet cellulose nanofibril-reinforced composites. Cellulose 14:419–425 Leitner J, Hinterstoisser B, Wastyn M, Keckes J, Gindl W (2007) Sugar beet cellulose nanofibril-reinforced composites. Cellulose 14:419–425
79.
go back to reference Elanhikkal S, Gopalakrishnapanicker U (2010) Cellulose microfibres produced from banana plant wastes: isolation and characterization. Carbohydr Polym 80:852–859 Elanhikkal S, Gopalakrishnapanicker U (2010) Cellulose microfibres produced from banana plant wastes: isolation and characterization. Carbohydr Polym 80:852–859
80.
go back to reference Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442 Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442
81.
go back to reference Chen W, Yu H, Lu Y (2011) Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from bamboo fibers. Carbohydr Polym 86:453–461 Chen W, Yu H, Lu Y (2011) Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from bamboo fibers. Carbohydr Polym 86:453–461
82.
go back to reference Thiripura Sundari M, Rameh A (2012) Isolation and characterization of cellulose nanofibers from the aquatic weed water hyacinth – Eichhornia crassipes. Carbohydr Polym 87:1701–1705 Thiripura Sundari M, Rameh A (2012) Isolation and characterization of cellulose nanofibers from the aquatic weed water hyacinth – Eichhornia crassipes. Carbohydr Polym 87:1701–1705
83.
go back to reference Naderi A, Lindstrom T, Sundstrom J (2015) Repeated homogenization, a route for decreasing the energy consumption in the manufacturing process of carboxymethylated nanofibrillatd cellulose. Cellulose 22:1147–1157 Naderi A, Lindstrom T, Sundstrom J (2015) Repeated homogenization, a route for decreasing the energy consumption in the manufacturing process of carboxymethylated nanofibrillatd cellulose. Cellulose 22:1147–1157
84.
go back to reference Chaker A, Mutje P, Rei Vilar M, Boufi S (2014) Agriculture crop residue as a source for the production of nanofibrillated cellulose with low energy demand. Cellulose 21:4247–4259 Chaker A, Mutje P, Rei Vilar M, Boufi S (2014) Agriculture crop residue as a source for the production of nanofibrillated cellulose with low energy demand. Cellulose 21:4247–4259
85.
go back to reference Saito T, Nishiyama Y, Putaux JL, Vignon M, Sogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691PubMed Saito T, Nishiyama Y, Putaux JL, Vignon M, Sogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691PubMed
86.
go back to reference Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite material: a review. Cellulose 17:459–494 Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite material: a review. Cellulose 17:459–494
87.
go back to reference Buzała K, Przybysz P, Rosicka-Kaczmarek J, Kalinowska H (2015) Comparison of digestibility of wood pulps produced by the sulphate and TMP methods and woodchips of various botanical origins and sizes. Cellulose 22(4):2737–2747 Buzała K, Przybysz P, Rosicka-Kaczmarek J, Kalinowska H (2015) Comparison of digestibility of wood pulps produced by the sulphate and TMP methods and woodchips of various botanical origins and sizes. Cellulose 22(4):2737–2747
88.
go back to reference Limateinen H, Visanko M, Sirvio J, Hormi J, Niinimaki JD (2013) Sulfonated cellulose nanofibers obtained from wood pulp through regioselective oxidative bisulphite pre-treatment. Cellulose 20(2):741–749 Limateinen H, Visanko M, Sirvio J, Hormi J, Niinimaki JD (2013) Sulfonated cellulose nanofibers obtained from wood pulp through regioselective oxidative bisulphite pre-treatment. Cellulose 20(2):741–749
89.
go back to reference Chaker A, Boufi S (2015) Cationic nanofibrillar cellulose with high antibacterial properties. Carbohydr Polym 131:224–232PubMed Chaker A, Boufi S (2015) Cationic nanofibrillar cellulose with high antibacterial properties. Carbohydr Polym 131:224–232PubMed
90.
go back to reference Kalia S, Boufi S, Celli A, Kango S (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292:5–31 Kalia S, Boufi S, Celli A, Kango S (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292:5–31
91.
