Skip to main content
Top

2015 | OriginalPaper | Chapter

Swarm Intelligence Techniques and Their Adaptive Nature with Applications

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Swarm based techniques have huge application domain covering multiple disciplines, which include power system, fuzzy system, forecasting, bio-medicine, sociological analysis, image processing, sound processing, signal processing, data analysis, process modeling, process controlling etc. In last two decades numerous techniques and their variations have been developed. Despite many variations are being carried out, main skeleton of these techniques remain same. With diverse application domains, most of these techniques have been modified to fit into a particular application. These changes undergo mostly in perspective of encoding scheme, parameter tuning and search strategy. Sources of real world problems are different, but their nature sometimes found similar to other problems. Hence, swarm based techniques utilized for one of these problems can be applied to others as well. As sources of these problems are different, applicability of such techniques are very much dependent on the problem. Same encoding scheme may not be suitable for the other similar kind of problems, which has led to development of problem specific encoding schemes. Sometimes found that, even though encoding scheme is compatible to a problem, parameters used in the technique does not utilized in favor of the problem. So, parameter tuning approaches are incorporated into the swarm based techniques. Similarly, search strategy utilized in swarm based techniques are also vary with the application domain. In this chapter we will study those problem specific adaptive nature of swarm based techniques. Essence of this study is to find pros and cons of such adaptation. Our study also aims to draw some aspects of such problem specific variations through which it can be predicted that what kind of adaptation is more convenient for any real world problem.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Al Rashidi, M. R., & El-Hawary, M. E. (2009). A survey of particle swarm optimization applications in electric power systems. IEEE Transactions on Evolutionary Computation, 13(4), 913–918.CrossRef Al Rashidi, M. R., & El-Hawary, M. E. (2009). A survey of particle swarm optimization applications in electric power systems. IEEE Transactions on Evolutionary Computation, 13(4), 913–918.CrossRef
go back to reference Alzalg, B., Anghel, C., Gan, W., Huang, Q., Rahman, M., & Shum, A. (2011). A computational analysis of the optimal power problem. In Institute of Mathematics and its Application. IMA Preprint Series 2396. University of Minnesota. Alzalg, B., Anghel, C., Gan, W., Huang, Q., Rahman, M., & Shum, A. (2011). A computational analysis of the optimal power problem. In Institute of Mathematics and its Application. IMA Preprint Series 2396. University of Minnesota.
go back to reference Amit, Y. (2002). 2D object detection and recognition: Models, algorithms, and networks. Cambridge: MIT Press. Amit, Y. (2002). 2D object detection and recognition: Models, algorithms, and networks. Cambridge: MIT Press.
go back to reference Borwein, J. M. & Lewis, A. S. (2010). Convex analysis and nonlinear optimization: Theory and examples (2nd ed.). Berlin, Springer. Borwein, J. M. & Lewis, A. S. (2010). Convex analysis and nonlinear optimization: Theory and examples (2nd ed.). Berlin, Springer.
go back to reference Bullnheimer, B., Hartl, R. F., & Strauss, C. (1997). A new rank based version of the ant system. A computational study. SFB Adaptive Information Systems and Modelling in Economics and Management Science, 7, 25–38.MathSciNet Bullnheimer, B., Hartl, R. F., & Strauss, C. (1997). A new rank based version of the ant system. A computational study. SFB Adaptive Information Systems and Modelling in Economics and Management Science, 7, 25–38.MathSciNet
go back to reference Chakraborty, B., & Chakraborty, G. (2013). Fuzzy consistency measure with particle swarm optimization for feature selection. In 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 4311–4315), October 13–16, 2013, Manchester. IEEE. doi:10.1109/SMC.2013.735. Chakraborty, B., & Chakraborty, G. (2013). Fuzzy consistency measure with particle swarm optimization for feature selection. In 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 4311–4315), October 13–16, 2013, Manchester. IEEE. doi:10.​1109/​SMC.​2013.​735.
