Skip to main content
Top
Published in: Wireless Personal Communications 3/2018

04-05-2018

Switching Between Unit Cells: A Tool to Break the Limits on the Performance of Reflectarray Antennas

Authors: Rania Elsharkawy, Moataza Hindy, A.-R. Sebak, Adel A. Saleeb, El-Sayed M. El-Rabaie

Published in: Wireless Personal Communications | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

For decades, the design of reflectarray antennas followed a unified strategy of selecting a certain unit cell for the whole design. After that, the dimensions or orientations of this unit cell are changed to achieve the required phase shift at each position on the reflectarray surface. This strategy requires a 360° span of the phase characteristics of the selected unit cell versus a control parameter. In addition, it requires maximal linearity of the phase characteristics of the unit cell. This paper considers a different and more flexible strategy for the design of reflectarrays. This strategy is based on switching between unit cells to make use of the regions of the characteristic phase curves of best linearity for each unit cell. With this strategy, we can use unit cells with similar polarization, and unit cells that do not span 360° in phase characteristics in the design process of the same reflectarray. The single criterion for switching between unit cells is the maximal linearity of the phase characteristics of the unit cell at the required phase. This strategy guarantees maximization of the gain, and minimization of the side-lobe level (SLL) at the design frequency. The proposed strategy is validated for the design of a reflectarray antenna to work at 28 GHz using five different unit cells for possible 5G applications. The simulation results reveal the feasibility of the proposed strategy for achieving high gain and low SLL at 28 GHz.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Berry, D. G., et al. (1963). The reflectarray antenna. IEEE Transactions on Antennas and Propagation, 11, 645–651.CrossRef Berry, D. G., et al. (1963). The reflectarray antenna. IEEE Transactions on Antennas and Propagation, 11, 645–651.CrossRef
2.
go back to reference Huang, J., & Encinar, J. A. (2008). Reflectarray antennas. New York: IEEE Press. Huang, J., & Encinar, J. A. (2008). Reflectarray antennas. New York: IEEE Press.
3.
go back to reference Chang, D., & Huang, M. (1995). Multiple-polarization microstrip reflectarray antenna with high efficiency and low cross-polarization. IEEE Transactions on Antennas and Propagation, 43(8), 829–834.CrossRef Chang, D., & Huang, M. (1995). Multiple-polarization microstrip reflectarray antenna with high efficiency and low cross-polarization. IEEE Transactions on Antennas and Propagation, 43(8), 829–834.CrossRef
4.
go back to reference Huang, J., et al. (1998). A Ka-band microstrip reflectarray with elements having variable rotation angles. IEEE Transactions on Antennas and Propagation, 46(5), 650–656.CrossRef Huang, J., et al. (1998). A Ka-band microstrip reflectarray with elements having variable rotation angles. IEEE Transactions on Antennas and Propagation, 46(5), 650–656.CrossRef
5.
go back to reference Chaharmir, M. R., et al. (2006). Broadband reflectarray antenna with double cross loops. Electronics Letters, 42(2), 65–66.CrossRef Chaharmir, M. R., et al. (2006). Broadband reflectarray antenna with double cross loops. Electronics Letters, 42(2), 65–66.CrossRef
6.
go back to reference Chaharmir, M. R., & Shaker, J. (2008). Broadband reflectarray antenna with combination of cross and rectangle loop elements. Electronic Letters, 44(11), 658–659.CrossRef Chaharmir, M. R., & Shaker, J. (2008). Broadband reflectarray antenna with combination of cross and rectangle loop elements. Electronic Letters, 44(11), 658–659.CrossRef