go back to reference Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49:1285–1296 Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49:1285–1296
92.
go back to reference Andresen M, Johansson L, Tanem B, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–677 Andresen M, Johansson L, Tanem B, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–677
93.
go back to reference Jonoobi M, Harun J, Mathew AP, Hussein MZB, Oksman K (2010) Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17:299–307 Jonoobi M, Harun J, Mathew AP, Hussein MZB, Oksman K (2010) Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17:299–307
94.
go back to reference Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11:454–464PubMed Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11:454–464PubMed
95.
go back to reference Syverud K, Xhanari K, Chinga-carrasco G, Yu Y, Stenius P (2011) Films made of cellulose nanofibrils: surface modification by adsorption of a cationic surfactant and characterization by computer assisted electron microscopy. J Nanopart Res 13:773–782 Syverud K, Xhanari K, Chinga-carrasco G, Yu Y, Stenius P (2011) Films made of cellulose nanofibrils: surface modification by adsorption of a cationic surfactant and characterization by computer assisted electron microscopy. J Nanopart Res 13:773–782
96.
go back to reference Nakagaito AN, Yano H (2008) Toughness enhancement of cellulose nanocomposite by akali treatment of the reinforcing cellulose nanofibers. Cellulose 15:323–331 Nakagaito AN, Yano H (2008) Toughness enhancement of cellulose nanocomposite by akali treatment of the reinforcing cellulose nanofibers. Cellulose 15:323–331
97.
go back to reference Pahimanolis N, Hippi U, Johansson LS, Saarinen T, Houbenov N, Ruokolainen J, Seppala J (2011) Surface functionalization of nanofibrillated cellulose using click-chemistry approach in aqueous media. Cellulose 18:1201–1212 Pahimanolis N, Hippi U, Johansson LS, Saarinen T, Houbenov N, Ruokolainen J, Seppala J (2011) Surface functionalization of nanofibrillated cellulose using click-chemistry approach in aqueous media. Cellulose 18:1201–1212
98.
go back to reference Xiao M, Li S, Chanklin W, Zhenh A, Xiao H (2011) Surface initiated atom transfer radical polymerization of butyl acrylate on cellulose microfibrils. Carbohydr Polym 83:512–519 Xiao M, Li S, Chanklin W, Zhenh A, Xiao H (2011) Surface initiated atom transfer radical polymerization of butyl acrylate on cellulose microfibrils. Carbohydr Polym 83:512–519
99.
go back to reference Li S, Xiao M, Zheng A, Xiao H (2011) Cellulose microfibrils grafted with PBA via surface initiated atom transfer radical polymerization for biocomposite reinforcement. Biomacromolecules 12:3305–3312PubMed Li S, Xiao M, Zheng A, Xiao H (2011) Cellulose microfibrils grafted with PBA via surface initiated atom transfer radical polymerization for biocomposite reinforcement. Biomacromolecules 12:3305–3312PubMed
100.
go back to reference Thompson TT, Bastarrachea MIL, Vega MJA (2005) Characterization of henequen cellulose microfibers treated with an epoxide and grafted with poly(acrylc acid). Carbohydr Polym 62:67–73 Thompson TT, Bastarrachea MIL, Vega MJA (2005) Characterization of henequen cellulose microfibers treated with an epoxide and grafted with poly(acrylc acid). Carbohydr Polym 62:67–73
101.
go back to reference Lonnberg H, Larrson K, Lindstrom T, Hult A, Malmstrom E (2011) Synthesis of polycaprolactone-grafted microfibrillated cellulose for use in novel bionanocomposites-influence of the graft length on the mechanical properties. ACS Appl Mater Interfaces 3:1426–1433PubMed Lonnberg H, Larrson K, Lindstrom T, Hult A, Malmstrom E (2011) Synthesis of polycaprolactone-grafted microfibrillated cellulose for use in novel bionanocomposites-influence of the graft length on the mechanical properties. ACS Appl Mater Interfaces 3:1426–1433PubMed
102.