go back to reference Chandra Mohan, B., & Baskaran, R. (2012). A survey: Ant colony optimization based recent research and implementation on several engineering domain. Expert Systems with Applications, 39(4), 4618–4627.CrossRef Chandra Mohan, B., & Baskaran, R. (2012). A survey: Ant colony optimization based recent research and implementation on several engineering domain. Expert Systems with Applications, 39(4), 4618–4627.CrossRef
go back to reference Chandrasekhar, U., & Naga, P. (2011). Recent trends in ant colony optimization and data clustering: A brief survey. In 2011 2nd International Conference on Intelligent Agent and Multi-agent Systems (IAMA) (pp. 32–36), September 7–9, 2011, Chennai. IEEE. doi:10.1109/IAMA.2011.6048999. Chandrasekhar, U., & Naga, P. (2011). Recent trends in ant colony optimization and data clustering: A brief survey. In 2011 2nd International Conference on Intelligent Agent and Multi-agent Systems (IAMA) (pp. 32–36), September 79, 2011, Chennai. IEEE. doi:10.​1109/​IAMA.​2011.​6048999.
go back to reference Chu, S.-C., Roddick, J. F., & Pan, J.-S. (2003). Parallel particle swarm optimization algorithm with communication strategies. Journal of Information Science and Engineering, 21(4), 809–818. Chu, S.-C., Roddick, J. F., & Pan, J.-S. (2003). Parallel particle swarm optimization algorithm with communication strategies. Journal of Information Science and Engineering, 21(4), 809–818.
go back to reference Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1), 58–73.CrossRef Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1), 58–73.CrossRef
go back to reference Das, G., Pattnaik, P. K., & Padhy, S. K. (2014). Artificial neural network trained by particle swarm optimization for non-linear channel equalization. Expert Systems with Applications, 41(7), 3491–3496.CrossRef Das, G., Pattnaik, P. K., & Padhy, S. K. (2014). Artificial neural network trained by particle swarm optimization for non-linear channel equalization. Expert Systems with Applications, 41(7), 3491–3496.CrossRef
go back to reference Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.CrossRef Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.CrossRef
go back to reference Dorigo, M. (1992). Optimization, learning and natural algorithms. Ph.D. Thesis, Politecnico di Milano, Italy. Dorigo, M. (1992). Optimization, learning and natural algorithms. Ph.D. Thesis, Politecnico di Milano, Italy.
go back to reference Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. Computational Intelligence Magazine, IEEE, 1(4), 28–39.CrossRef Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. Computational Intelligence Magazine, IEEE, 1(4), 28–39.CrossRef
go back to reference Eslami, M., Shareef, H., Khajehzadeh, M., & Mohamed, A. (2012). A survey of the state of the art in particle swarm optimization. Research Journal of Applied Sciences, Engineering and Technology, 4(9), 1181–1197. Eslami, M., Shareef, H., Khajehzadeh, M., & Mohamed, A. (2012). A survey of the state of the art in particle swarm optimization. Research Journal of Applied Sciences, Engineering and Technology, 4(9), 1181–1197.
go back to reference Ganapathy, K., Vaidehi, V., Kannan, B., & Murugan, H. (2014). Hierarchical particle swarm optimization with ortho-cyclic circles. Expert Systems with Applications, 41(7), 3460–3476.CrossRef Ganapathy, K., Vaidehi, V., Kannan, B., & Murugan, H. (2014). Hierarchical particle swarm optimization with ortho-cyclic circles. Expert Systems with Applications, 41(7), 3460–3476.CrossRef
go back to reference Gonzalez, R. C., & Woods, R. E. (2002). Digital image processing. New Jersey: Prentice Hall. Gonzalez, R. C., & Woods, R. E. (2002). Digital image processing. New Jersey: Prentice Hall.
go back to reference Graefe, V., & Efenberger, W. (1996). A novel approach for the detection of vehicles on freeways by real-time vision. In Proceedings of the 1996 IEEE Intelligent Vehicles Symposium (pp. 363–368), September 19–20, 1996, Tokyo. IEEE. doi:10.1109/IVS.1996.566407. Graefe, V., & Efenberger, W. (1996). A novel approach for the detection of vehicles on freeways by real-time vision. In Proceedings of the 1996 IEEE Intelligent Vehicles Symposium (pp. 363–368), September 19–20, 1996, Tokyo. IEEE. doi:10.​1109/​IVS.​1996.​566407.
