Skip to main content
Top
Published in: Designs, Codes and Cryptography 11/2020

07-08-2020

Symmetries of biplanes

Authors: Seyed Hassan Alavi, Ashraf Daneshkhah, Cheryl E. Praeger

Published in: Designs, Codes and Cryptography | Issue 11/2020

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we first study biplanes \(\mathcal {D}\) with parameters (vk, 2), where the block size \(k\in \{13,16\}\). These are the smallest parameter values for which a classification is not available. We show that if \(k=13\), then either \(\mathcal {D}\) is the Aschbacher biplane or its dual, or \(\mathbf {Aut}(\mathcal {D})\) is a subgroup of the cyclic group of order 3. In the case where \(k=16\), we prove that \(|\mathbf {Aut}(\mathcal {D})|\) divides \(2^{7}\cdot 3^{2}\cdot 5\cdot 7\cdot 11\cdot 13\). We also provide an example of a biplane with parameters (16, 6, 2) with a flag-transitive and point-primitive subgroup of automorphisms preserving a homogeneous cartesian decomposition. This motivated us to study biplanes with point-primitive automorphism groups preserving a cartesian decomposition. We prove that such an automorphism group is either of affine type (as in the example), or twisted wreath type.
Literature
2.
go back to reference Arasu K.T., Mavron V.C.: Biplanes and Singer Groups. In: Jungnickel D., Vanstone S.A. (eds.) Coding Theory, Design Theory, Group Theory (Burlington, VT, 1990), pp. 111–119. Wiley, New York (1993). Arasu K.T., Mavron V.C.: Biplanes and Singer Groups. In: Jungnickel D., Vanstone S.A. (eds.) Coding Theory, Design Theory, Group Theory (Burlington, VT, 1990), pp. 111–119. Wiley, New York (1993).
5.
go back to reference Assmus Jr., E.F., Mezzaroba, J.A., Salwach, C.J.: Planes and biplanes. In: Higher combinatorics (Proc. NATO Advanced Study Inst., Berlin, 1976), NATO Adv. Study Inst. Ser., Ser. C: Math. and Phys. Sci. 31, 205–212 (1977) Assmus Jr., E.F., Mezzaroba, J.A., Salwach, C.J.: Planes and biplanes. In: Higher combinatorics (Proc. NATO Advanced Study Inst., Berlin, 1976), NATO Adv. Study Inst. Ser., Ser. C: Math. and Phys. Sci. 31, 205–212 (1977)
9.
11.
go back to reference Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups. Oxford University Press, Eynsham (1985). Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups. Oxford University Press, Eynsham (1985). Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray
13.
go back to reference Dixon J.D., Mortimer B.: Permutation groups. In: Dixon J.D., Mortimer B. (eds.) Graduate Texts in Mathematics. Springer, New York (1996). Dixon J.D., Mortimer B.: Permutation groups. In: Dixon J.D., Mortimer B. (eds.) Graduate Texts in Mathematics. Springer, New York (1996).
17.
go back to reference Gorenstein D.: Finite Groups, 2nd edn. Chelsea Publishing Co., New York (1980).MATH Gorenstein D.: Finite Groups, 2nd edn. Chelsea Publishing Co., New York (1980).MATH
18.
19.
go back to reference Hughes D., Piper F.: Design Theory. Up (Methuen). Cambridge University Press, Cambridge (1988). Hughes D., Piper F.: Design Theory. Up (Methuen). Cambridge University Press, Cambridge (1988).
20.
go back to reference Husain Q.M.: On the totality of the solutions for the symmetrical incomplete block designs: \(\lambda =2, k=5\) or \(6\). Sankhyā 7, 204–208 (1945).MathSciNetMATH Husain Q.M.: On the totality of the solutions for the symmetrical incomplete block designs: \(\lambda =2, k=5\) or \(6\). Sankhyā 7, 204–208 (1945).MathSciNetMATH
21.
go back to reference Hussain Q.M.: Symmetrical incomplete block designs with \(\lambda =2\), \(k=8\) or \(9\). Bull. Calcutta Math. Soc. 37, 115–123 (1945).MathSciNet Hussain Q.M.: Symmetrical incomplete block designs with \(\lambda =2\), \(k=8\) or \(9\). Bull. Calcutta Math. Soc. 37, 115–123 (1945).MathSciNet
26.
go back to reference Key, J.D., Tonchev, V.D.: Computational results for the known biplanes of order \(9\). In: Geometry, combinatorial designs and related structures (Spetses, 1996), London Math. Soc. Lecture Note Ser., vol. 245, pp. 113–122. Cambridge Univ. Press, Cambridge (1997). https://doi.org/10.1017/CBO9780511526114.011 Key, J.D., Tonchev, V.D.: Computational results for the known biplanes of order \(9\). In: Geometry, combinatorial designs and related structures (Spetses, 1996), London Math. Soc. Lecture Note Ser., vol. 245, pp. 113–122. Cambridge Univ. Press, Cambridge (1997). https://​doi.​org/​10.​1017/​CBO9780511526114​.​011
28.
go back to reference Liebeck M.W., Praeger C.E., Saxl J.: On the O’Nan–Scott theorem for finite primitive permutation groups. J. Austral. Math. Soc. Ser. A 44(3), 389–396 (1988).MathSciNetCrossRef Liebeck M.W., Praeger C.E., Saxl J.: On the O’Nan–Scott theorem for finite primitive permutation groups. J. Austral. Math. Soc. Ser. A 44(3), 389–396 (1988).MathSciNetCrossRef
33.
go back to reference Salwach C.J., Mezzaroba J.A.: The four known biplanes with \(k=9\). J. Combin. Theory Series A 24, 141–145 (1978).CrossRef Salwach C.J., Mezzaroba J.A.: The four known biplanes with \(k=9\). J. Combin. Theory Series A 24, 141–145 (1978).CrossRef
Metadata
Title
Symmetries of biplanes
Authors
Seyed Hassan Alavi
Ashraf Daneshkhah
Cheryl E. Praeger
Publication date
07-08-2020
Publisher
Springer US
Published in
Designs, Codes and Cryptography / Issue 11/2020
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-020-00784-1

Other articles of this Issue 11/2020

Designs, Codes and Cryptography 11/2020 Go to the issue

Premium Partner