Skip to main content
Top

2024 | OriginalPaper | Chapter

25. Surface Inductance of Superconductive Striplines

Authors : Gleb Krylov, Tahereh Jabbari, Eby G. Friedman

Published in: Single Flux Quantum Integrated Circuit Design

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Inductance in superconductive circuits plays a significant role in rapid single flux quantum (RSFQ) systems. Inductance estimation is a challenging issue. The microwave behavior of these inductances is characterized by the surface inductance of a line. A methodology to accurately estimate the surface inductance of a stripline is the focus of this chapter. A closed-form expression describing the dependence of the surface inductance of a stripline on the line thickness, magnetic field, and current density is provided. The effects of process parameter variations on the surface inductance are also discussed. An expression to model the effects of the trapezoidal geometry of a stripline is presented. The dependence of the surface inductance on the oxide and metal layer thickness is also presented. The objective is to provide an accurate estimate of the surface inductance for use in automated routing of VLSI complexity RSFQ circuits.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
39.
go back to reference T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J Kawa, E.G. Friedman, Interconnect routing for large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1102805 (2019) T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J Kawa, E.G. Friedman, Interconnect routing for large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1102805 (2019)
41.
go back to reference T. Jabbari, E.G. Friedman, Global interconnects in VLSI complexity single flux quantum systems, in Proceedings of the Workshop on System-Level Interconnect: Problems and Pathfinding Workshop (2020), pp. 1–7 T. Jabbari, E.G. Friedman, Global interconnects in VLSI complexity single flux quantum systems, in Proceedings of the Workshop on System-Level Interconnect: Problems and Pathfinding Workshop (2020), pp. 1–7
42.
go back to reference T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020) T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020)
57.
go back to reference T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759 T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759
61.
go back to reference T. Jabbari, E.G. Friedman, Flux mitigation in wide superconductive striplines. IEEE Trans. Appl. Supercond. 32(3), 1–6 (2022)CrossRef T. Jabbari, E.G. Friedman, Flux mitigation in wide superconductive striplines. IEEE Trans. Appl. Supercond. 32(3), 1–6 (2022)CrossRef
63.
go back to reference T. Jabbari, E.G. Friedman, Stripline topology for flux mitigation. IEEE Trans. Appl. Supercond. 335, 1–4 (2023) T. Jabbari, E.G. Friedman, Stripline topology for flux mitigation. IEEE Trans. Appl. Supercond. 335, 1–4 (2023)
86.
go back to reference A.R. Kerr, Surface impedance of superconductors and normal conductors in EM simulators. National Radio Astronomy Observatory, Electronics Division Internal Report, No. 302 (1996) A.R. Kerr, Surface impedance of superconductors and normal conductors in EM simulators. National Radio Astronomy Observatory, Electronics Division Internal Report, No. 302 (1996)
87.
go back to reference T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022) T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022)
111.
go back to reference S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, A. Wynn, D.E. Oates, L.M. Johnson, M.A. Gouker, Advanced fabrication processes for superconducting very large-scale integrated circuits. IEEE Trans. Appl. Supercond. 26(3), 1–10 (2016)CrossRef S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, A. Wynn, D.E. Oates, L.M. Johnson, M.A. Gouker, Advanced fabrication processes for superconducting very large-scale integrated circuits. IEEE Trans. Appl. Supercond. 26(3), 1–10 (2016)CrossRef
137.
