Skip to main content
Top

2018 | OriginalPaper | Chapter

5. Surface Water Biogeochemistry as Derived from pCO2 Observations

Authors : Bernd Schneider, Jens Daniel Müller

Published in: Biogeochemical Transformations in the Baltic Sea

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The surface-water pCO2 in the central Baltic Sea shows a distinct seasonality, with minima in May and July. This pattern can be unambiguously attributed to the net community production (NCP) during the spring bloom and to the mid-summer NCP fueled by nitrogen fixation. Converting the pCO2 data to concentrations units for the total CO2 facilitated a detailed and quantitative analysis of the chronology of the NCP. The start of the spring bloom was triggered by the year’s first increase in the surface-water temperature and during the study period regularly occurred in the central Baltic Sea by the end of March. The first phase of NCP was based on the availability of nitrate and lasted, on average, until mid-April. However, NCP continued until the end of May despite the absence of dissolved inorganic nitrogen (nitrate + ammonia). This observation has led to questions regarding the occurrence of nitrogen fixation already during spring. A period of regenerated production that did not contribute to NCP followed the termination of the spring bloom. Mid-summer NCP fueled by nitrogen-fixing cyanobacteria was detected as discrete pulses and coincided with sudden increases in temperature. Distinct linear correlations between temperature and the accumulated NCP for the individual production events suggested that solar radiation controls and limits the efficiency of nitrogen fixation. The role of phosphate as limiting factor could not be confirmed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bartnicki J, Semeena V, Fagerli H (2011) Atmospheric deposition of nitrogen to the Baltic Sea in the period 1995–2006. Atmos Chem Phys 11:10057–10069CrossRef Bartnicki J, Semeena V, Fagerli H (2011) Atmospheric deposition of nitrogen to the Baltic Sea in the period 1995–2006. Atmos Chem Phys 11:10057–10069CrossRef
go back to reference Bates NR, Best MHP, Neely K, Garley R, Dickson AG, Johnson RJ (2012) Detecting anthropogenic carbon dioxide uptake and ocean acidification in the North Atlantic Ocean. Biogeosciences 9:2509–2522CrossRef Bates NR, Best MHP, Neely K, Garley R, Dickson AG, Johnson RJ (2012) Detecting anthropogenic carbon dioxide uptake and ocean acidification in the North Atlantic Ocean. Biogeosciences 9:2509–2522CrossRef
go back to reference Eggert A, Schneider B (2015) A nitrogen source in spring in the surface mixed-layer of the Baltic Sea: evidence from total nitrogen and total phosphorus data. J Mar Sys 148:39CrossRef Eggert A, Schneider B (2015) A nitrogen source in spring in the surface mixed-layer of the Baltic Sea: evidence from total nitrogen and total phosphorus data. J Mar Sys 148:39CrossRef
go back to reference Gustafsson E, Wällstedt T, Humborg C, Mörth M, Gustafsson BG (2014) External total alkalinity loads versus internal generation: the influence of nonriverine alkalinity sources in the Baltic Sea. Glob Biogeochem Cycles 28:1358–1370CrossRef Gustafsson E, Wällstedt T, Humborg C, Mörth M, Gustafsson BG (2014) External total alkalinity loads versus internal generation: the influence of nonriverine alkalinity sources in the Baltic Sea. Glob Biogeochem Cycles 28:1358–1370CrossRef
go back to reference Hansell DA, Carlson CA (1998) Net community production of dissolved organic carbon. Glob Biogeochem Cycles 12(3):443–453CrossRef Hansell DA, Carlson CA (1998) Net community production of dissolved organic carbon. Glob Biogeochem Cycles 12(3):443–453CrossRef