go back to reference Littunen K, Hippi U, Johansson LS, Osterberg M, Tammeline T, Laine J, Seppala J (2011) Free radical graft copolymerization of nanofibrillated cellulose with acrylic monomers. Carbohydr Polym 84:1039–1047 Littunen K, Hippi U, Johansson LS, Osterberg M, Tammeline T, Laine J, Seppala J (2011) Free radical graft copolymerization of nanofibrillated cellulose with acrylic monomers. Carbohydr Polym 84:1039–1047
103.
go back to reference Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2(2):353–373PubMedCentral Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2(2):353–373PubMedCentral
104.
go back to reference Mihranyan A, Llasgostera AP, Karmhag R, Stromme M, Ek R (2004) Moisture sorption by cellulose powder of varying crystallinity. In J Pharm 269:433–442 Mihranyan A, Llasgostera AP, Karmhag R, Stromme M, Ek R (2004) Moisture sorption by cellulose powder of varying crystallinity. In J Pharm 269:433–442
105.
go back to reference Abraham E, Deepa B, Pohan LA, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulosic fibers: a novel approach. Carbohydr Polym 86:1468–1475 Abraham E, Deepa B, Pohan LA, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulosic fibers: a novel approach. Carbohydr Polym 86:1468–1475
106.
go back to reference Bhattacharya M, Malinen MM, Lauren P, Lou YR, Kuisma SW, Kanninen L, Lille M, Corlu A, GuGuen-Guillouzo C, Ikkala O, Laukkanen A, Urtti A, Yliperttula M (2012) Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J Control Release 164:291–298PubMed Bhattacharya M, Malinen MM, Lauren P, Lou YR, Kuisma SW, Kanninen L, Lille M, Corlu A, GuGuen-Guillouzo C, Ikkala O, Laukkanen A, Urtti A, Yliperttula M (2012) Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J Control Release 164:291–298PubMed
107.
go back to reference Kopecek J (2009) Hydrogels: from soft contact lenses and implants to self-assembled nanomaterials. J Polym Sci Part A 47:5929–5946 Kopecek J (2009) Hydrogels: from soft contact lenses and implants to self-assembled nanomaterials. J Polym Sci Part A 47:5929–5946
108.
go back to reference Mertaniemi H, Escobedo-Lucea C, Sanz-Garcia A, Gandía C, Mäkitie A, Partanen J, Ikkala O, Yliperttula M (2016) Human stem cell decorated nanocellulose threads for biomedical applications. Biomaterials 82:208–220PubMed Mertaniemi H, Escobedo-Lucea C, Sanz-Garcia A, Gandía C, Mäkitie A, Partanen J, Ikkala O, Yliperttula M (2016) Human stem cell decorated nanocellulose threads for biomedical applications. Biomaterials 82:208–220PubMed
109.
go back to reference Alexandrescu L, Syverud K, Gatti A, Chinga-Carrasco G (2013) Cytotoxicity tests of cellulose nanofibril-based structures. Cellulose 20:1765–1775 Alexandrescu L, Syverud K, Gatti A, Chinga-Carrasco G (2013) Cytotoxicity tests of cellulose nanofibril-based structures. Cellulose 20:1765–1775
110.
go back to reference Syverud K, Chinga-Carrasco G, Toledo J, Toledo PG (2011) A comparative study of Eucalyptus and Pinus radiate pulp fibres as raw material of production of cellulose nanofibrils. Carbohydr Polym 84:1033–1038 Syverud K, Chinga-Carrasco G, Toledo J, Toledo PG (2011) A comparative study of Eucalyptus and Pinus radiate pulp fibres as raw material of production of cellulose nanofibrils. Carbohydr Polym 84:1033–1038
111.
go back to reference Liu J, Korpinen R, Mikkonen K, Willfor S, Xu C (2014) Nanofibrillated cellulose originated from birch sawdust after sequential extractions: a promising polymeric material from waste to film. Cellulose 21:2587–2598 Liu J, Korpinen R, Mikkonen K, Willfor S, Xu C (2014) Nanofibrillated cellulose originated from birch sawdust after sequential extractions: a promising polymeric material from waste to film. Cellulose 21:2587–2598
112.