go back to reference Hancer, E., Ozturk, C., & Karaboga, D. (2012). Artificial bee colony based image clustering method. In 2012 IEEE Congress on Evolutionary Computation (CEC) (pp. 1–5), June 10–15, 2012, Brisbane. IEEE. doi:10.1109/CEC.2012.6252919. Hancer, E., Ozturk, C., & Karaboga, D. (2012). Artificial bee colony based image clustering method. In 2012 IEEE Congress on Evolutionary Computation (CEC) (pp. 1–5), June 10–15, 2012, Brisbane. IEEE. doi:10.​1109/​CEC.​2012.​6252919.
go back to reference Holland, J. H. (1975). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. Michigan: University Michigan Press. Holland, J. H. (1975). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. Michigan: University Michigan Press.
go back to reference Honghao, C., Zuren, F., & Zhigang, R. (2013). Community detection using ant colony optimization. In 2013 IEEE Congress on Evolutionary Computation (CEC) (pp. 3072–3078), June 20–23, 2013, Cancun. IEEE. doi:10.1109/CEC.2013.6557944. Honghao, C., Zuren, F., & Zhigang, R. (2013). Community detection using ant colony optimization. In 2013 IEEE Congress on Evolutionary Computation (CEC) (pp. 3072–3078), June 20–23, 2013, Cancun. IEEE. doi:10.​1109/​CEC.​2013.​6557944.
go back to reference Itti, L. (2000). Models of bottom-up and top-down visual attention. PhD thesis, California Institute of Technology. Itti, L. (2000). Models of bottom-up and top-down visual attention. PhD thesis, California Institute of Technology.
go back to reference Janacik, P., Orfanus, D., & Wilke, A. (2013). A survey of ant colony optimization-based approaches to routing in computer networks. In 2013 4th International Conference on Intelligent Systems Modelling and Simulation (ISMS) (pp. 427–432), January 29–31, 2013, Bangkok. IEEE. doi:10.1109/ISMS.2013.20. Janacik, P., Orfanus, D., & Wilke, A. (2013). A survey of ant colony optimization-based approaches to routing in computer networks. In 2013 4th International Conference on Intelligent Systems Modelling and Simulation (ISMS) (pp. 427–432), January 29–31, 2013, Bangkok. IEEE. doi:10.​1109/​ISMS.​2013.​20.
go back to reference Kameyama, K. (2009). Particle swarm optimization-a survey. IEICE Transactions on Information and Systems, 92(7), 1354–1361.CrossRef Kameyama, K. (2009). Particle swarm optimization-a survey. IEICE Transactions on Information and Systems, 92(7), 1354–1361.CrossRef
go back to reference Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Technical report, (Technical report-tr06), Erciyes university, Engineering Faculty, Computer Engineering Department. Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Technical report, (Technical report-tr06), Erciyes university, Engineering Faculty, Computer Engineering Department.
go back to reference Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of IEEE international conference on neural networks, (Vol. 4, pp. 1942–1948), 27 Nov 1995–2001 Dec 1995, Perth. IEEE. doi:10.1109/ICNN.1995.488968. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of IEEE international conference on neural networks, (Vol. 4, pp. 1942–1948), 27 Nov 1995–2001 Dec 1995, Perth. IEEE. doi:10.​1109/​ICNN.​1995.​488968.
go back to reference Kennedy, J., & Eberhart, R. C. (1997). A discrete binary version of the particle swarm algorithm. In Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation., 1997 IEEE International Conference on, Vol. 5, October 12–15, 1997, Orlando, IEEE (pp. 4104–4108). doi:10.1109/ICSMC.1997.637339. Kennedy, J., & Eberhart, R. C. (1997). A discrete binary version of the particle swarm algorithm. In Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation., 1997 IEEE International Conference on, Vol. 5, October 12–15, 1997, Orlando, IEEE (pp. 4104–4108). doi:10.​1109/​ICSMC.​1997.​637339.