go back to reference IPCC, 2013. Summary for policymakers, p. 27. In: Stocker TF, Qin D, Plattner GK, et al. (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate change. Cambridge University Press IPCC, 2013. Summary for policymakers, p. 27. In: Stocker TF, Qin D, Plattner GK, et al. (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate change. Cambridge University Press
go back to reference Kreus M, Schartau M, Engel A, Nausch M, Voss M (2015) Variations in the elemental ratio of organic matter in the central Baltic Sea: part I—linking primary production to remineralization. Cont Shelf Res 100:25–45CrossRef Kreus M, Schartau M, Engel A, Nausch M, Voss M (2015) Variations in the elemental ratio of organic matter in the central Baltic Sea: part I—linking primary production to remineralization. Cont Shelf Res 100:25–45CrossRef
go back to reference Körtzinger A, Hedges JI, Quay PD (2001) Redfield ratios revisited: removing the biasing effect of anthropogenic CO2. Limnol Oceanogr 46(4):964–970CrossRef Körtzinger A, Hedges JI, Quay PD (2001) Redfield ratios revisited: removing the biasing effect of anthropogenic CO2. Limnol Oceanogr 46(4):964–970CrossRef
go back to reference Kuznetsov I, Neumann T, Schneider B, Yakushev E (2011) Processes regulating pCO2 in the surface waters of the central eastern Gotland Sea: a model study. Oceanol 53:745–770CrossRef Kuznetsov I, Neumann T, Schneider B, Yakushev E (2011) Processes regulating pCO2 in the surface waters of the central eastern Gotland Sea: a model study. Oceanol 53:745–770CrossRef
go back to reference Larsson U, Hajdu S, Walve J, Elmgren R (2001) Baltic Sea nitrogen fixation estimated from the summer increase in the upper mixed layer total nitrogen. Limnol Oceanogr 46:811–820CrossRef Larsson U, Hajdu S, Walve J, Elmgren R (2001) Baltic Sea nitrogen fixation estimated from the summer increase in the upper mixed layer total nitrogen. Limnol Oceanogr 46:811–820CrossRef
go back to reference Leppäranta M, Myrberg K (2009) Physical oceanography of the Baltic Sea. Springer-Verlag, BerlinCrossRef Leppäranta M, Myrberg K (2009) Physical oceanography of the Baltic Sea. Springer-Verlag, BerlinCrossRef
go back to reference Millero FJ (2010) Carbonate constants for estuarine waters. Mar Freshwater Res 61:139–142CrossRef Millero FJ (2010) Carbonate constants for estuarine waters. Mar Freshwater Res 61:139–142CrossRef
go back to reference Myrberg K, Andrejev O (2003) Main upwelling regions in the Baltic Sea—a statistical analysis based on three-dimensional modelling. Boreal Environ Res 8:97–112 Myrberg K, Andrejev O (2003) Main upwelling regions in the Baltic Sea—a statistical analysis based on three-dimensional modelling. Boreal Environ Res 8:97–112
go back to reference Nausch M, Nausch G, Lass H-U, Mohrholz V, Nagel K, Siegel H, Wasmund N (2009) Phosphorus input by upwelling in the eastern Gotland Basin (Baltic Sea) Gotland basinin summer and its effects on filamentous cyanobacteria. Estuar Coast Shelf Sci 83:434–442CrossRef Nausch M, Nausch G, Lass H-U, Mohrholz V, Nagel K, Siegel H, Wasmund N (2009) Phosphorus input by upwelling in the eastern Gotland Basin (Baltic Sea) Gotland basinin summer and its effects on filamentous cyanobacteria. Estuar Coast Shelf Sci 83:434–442CrossRef
go back to reference Nausch M, Nausch G, Wasmund N, Nagel K (2008) Phosphorus pool variations and their relation to cyanobacteria development in the Baltic Sea: a three-year study. J Mar Sys 71:99–111CrossRef Nausch M, Nausch G, Wasmund N, Nagel K (2008) Phosphorus pool variations and their relation to cyanobacteria development in the Baltic Sea: a three-year study. J Mar Sys 71:99–111CrossRef
go back to reference Omstedt A, Gustafsson E, Wesslander K (2009) Modelling the uptake and release of carbon dioxide in the Baltic Sea surface water. Cont Shelf Res 29:870–885CrossRef Omstedt A, Gustafsson E, Wesslander K (2009) Modelling the uptake and release of carbon dioxide in the Baltic Sea surface water. Cont Shelf Res 29:870–885CrossRef