go back to reference Liu J, Chinga-Carrasco G, Cheng F, Xu W, Willfor S, Syverud K, Xu C (2016) Hemicellulose-reinforced nanocellulose hydrogels for wound healing application. Cellulose 23:3129–3143 Liu J, Chinga-Carrasco G, Cheng F, Xu W, Willfor S, Syverud K, Xu C (2016) Hemicellulose-reinforced nanocellulose hydrogels for wound healing application. Cellulose 23:3129–3143
113.
go back to reference Lopez-Suevos F, Eyholzer C, Bordeanu N, Richter K (2010) DMA analysis and wood bonding of PVAc latex reinforced with cellulose nanofibrils. Cellulose 17:387–398 Lopez-Suevos F, Eyholzer C, Bordeanu N, Richter K (2010) DMA analysis and wood bonding of PVAc latex reinforced with cellulose nanofibrils. Cellulose 17:387–398
114.
go back to reference Seydibeyoglu MO, Oksman K (2008) Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Compos Sci Technol 68:908–914 Seydibeyoglu MO, Oksman K (2008) Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Compos Sci Technol 68:908–914
115.
go back to reference Zimmermann T, Pohler E, Geiger T (2010) Reinforcing effect of carboxymethylated nanofibrillated cellulose powder on hydroxypropyl cellulose. Cellulose 17:793–802 Zimmermann T, Pohler E, Geiger T (2010) Reinforcing effect of carboxymethylated nanofibrillated cellulose powder on hydroxypropyl cellulose. Cellulose 17:793–802
116.
go back to reference Nair SS, Zhu JY, Deng Y, Ragauskas AJ (2014) Hydrogels prepared from cross-linked nanofibrillated cellulose. ACS Sustain Chem Eng 2:772–780 Nair SS, Zhu JY, Deng Y, Ragauskas AJ (2014) Hydrogels prepared from cross-linked nanofibrillated cellulose. ACS Sustain Chem Eng 2:772–780
117.
go back to reference Eyholzer C, Borges AC, Duc F, Bourban PE, Tingaut P, Zimmermann T, Månson JA, Oksman K (2011) Biocomposite hydrogels with carboxymethylated, nanofibrilated cellulose powder for replacement of the nucleus pulposus. Biomacromolecules 12:1419–1427PubMed Eyholzer C, Borges AC, Duc F, Bourban PE, Tingaut P, Zimmermann T, Månson JA, Oksman K (2011) Biocomposite hydrogels with carboxymethylated, nanofibrilated cellulose powder for replacement of the nucleus pulposus. Biomacromolecules 12:1419–1427PubMed
118.
go back to reference Wen Y, Zhu X, Gauthier DE, An X, Cheng D, Ni Y, Yin L (2015) Development of poly(acrylic acid)/nanofibrillated cellulose superabsorbent composites by ultraviolet light induced polymerization. Cellulose 22:2499–2506 Wen Y, Zhu X, Gauthier DE, An X, Cheng D, Ni Y, Yin L (2015) Development of poly(acrylic acid)/nanofibrillated cellulose superabsorbent composites by ultraviolet light induced polymerization. Cellulose 22:2499–2506
119.
go back to reference Borges AC, Eyholzer C, Duc F, Bourban P, Tingaut P, Zimmermann T, Pioletti DP, Månson JE (2011) Nanofibrillated cellulose composite hydrogel for the replacement of the nucleus pulposus. Acta Biomater 7:3412–3421PubMed Borges AC, Eyholzer C, Duc F, Bourban P, Tingaut P, Zimmermann T, Pioletti DP, Månson JE (2011) Nanofibrillated cellulose composite hydrogel for the replacement of the nucleus pulposus. Acta Biomater 7:3412–3421PubMed
120.
go back to reference Mathew AP, Oksman K, Pierron D, Harmand MF (2012) Fibrous cellulose nanocomposite scaffolds prepared by partial dissolution for potential use as ligament or tendon substitutes. Carbohydr Polym 87:2291–2298 Mathew AP, Oksman K, Pierron D, Harmand MF (2012) Fibrous cellulose nanocomposite scaffolds prepared by partial dissolution for potential use as ligament or tendon substitutes. Carbohydr Polym 87:2291–2298
121.