go back to reference Kennedy, J. F., Kennedy, J., & Eberhart, R. C. (2001). Swarm intelligence. Los Altos: Morgan Kaufmann. Kennedy, J. F., Kennedy, J., & Eberhart, R. C. (2001). Swarm intelligence. Los Altos: Morgan Kaufmann.
go back to reference Kothari, V., Anuradha, J., Shah, S., & Mittal, P. (2012). A survey on particle swarm optimization in feature selection. In Global Trends in Information Systems and Software Applications (pp. 192–201). Berlin: Springer Kothari, V., Anuradha, J., Shah, S., & Mittal, P. (2012). A survey on particle swarm optimization in feature selection. In Global Trends in Information Systems and Software Applications (pp. 192–201). Berlin: Springer
go back to reference Kulkarni, R. V., & Venayagamoorthy, G. K. (2011). Particle swarm optimization in wireless-sensor networks: A brief survey. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 41(2), 262–267.CrossRef Kulkarni, R. V., & Venayagamoorthy, G. K. (2011). Particle swarm optimization in wireless-sensor networks: A brief survey. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 41(2), 262–267.CrossRef
go back to reference Kumar, G. K., & Jayaraman, V. (2013). Clustering of complex networks and community detection using group search optimization. CoRR, (abs/1307.1372). Kumar, G. K., & Jayaraman, V. (2013). Clustering of complex networks and community detection using group search optimization. CoRR, (abs/1307.1372).
go back to reference Matoušek, J., & Gärtner, B. (2007). Understanding and using linear programming. 7th edition. Berlin: Springer. Matoušek, J., & Gärtner, B. (2007). Understanding and using linear programming. 7th edition. Berlin: Springer.
go back to reference Mendes, A. (2004). Building generating functions brick by brick. San Diego: University of California. Mendes, A. (2004). Building generating functions brick by brick. San Diego: University of California.
go back to reference Monteiro, M. S., Fontes, D. B., & Fontes, F. A. (2012). Ant colony optimization: a literature survey. Technical report, Universidade do Porto, Faculdade de Economia do Porto. Monteiro, M. S., Fontes, D. B., & Fontes, F. A. (2012). Ant colony optimization: a literature survey. Technical report, Universidade do Porto, Faculdade de Economia do Porto.
go back to reference Nguyen, T. T., Li, Z., Zhang, S., & Truong, T. K. (2014). A hybrid algorithm based on particle swarm and chemical reaction optimization. Expert Systems with Applications, 41(5), 2134–2143.CrossRef Nguyen, T. T., Li, Z., Zhang, S., & Truong, T. K. (2014). A hybrid algorithm based on particle swarm and chemical reaction optimization. Expert Systems with Applications, 41(5), 2134–2143.CrossRef
go back to reference Ranaee, V., Ebrahimzadeh, A., & Ghaderi, R. (2010). Application of the pso–svm model for recognition of control chart patterns. ISA Transactions, 49(4), 577–586.CrossRef Ranaee, V., Ebrahimzadeh, A., & Ghaderi, R. (2010). Application of the pso–svm model for recognition of control chart patterns. ISA Transactions, 49(4), 577–586.CrossRef
go back to reference Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). Gsa: A gravitational search algorithm. Information Sciences, 179(13), 2232–2248.MATHCrossRef Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). Gsa: A gravitational search algorithm. Information Sciences, 179(13), 2232–2248.MATHCrossRef
go back to reference Ratnaweera, A., Halgamuge, S., & Watson, H. C. (2004). Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computation, 8(3), 240–255.CrossRef Ratnaweera, A., Halgamuge, S., & Watson, H. C. (2004). Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computation, 8(3), 240–255.CrossRef
go back to reference Rechenberg, I. (1994). Evolution strategy Computational intelligence: Imitating life, (pp. 147–159). Piscataway: IEEE Press. Rechenberg, I. (1994). Evolution strategy Computational intelligence: Imitating life, (pp. 147–159). Piscataway: IEEE Press.