go back to reference Platt T, Lewis M, Geider R (1984) Thermodynamics of the pelagic ecosystem: elementary closure conditions for biological production in the open ocean. In: Fasham MJR (ed) Flows of energy and materials in marine ecosystems. Plenum Press, New York, pp 49–84CrossRef Platt T, Lewis M, Geider R (1984) Thermodynamics of the pelagic ecosystem: elementary closure conditions for biological production in the open ocean. In: Fasham MJR (ed) Flows of energy and materials in marine ecosystems. Plenum Press, New York, pp 49–84CrossRef
go back to reference Redfield, AC, Ketchum, BH, Richards, FA (1963) The influence of organisms on the composition of sea water. In: Hill MN (Ed) The Sea Interscience, vol 2, New York, pp 26–77 Redfield, AC, Ketchum, BH, Richards, FA (1963) The influence of organisms on the composition of sea water. In: Hill MN (Ed) The Sea Interscience, vol 2, New York, pp 26–77
go back to reference Schneider B, Nausch G, Nagel K, Wasmund N (2003) The surface water CO2 budget for the Baltic Proper: a new way to determine nitrogen fixation. J Mar Sys 42:53–64CrossRef Schneider B, Nausch G, Nagel K, Wasmund N (2003) The surface water CO2 budget for the Baltic Proper: a new way to determine nitrogen fixation. J Mar Sys 42:53–64CrossRef
go back to reference Schneider B, Kaitala S, Maunula P (2006) Identification and quantification of plankton bloom events in the Baltic Sea by continuous pCO2 and chlorophyll a measurements. J Mar Sys 59:238–248CrossRef Schneider B, Kaitala S, Maunula P (2006) Identification and quantification of plankton bloom events in the Baltic Sea by continuous pCO2 and chlorophyll a measurements. J Mar Sys 59:238–248CrossRef
go back to reference Schneider B, Kaitala S, Raateoja M, Sadkowiak B (2009) A nitrogen fixation estimate for the Baltic Sea based on continuous pCO2 measurements on a cargo ship and total nitrogen data. Cont Shelf Res 29:1535–1540CrossRef Schneider B, Kaitala S, Raateoja M, Sadkowiak B (2009) A nitrogen fixation estimate for the Baltic Sea based on continuous pCO2 measurements on a cargo ship and total nitrogen data. Cont Shelf Res 29:1535–1540CrossRef
go back to reference Schneider B, Nausch G, Pohl C (2010) Mineralization of organic matter and nitrogen transformations in the Gotland Sea deep water. Mar Chem 119:153–161CrossRef Schneider B, Nausch G, Pohl C (2010) Mineralization of organic matter and nitrogen transformations in the Gotland Sea deep water. Mar Chem 119:153–161CrossRef
go back to reference Schneider B, Gülzow W, Sadkowiak B, Rehder G (2014a) High potential of VOS-based measurements in Baltic Sea surface waters for detecting sinks and sources of carbon dioxide and methane. J Mar Sys 140:13–25CrossRef Schneider B, Gülzow W, Sadkowiak B, Rehder G (2014a) High potential of VOS-based measurements in Baltic Sea surface waters for detecting sinks and sources of carbon dioxide and methane. J Mar Sys 140:13–25CrossRef
go back to reference Schneider B, Gustafsson E, Sadkowiak B (2014b) Control of the mid-summer net community productionNet community production and nitrogen fixation in the central Baltic Sea: an approach based on pCO2 measurements on a cargo ship. J Mar Sys 136:1–9CrossRef Schneider B, Gustafsson E, Sadkowiak B (2014b) Control of the mid-summer net community productionNet community production and nitrogen fixation in the central Baltic Sea: an approach based on pCO2 measurements on a cargo ship. J Mar Sys 136:1–9CrossRef