go back to reference Mathew AP, Oksman K, Pierron D, Harmad MF (2012) Crosslinked fibrous composites based on cellulose nanofibers and collagen with in situ pH induced fibrillation. Cellulose 19:139–150 Mathew AP, Oksman K, Pierron D, Harmad MF (2012) Crosslinked fibrous composites based on cellulose nanofibers and collagen with in situ pH induced fibrillation. Cellulose 19:139–150
122.
go back to reference Powell LC, Khan S, Chinga-Carrasco G, Wright CJ, Hill KE, Thomas DW (2016) An investigation of Pseudomonas aeruginosa biofilm growth on novel nanocellulose fibre dressings. Carbohydr Polym 137:191–197PubMed Powell LC, Khan S, Chinga-Carrasco G, Wright CJ, Hill KE, Thomas DW (2016) An investigation of Pseudomonas aeruginosa biofilm growth on novel nanocellulose fibre dressings. Carbohydr Polym 137:191–197PubMed
123.
go back to reference Prakobna K, Kisonen V, Xu C, Berglund L (2015) Strong reinforcing effects from galactoglucomannan hemicellulose on mechanical behavior of wet cellulose nanofiber gels. J Mater Sci 50:7413–7423 Prakobna K, Kisonen V, Xu C, Berglund L (2015) Strong reinforcing effects from galactoglucomannan hemicellulose on mechanical behavior of wet cellulose nanofiber gels. J Mater Sci 50:7413–7423
124.
go back to reference Garcia A, Gandini A, Labidi J, Belgacem N, Brass J (2016) Industrial and crop wastes: a new source for nanocellulose biorafinery. Ind Crop Prod 93:26–38 Garcia A, Gandini A, Labidi J, Belgacem N, Brass J (2016) Industrial and crop wastes: a new source for nanocellulose biorafinery. Ind Crop Prod 93:26–38
125.
go back to reference Trovatti E, Freire CS, Pinto PC, Almeida IF, Costa P, Silvestre AJ, Neto CP, Rosado C (2012) Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: in vitro diffusion studies. Int J Pharm 435:83–87PubMed Trovatti E, Freire CS, Pinto PC, Almeida IF, Costa P, Silvestre AJ, Neto CP, Rosado C (2012) Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: in vitro diffusion studies. Int J Pharm 435:83–87PubMed
126.
go back to reference Wei B, Yang G, Hong F (2011) Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr Polym 84(1):533–538 Wei B, Yang G, Hong F (2011) Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr Polym 84(1):533–538
127.
go back to reference Luan J, Wu J, Zheng Y, Song W, Wang G, Guo J, Ding X (2012) Impregnation of silver sulfadiazine into bacterial cellulose for antimicrobial and biocompatible wound dressing. Biomed Mater 7(6):065006PubMed Luan J, Wu J, Zheng Y, Song W, Wang G, Guo J, Ding X (2012) Impregnation of silver sulfadiazine into bacterial cellulose for antimicrobial and biocompatible wound dressing. Biomed Mater 7(6):065006PubMed
128.
go back to reference Hübner N-O, Siebert J, Kramer A (2010) Octenidine Dihydrochloride, a modern antiseptic for skin, mucous membranes and wounds. Skin Pharmacol Physiol 23(5):244–258PubMed Hübner N-O, Siebert J, Kramer A (2010) Octenidine Dihydrochloride, a modern antiseptic for skin, mucous membranes and wounds. Skin Pharmacol Physiol 23(5):244–258PubMed
129.
go back to reference Moritz S, Wiegand C, Wesarg F, Hessler N, Müller FA, Kralisch D, Hipler UC, Fischer D (2014) Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine.Int. J Pharm 471(1–2):45–55 Moritz S, Wiegand C, Wesarg F, Hessler N, Müller FA, Kralisch D, Hipler UC, Fischer D (2014) Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine.Int. J Pharm 471(1–2):45–55
130.