7.
go back to reference Chaharmir, M. R., et al. (2009). Broadband design of a single layer large reflectarray using multi cross loop elements. IEEE Transactions on Antennas and Propagation, 57(10), 3363–3366.CrossRef Chaharmir, M. R., et al. (2009). Broadband design of a single layer large reflectarray using multi cross loop elements. IEEE Transactions on Antennas and Propagation, 57(10), 3363–3366.CrossRef
8.
go back to reference Mohammadirad, M., Komjani, N., Chaharmir, M. R., Shaker, J., & Sebak, A. R. (2012). Impact of feed position on the operating band of broadband reflectarray antenna. IEEE Antennas and Wireless Propagation Letters, 11, 1104–1107.CrossRef Mohammadirad, M., Komjani, N., Chaharmir, M. R., Shaker, J., & Sebak, A. R. (2012). Impact of feed position on the operating band of broadband reflectarray antenna. IEEE Antennas and Wireless Propagation Letters, 11, 1104–1107.CrossRef
9.
go back to reference Vosoogh, A., et al. (2014). A high-efficiency Ku-band reflectarray antenna using single-layer multiresonance elements. IEEE Antennas and Wireless Propagation Letters, 13, 891–894.CrossRef Vosoogh, A., et al. (2014). A high-efficiency Ku-band reflectarray antenna using single-layer multiresonance elements. IEEE Antennas and Wireless Propagation Letters, 13, 891–894.CrossRef
10.
go back to reference An, W., Xu, S., & Yang, F. (2014). A metal-only reflectarray antenna using slot-type elements. IEEE Antennas and Wireless Propagations Letters, 13, 1553.CrossRef An, W., Xu, S., & Yang, F. (2014). A metal-only reflectarray antenna using slot-type elements. IEEE Antennas and Wireless Propagations Letters, 13, 1553.CrossRef
11.
go back to reference Zebrowski, M. (2012). Illumination and spillover efficiency calculations for rectangular reflectarray antennas. High Frequency Design, 1, 28–38. Zebrowski, M. (2012). Illumination and spillover efficiency calculations for rectangular reflectarray antennas. High Frequency Design, 1, 28–38.
12.
go back to reference Chaharmir, M. R., Shaker, J., Cuhaci, M., & Sebak, A. (2003). Reflectarray with variable slots on ground plane. IEE Proceedings on Microwaves, Antennas and Propagations, 150(6), 436–439.CrossRef Chaharmir, M. R., Shaker, J., Cuhaci, M., & Sebak, A. (2003). Reflectarray with variable slots on ground plane. IEE Proceedings on Microwaves, Antennas and Propagations, 150(6), 436–439.CrossRef
13.
go back to reference Derafshi, I., Komjani, N., & Mohammadirad, M. (2015). A single-layer broadband reflectarray antenna by using quasi-spiral phase delay line. IEEE Antennas and Wireless Propagations Letters, 14, 84–87.CrossRef Derafshi, I., Komjani, N., & Mohammadirad, M. (2015). A single-layer broadband reflectarray antenna by using quasi-spiral phase delay line. IEEE Antennas and Wireless Propagations Letters, 14, 84–87.CrossRef
14.
go back to reference Encinar, J. A. (2001). Design of two-layer printed reflectarrays using patches of variable size. IEEE Transactions on Antennas and Propagation, 49(10), 1403–1410.MathSciNetCrossRef Encinar, J. A. (2001). Design of two-layer printed reflectarrays using patches of variable size. IEEE Transactions on Antennas and Propagation, 49(10), 1403–1410.MathSciNetCrossRef
15.
go back to reference Yu, A., Yang, F., Elsherbeni, A. Z., Huang, J., & Kim, Y. (2012). An offset-fed X-band reflectarray antenna using a modified element rotation technique. IEEE Transactions on Antennas and Propagation, 60(3), 1619–1624.CrossRef Yu, A., Yang, F., Elsherbeni, A. Z., Huang, J., & Kim, Y. (2012). An offset-fed X-band reflectarray antenna using a modified element rotation technique. IEEE Transactions on Antennas and Propagation, 60(3), 1619–1624.CrossRef