go back to reference Reyes-Sierra, M., & Coello, C. C. (2006). Multi-objective particle swarm optimizers: A survey of the state-of-the-art. International journal of computational intelligence research, 2(3), 287–308.MathSciNet Reyes-Sierra, M., & Coello, C. C. (2006). Multi-objective particle swarm optimizers: A survey of the state-of-the-art. International journal of computational intelligence research, 2(3), 287–308.MathSciNet
go back to reference Ruszczyński, A. P. (2006). Nonlinear optimization (Vol. 13). NJ: Princeton University Press.MATH Ruszczyński, A. P. (2006). Nonlinear optimization (Vol. 13). NJ: Princeton University Press.MATH
go back to reference Schutte, J. F., Reinbolt, J. A., Fregly, B. J., Haftka, R. T., & George, A. D. (2004). Parallel global optimization with the particle swarm algorithm. International Journal for Numerical Methods in Engineering, 61(13), 2296–2315.MATHCrossRef Schutte, J. F., Reinbolt, J. A., Fregly, B. J., Haftka, R. T., & George, A. D. (2004). Parallel global optimization with the particle swarm algorithm. International Journal for Numerical Methods in Engineering, 61(13), 2296–2315.MATHCrossRef
go back to reference Schwefel, H.-P. (1994). On the evolution of evolutionary computation, Computational intelligence: Imitating life, (pp. 116–124). IEEE Press: Piscataway. Schwefel, H.-P. (1994). On the evolution of evolutionary computation, Computational intelligence: Imitating life, (pp. 116–124). IEEE Press: Piscataway.
go back to reference Selvaraj, G., & Janakiraman, S. (2013). Improved feature selection based on particle swarm optimization for liver disease diagnosis. In Swarm, Evolutionary, and Memetic Computing (pp. 214–225). Berlin: Springer. Selvaraj, G., & Janakiraman, S. (2013). Improved feature selection based on particle swarm optimization for liver disease diagnosis. In Swarm, Evolutionary, and Memetic Computing (pp. 214–225). Berlin: Springer.
go back to reference Shah-Hosseini, H. (2008). Intelligent water drops algorithm: A new optimization method for solving the multiple knapsack problem. International Journal of Intelligent Computing and Cybernetics, 1(2), 193–212.MATHMathSciNetCrossRef Shah-Hosseini, H. (2008). Intelligent water drops algorithm: A new optimization method for solving the multiple knapsack problem. International Journal of Intelligent Computing and Cybernetics, 1(2), 193–212.MATHMathSciNetCrossRef
go back to reference Shah-Hosseini, H. (2009). The intelligent water drops algorithm: A nature-inspired swarm-based optimization algorithm. International Journal of Bio-Inspired Computation, 1(1), 71–79.CrossRef Shah-Hosseini, H. (2009). The intelligent water drops algorithm: A nature-inspired swarm-based optimization algorithm. International Journal of Bio-Inspired Computation, 1(1), 71–79.CrossRef
go back to reference Shi, Y., & Eberhart, R. (1998a). A modified particle swarm optimizer. In The 1998 IEEE International Conference on Evolutionary Computation Proceedings, IEEE World Congress on Computational Intelligence (pp. 69–73), May 4-9, 1998, Anchorage. IEEE. doi:10.1109/ICEC.1998.699146. Shi, Y., & Eberhart, R. (1998a). A modified particle swarm optimizer. In The 1998 IEEE International Conference on Evolutionary Computation Proceedings, IEEE World Congress on Computational Intelligence (pp. 69–73), May 4-9, 1998, Anchorage. IEEE. doi:10.​1109/​ICEC.​1998.​699146.
go back to reference Shi, Y., & Eberhart, R. C. (1998b). Parameter selection in particle swarm optimization. In Evolutionary Programming VII, March 25-27, 1998, San Diego, California, USA, Springer (pp. 591–600). doi:10.1007/BFb0040810. Shi, Y., & Eberhart, R. C. (1998b). Parameter selection in particle swarm optimization. In Evolutionary Programming VII, March 25-27, 1998, San Diego, California, USA, Springer (pp. 591–600). doi:10.​1007/​BFb0040810.