go back to reference T. Jabbari, E.G. Friedman, Inductive and capacitive coupling noise in superconductive VLSI circuits. IEEE Trans. Appl. Supercond. 33(9), 3800707 (2023) T. Jabbari, E.G. Friedman, Inductive and capacitive coupling noise in superconductive VLSI circuits. IEEE Trans. Appl. Supercond. 33(9), 3800707 (2023)
165.
go back to reference T. Van Duzer, C.W. Turner, Principles of Superconductive Devices and Circuits, 2nd edn. (Prentice Hall, Hoboken, 1999) T. Van Duzer, C.W. Turner, Principles of Superconductive Devices and Circuits, 2nd edn. (Prentice Hall, Hoboken, 1999)
549.
go back to reference S.K. Tolpygo, E.B. Golden, T.J. Weir, V. Bolkhovsky, Inductance of superconductor integrated circuit features with sizes down to 120 nm. Supercond. Sci. Technol. 34(8), 1–24 (2021)CrossRef S.K. Tolpygo, E.B. Golden, T.J. Weir, V. Bolkhovsky, Inductance of superconductor integrated circuit features with sizes down to 120 nm. Supercond. Sci. Technol. 34(8), 1–24 (2021)CrossRef
566.
go back to reference C.J. Fourie, C. Shawawreh, I.V. Vernik, T.V. Filippov, High-accuracy InductEx calibration sets for MIT-LL SFQ4ee and SFQ5ee processes. IEEE Trans. Appl. Supercond. 27(2), 1–5 (2017)CrossRef C.J. Fourie, C. Shawawreh, I.V. Vernik, T.V. Filippov, High-accuracy InductEx calibration sets for MIT-LL SFQ4ee and SFQ5ee processes. IEEE Trans. Appl. Supercond. 27(2), 1–5 (2017)CrossRef
582.
go back to reference W. Chang, The inductance of a superconducting strip transmission line. J. Appl. Phys. 50, 8129–8134 (1979)CrossRef W. Chang, The inductance of a superconducting strip transmission line. J. Appl. Phys. 50, 8129–8134 (1979)CrossRef
586.
go back to reference O.A. Mukhanov, Superconductive single-flux quantum technology, in Proceedings of the IEEE International Solid-State Circuits Conference (1994), pp. 126–127 O.A. Mukhanov, Superconductive single-flux quantum technology, in Proceedings of the IEEE International Solid-State Circuits Conference (1994), pp. 126–127
589.
go back to reference G. Pasandi, A. Shafaei, M. Pedram, SFQmap: a technology mapping tool for single flux quantum logic circuits, in Proceedings of the IEEE International Symposium on Circuits and Systems (2018), pp. 1–5 G. Pasandi, A. Shafaei, M. Pedram, SFQmap: a technology mapping tool for single flux quantum logic circuits, in Proceedings of the IEEE International Symposium on Circuits and Systems (2018), pp. 1–5
590.
go back to reference J. Mao, O. Wing, F. Chang, Synthesis of coupled transmission lines. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44(4), 327–337 (1997)CrossRef J. Mao, O. Wing, F. Chang, Synthesis of coupled transmission lines. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44(4), 327–337 (1997)CrossRef
591.
go back to reference R.N. Das, V. Bolkhovsky, S.K. Tolpygo, P. Gouker, L.M. Johnson, E.A. Dauler, M.A. Gouker, Large scale cryogenic integration approach for superconducting high-performance computing, in Proceedings of the IEEE Electronic Components and Technology Conference (2017), pp. 675–683 R.N. Das, V. Bolkhovsky, S.K. Tolpygo, P. Gouker, L.M. Johnson, E.A. Dauler, M.A. Gouker, Large scale cryogenic integration approach for superconducting high-performance computing, in Proceedings of the IEEE Electronic Components and Technology Conference (2017), pp. 675–683
592.
go back to reference W.H. Chang, Analytical IC metal-line capacitance formulas. IEEE Trans. Microwave Theory Tech. 24(9), 608–611 (1976)CrossRef W.H. Chang, Analytical IC metal-line capacitance formulas. IEEE Trans. Microwave Theory Tech. 24(9), 608–611 (1976)CrossRef
593.
go back to reference C.K. Koc, P.F. Ordung, Schwarz-Christoffel transformation for the simulation of two-dimensional capacitance (VLSI circuits). IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 8(9), 1025–10279 (1989)CrossRef C.K. Koc, P.F. Ordung, Schwarz-Christoffel transformation for the simulation of two-dimensional capacitance (VLSI circuits). IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 8(9), 1025–10279 (1989)CrossRef
Metadata
Title
Surface Inductance of Superconductive Striplines
Authors
Gleb Krylov
Tahereh Jabbari
Eby G. Friedman
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-47475-0_25