go back to reference Schneider B, Buecker S, Kaitala S, Maunula P, Wasmund N (2015) Characteristics of the spring/summer production in the Mecklenburg Bight (Baltic Sea) as revealed by long-term pCO2 data. Oceanologia 57:375–385CrossRef Schneider B, Buecker S, Kaitala S, Maunula P, Wasmund N (2015) Characteristics of the spring/summer production in the Mecklenburg Bight (Baltic Sea) as revealed by long-term pCO2 data. Oceanologia 57:375–385CrossRef
go back to reference Sverdrup HU (1953) On conditions for the vernal blooming of phytoplankton. J Cons Int Explor Mer 18:287–295CrossRef Sverdrup HU (1953) On conditions for the vernal blooming of phytoplankton. J Cons Int Explor Mer 18:287–295CrossRef
go back to reference Tyrrell T, Schneider B, Charalampopoulou A, Riebesell U (2008) Coccolithophores and calcite saturation state in the Baltic and Black Seas. Biogeosciences 5:1–10CrossRef Tyrrell T, Schneider B, Charalampopoulou A, Riebesell U (2008) Coccolithophores and calcite saturation state in the Baltic and Black Seas. Biogeosciences 5:1–10CrossRef
go back to reference Wasmund N (1997) Occurrence of cyanobacterial blooms in the Baltic Sea in relation to environmental conditions. Int Revue ges Hydrobiol 82:169–184CrossRef Wasmund N (1997) Occurrence of cyanobacterial blooms in the Baltic Sea in relation to environmental conditions. Int Revue ges Hydrobiol 82:169–184CrossRef
go back to reference Wasmund N, Nausch G, Matthäus W (1998) Phytoplankton spring blooms in the southern Baltic Sea—spatio-temporal development and long-term trends. J Plankton Res 20:1099–1117CrossRef Wasmund N, Nausch G, Matthäus W (1998) Phytoplankton spring blooms in the southern Baltic Sea—spatio-temporal development and long-term trends. J Plankton Res 20:1099–1117CrossRef
go back to reference Wasmund N, Voss M, Lochte K (2001) Evidence of nitrogen fixation by non-heterocystous cyanobacteria in the Baltic Sea and re-calculation of a budget of nitrogen fixation. Mar Ecol Prog Ser 214:1–14CrossRef Wasmund N, Voss M, Lochte K (2001) Evidence of nitrogen fixation by non-heterocystous cyanobacteria in the Baltic Sea and re-calculation of a budget of nitrogen fixation. Mar Ecol Prog Ser 214:1–14CrossRef
go back to reference Wasmund N, Nausch G, Schneider B, Nagel K, Voss M (2005) Comparison of nitrogen fixation rates determined with different methods: a study in the Baltic Proper. Mar Ecol Prog Ser 297:23–31CrossRef Wasmund N, Nausch G, Schneider B, Nagel K, Voss M (2005) Comparison of nitrogen fixation rates determined with different methods: a study in the Baltic Proper. Mar Ecol Prog Ser 297:23–31CrossRef
go back to reference Wasmund N, Siegel H, 2008. Chapter 15, Phytoplankton. In Feistel R, Nausch G, Wasmund N (eds) State and Evolution of the Baltic Sea, 1952–2005. A detailed 50-year survey of meteorology and climate, physics, chemistry, biology, and marine environment, Wiley, pp 441–481 Wasmund N, Siegel H, 2008. Chapter 15, Phytoplankton. In Feistel R, Nausch G, Wasmund N (eds) State and Evolution of the Baltic Sea, 1952–2005. A detailed 50-year survey of meteorology and climate, physics, chemistry, biology, and marine environment, Wiley, pp 441–481
go back to reference Weisse R, Bisling P, Gaslikova L, Geyer B, Groll N, Hortamani M, Matthias V, Maneke M, Meinke I, Meyer E, Schwichtenberg F, Stempinski F, Wiese F, Wöckner-Kluwe K (2015). Climate services for marine applications in Europe. Earth Perspectives Trans disciplinarity Enabled 2015 2:3. doi:10.1186/s40322-015-0029-0 Weisse R, Bisling P, Gaslikova L, Geyer B, Groll N, Hortamani M, Matthias V, Maneke M, Meinke I, Meyer E, Schwichtenberg F, Stempinski F, Wiese F, Wöckner-Kluwe K (2015). Climate services for marine applications in Europe. Earth Perspectives Trans disciplinarity Enabled 2015 2:3. doi:10.​1186/​s40322-015-0029-0
Metadata
Title
Surface Water Biogeochemistry as Derived from pCO2 Observations
Authors
Bernd Schneider
Jens Daniel Müller
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-61699-5_5