go back to reference Shi, Y., & Eberhart, R. C. (1999). Empirical study of particle swarm optimization. In Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on, Vol. 3, July 6-9, 1999, Washington, IEEE. doi:10.1109/CEC.1999.785511. Shi, Y., & Eberhart, R. C. (1999). Empirical study of particle swarm optimization. In Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on, Vol. 3, July 6-9, 1999, Washington, IEEE. doi:10.​1109/​CEC.​1999.​785511.
go back to reference Singh, N., Arya, R., & Agrawal, R. (2014). A novel approach to combine features for salient object detection using constrained particle swarm optimization. Pattern Recognition, 47(4), 1731–1739.CrossRef Singh, N., Arya, R., & Agrawal, R. (2014). A novel approach to combine features for salient object detection using constrained particle swarm optimization. Pattern Recognition, 47(4), 1731–1739.CrossRef
go back to reference Stützle, T., & Hoos, H. H. (2000). Max–min ant system. Future generation computer systems, 16(8), 889–914.CrossRef Stützle, T., & Hoos, H. H. (2000). Max–min ant system. Future generation computer systems, 16(8), 889–914.CrossRef
go back to reference Vanneschi, L., Codecasa, D., & Mauri, G. (2012). An empirical study of parallel and distributed particle swarm optimization. In Parallel Architectures and Bioinspired Algorithms (pp. 125–150). Berlin: Springer. Vanneschi, L., Codecasa, D., & Mauri, G. (2012). An empirical study of parallel and distributed particle swarm optimization. In Parallel Architectures and Bioinspired Algorithms (pp. 125–150). Berlin: Springer.
go back to reference Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82.CrossRef Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82.CrossRef
go back to reference Yan, X.-S., Li, C., Cai, Z.-H., & Kang, L.-S. (2005). A fast evolutionary algorithm for combinatorial optimization problems. In Proceedings of 2005 International Conference on Machine Learning and Cybernetics (Vol. 6, pp. 3288–3292) August 18-21, 2005, Guangzhou. IEEE. doi:10.1109/ICMLC.2005.1527510. Yan, X.-S., Li, C., Cai, Z.-H., & Kang, L.-S. (2005). A fast evolutionary algorithm for combinatorial optimization problems. In Proceedings of 2005 International Conference on Machine Learning and Cybernetics (Vol. 6, pp. 3288–3292) August 18-21, 2005, Guangzhou. IEEE. doi:10.​1109/​ICMLC.​2005.​1527510.
go back to reference Yang, B., Chen, Y., & Zhao, Z. (2007). Survey on applications of particle swarm optimization in electric power systems. In IEEE International Conference on Control and Automation (ICCA 2007) (pp. 481–486), May 30 2007–June 1 2007, Guangzhou. IEEE. doi:10.1109/ICCA.2007.4376403. Yang, B., Chen, Y., & Zhao, Z. (2007). Survey on applications of particle swarm optimization in electric power systems. In IEEE International Conference on Control and Automation (ICCA 2007) (pp. 481–486), May 30 2007–June 1 2007, Guangzhou. IEEE. doi:10.​1109/​ICCA.​2007.​4376403.
go back to reference Zhan, Z.-H., Zhang, J., Li, Y., & Shi, Y.-H. (2011). Orthogonal learning particle swarm optimization. IEEE Transactions on Evolutionary Computation, 15(6), 832–847.CrossRef Zhan, Z.-H., Zhang, J., Li, Y., & Shi, Y.-H. (2011). Orthogonal learning particle swarm optimization. IEEE Transactions on Evolutionary Computation, 15(6), 832–847.CrossRef
Metadata
Title
Swarm Intelligence Techniques and Their Adaptive Nature with Applications
Authors
Anupam Biswas
Bhaskar Biswas
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-12883-2_9

Premium Partner