16.
go back to reference Rajagopalan, H., Xu, S., & Rahmat-Samii, Y. (2012). On understand in the radiation mechanism of reflectarray antennas: An insightful and illustrative approach. IEEE Antennas and Propagation Magazine, 54(5), 14–38.CrossRef Rajagopalan, H., Xu, S., & Rahmat-Samii, Y. (2012). On understand in the radiation mechanism of reflectarray antennas: An insightful and illustrative approach. IEEE Antennas and Propagation Magazine, 54(5), 14–38.CrossRef
17.
go back to reference Ramli, M., Misran, N., Mansor, M. F., Islam, M. T. (2014). Analysis of reflectarray unit cell with capacitive effect. In 2nd international conference on information and communication technology (ICOICT) (pp. 95–99). Ramli, M., Misran, N., Mansor, M. F., Islam, M. T. (2014). Analysis of reflectarray unit cell with capacitive effect. In 2nd international conference on information and communication technology (ICOICT) (pp. 95–99).
18.
go back to reference Balanis, C. A. (2005). Antenna theory analysis and design. Hoboken: Wiley. Balanis, C. A. (2005). Antenna theory analysis and design. Hoboken: Wiley.
20.
go back to reference Carrasco, E., Barba, M., & Encinar, J. A. (2007). Reflectarray element based on aperture—coupled patches with slots and lines of variable length. IEEE Transactions on Antennas and Propagation, 55(3), 820–825.CrossRef Carrasco, E., Barba, M., & Encinar, J. A. (2007). Reflectarray element based on aperture—coupled patches with slots and lines of variable length. IEEE Transactions on Antennas and Propagation, 55(3), 820–825.CrossRef
21.
go back to reference Carrasco, E., Barba, M., & Encinar, J. A. (2006). Aperture-coupled reflectarray element with wide range of phase delay. Electronics Letters, 42(12), 667–668.CrossRef Carrasco, E., Barba, M., & Encinar, J. A. (2006). Aperture-coupled reflectarray element with wide range of phase delay. Electronics Letters, 42(12), 667–668.CrossRef
22.
go back to reference Hasani, H., Kamyab, M., & Mirkamali, A. (2010). Broadband reflectarray antenna incorporating disk elements with attached phase-delay lines. IEEE Antennas and Wireless Propagation Letters, 9, 156–158.CrossRef Hasani, H., Kamyab, M., & Mirkamali, A. (2010). Broadband reflectarray antenna incorporating disk elements with attached phase-delay lines. IEEE Antennas and Wireless Propagation Letters, 9, 156–158.CrossRef
23.
go back to reference Carrasco, E., Encinar, J. A., & Barba, M. (2008). Bandwidth improvement in large reflectarrays by using true-time delay. IEEE Transactions on Antennas and Propagation, 56(8), 2496–2503.CrossRef Carrasco, E., Encinar, J. A., & Barba, M. (2008). Bandwidth improvement in large reflectarrays by using true-time delay. IEEE Transactions on Antennas and Propagation, 56(8), 2496–2503.CrossRef
24.
go back to reference Han, C., Rodenbeck, C., Huang, J., & Chang, K. (2004). A C/Ka dual frequency dual layer circularly polarized reflectarray with microstrip ring elements. IEEE Transactions on Antennas and Propagation, 52(11), 2871–2876.CrossRef Han, C., Rodenbeck, C., Huang, J., & Chang, K. (2004). A C/Ka dual frequency dual layer circularly polarized reflectarray with microstrip ring elements. IEEE Transactions on Antennas and Propagation, 52(11), 2871–2876.CrossRef
Metadata
Title
Switching Between Unit Cells: A Tool to Break the Limits on the Performance of Reflectarray Antennas
Authors
Rania Elsharkawy
Moataza Hindy
A.-R. Sebak
Adel A. Saleeb
El-Sayed M. El-Rabaie
Publication date
04-05-2018
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 3/2018
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-018-5770-x

Other articles of this Issue 3/2018

Wireless Personal Communications 3/2018 Go to the issue