go back to reference Rojewska A, Karewicz A, Boczkaja K, Wolski K, Kępczyński M, Zapotoczny S, Nowakowska M (2017) Modified Bionanocellulose for bioactive wound-healing dressing. Eur Polym J 96:200–209 Rojewska A, Karewicz A, Boczkaja K, Wolski K, Kępczyński M, Zapotoczny S, Nowakowska M (2017) Modified Bionanocellulose for bioactive wound-healing dressing. Eur Polym J 96:200–209
131.
go back to reference Wathoni N, Motoyama K, Higashi T, Okajima M, Kaneko T, Arima H (2017) Enhancement of curcumin wound healing ability by complexation with 2-hydroxypropyl-γ-cyclodextrin in sacran hydrogel film. Int J Biol Macromol 98:268–276PubMed Wathoni N, Motoyama K, Higashi T, Okajima M, Kaneko T, Arima H (2017) Enhancement of curcumin wound healing ability by complexation with 2-hydroxypropyl-γ-cyclodextrin in sacran hydrogel film. Int J Biol Macromol 98:268–276PubMed
132.
go back to reference Janpetch N, Saito N, Rujiravanit R (2016) Fabrication of bacterial cellulose-ZnO composite via solution plasma process for antibacterial applications. Carbohydr Polym 148:335–344PubMed Janpetch N, Saito N, Rujiravanit R (2016) Fabrication of bacterial cellulose-ZnO composite via solution plasma process for antibacterial applications. Carbohydr Polym 148:335–344PubMed
133.
go back to reference Tokai O (2008) Solution plasma processing (SPP). Pure Appl Chem 80(9):2003–2011 Tokai O (2008) Solution plasma processing (SPP). Pure Appl Chem 80(9):2003–2011
134.
go back to reference Zhang P, Chen L, Zhang Q, Hong FF (2016) Using in situ dynamic cultures to rapidly biofabricate fabric-reinforced composites of chitosan/bacterial Nanocellulose for antibacterial wound dressings. Front Microbiol 7:Article 260, 1–15PubMed Zhang P, Chen L, Zhang Q, Hong FF (2016) Using in situ dynamic cultures to rapidly biofabricate fabric-reinforced composites of chitosan/bacterial Nanocellulose for antibacterial wound dressings. Front Microbiol 7:Article 260, 1–15PubMed
135.
go back to reference Wiegand C, Moritz S, Hessler N, Kralisch D, Wesarg F, Müller FA, Fischer D, Hipler U-C (2015) Antimicrobial functionalization of bacterial nanocellulose by loading with polihexanide and povidone-iodine. J Mater Sci Mater Med 26:Article 245, 1–14PubMed Wiegand C, Moritz S, Hessler N, Kralisch D, Wesarg F, Müller FA, Fischer D, Hipler U-C (2015) Antimicrobial functionalization of bacterial nanocellulose by loading with polihexanide and povidone-iodine. J Mater Sci Mater Med 26:Article 245, 1–14PubMed
136.
go back to reference Kralisch D, Hessler N, Klemm D, Erdmann R, Schmidt W (2010) White biotechnology for cellulose manufacturing-the HoLiR concept. Biotechnol Bioeng 105(4):740–747PubMed Kralisch D, Hessler N, Klemm D, Erdmann R, Schmidt W (2010) White biotechnology for cellulose manufacturing-the HoLiR concept. Biotechnol Bioeng 105(4):740–747PubMed
137.
go back to reference Petersen N, Gatenholm P (2011) Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91:1277–1286PubMed Petersen N, Gatenholm P (2011) Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91:1277–1286PubMed
138.
go back to reference Bodin A, Ahrenstedt L, Fink H, Brumer H, Risberg B, Gatenholm P (2007) Modification of Nanocellulose with a xyloglucan–RGD conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineering. Biomacromolecules 8(12):3697–3704PubMed Bodin A, Ahrenstedt L, Fink H, Brumer H, Risberg B, Gatenholm P (2007) Modification of Nanocellulose with a xyloglucan–RGD conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineering. Biomacromolecules 8(12):3697–3704PubMed
139.
go back to reference Kuzmenko V, Sämfors S, Hägg D, Gatenholm P (2013) Universal method for protein bioconjugation with nanocellulose scaffolds for increased cell adhesion. Mater Sci Eng C 33:4599–4607 Kuzmenko V, Sämfors S, Hägg D, Gatenholm P (2013) Universal method for protein bioconjugation with nanocellulose scaffolds for increased cell adhesion. Mater Sci Eng C 33:4599–4607
140.
go back to reference Paul R, Anderson GW (1960) N,N′-Carbonyldiimidazole, a new peptide forming reagent. J Am Chem Soc 82(17):4596–4600 Paul R, Anderson GW (1960) N,N′-Carbonyldiimidazole, a new peptide forming reagent. J Am Chem Soc 82(17):4596–4600
141.
go back to reference Behrens MM, Inman K, Vannier WE (1967) Protein-cellulose derivatives for use as immunoadsorbents: preparation employing an active ester intermediate. Arch Biochem Biophys 119:411–419PubMed Behrens MM, Inman K, Vannier WE (1967) Protein-cellulose derivatives for use as immunoadsorbents: preparation employing an active ester intermediate. Arch Biochem Biophys 119:411–419PubMed
142.
go back to reference Nilsson K, Mosbach K (1981) Immobilization of enzymes and affinity ligands to various hydroxyl group carrying supports using highly reactive sulfonyl chlorides. Biochem Biophys Res Commun 102(1):449–457PubMed Nilsson K, Mosbach K (1981) Immobilization of enzymes and affinity ligands to various hydroxyl group carrying supports using highly reactive sulfonyl chlorides. Biochem Biophys Res Commun 102(1):449–457PubMed
143.
go back to reference Alosmanov R, Wolski K, Zapotoczny S (2017) Grafting of thermosensitive poly(N-isopropylacrylamide) from wet bacterial cellulose sheets to improve its swelling-drying ability. Cellulose 24(1):285–293 Alosmanov R, Wolski K, Zapotoczny S (2017) Grafting of thermosensitive poly(N-isopropylacrylamide) from wet bacterial cellulose sheets to improve its swelling-drying ability. Cellulose 24(1):285–293
144.
go back to reference Ahrem H, Pretzel D, Endres M, Conrad D, Courseau J, Müller H, Jaeger R, Kaps C, Klemm DO, Kinne RW (2014) Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants. Acta Biomater 10(3):1341–1353PubMed Ahrem H, Pretzel D, Endres M, Conrad D, Courseau J, Müller H, Jaeger R, Kaps C, Klemm DO, Kinne RW (2014) Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants. Acta Biomater 10(3):1341–1353PubMed
145.
go back to reference Rambo CR, Recouvreux DOS, Carminatti CA, Pitlovanciv AK, Antônio RV, Porto LM (2008) Template assisted synthesis of porous nanofibrous cellulose membranes for tissue engineering. Mater Sci Eng C 28:549–554 Rambo CR, Recouvreux DOS, Carminatti CA, Pitlovanciv AK, Antônio RV, Porto LM (2008) Template assisted synthesis of porous nanofibrous cellulose membranes for tissue engineering. Mater Sci Eng C 28:549–554
146.
go back to reference Wang J, Yang C, Wan Y, Luo H, He F, Dai K, Huang Y (2011) Laser patterning of bacterial cellulose hydrogel and its modification with gelatin and hydroxyapatite for bone tissue engineering. Soft Mater 11:173–180 Wang J, Yang C, Wan Y, Luo H, He F, Dai K, Huang Y (2011) Laser patterning of bacterial cellulose hydrogel and its modification with gelatin and hydroxyapatite for bone tissue engineering. Soft Mater 11:173–180
Metadata
Title
Surface Functionalization of Nanocellulose-Based Hydrogels
Authors
Joanna Lewandowska-Łańcucka
Anna Karewicz
Karol Wolski
Szczepan Zapotoczny
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-77830-3_24

Premium Partners