Skip to main content
Top
Published in:
Cover of the book

2014 | OriginalPaper | Chapter

1. Synchronized Control of Mechanical Systems: A Tutorial

Authors : Dongya Zhao, Quanmin Zhu, Shaoyuan Li, Feng Gao

Published in: Applied Methods and Techniques for Mechatronic Systems

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Mechanical systems with synchronization functionality have been used for many complex production tasks that cannot be carried out by a single machine and/or individual mechanism. Synchronized control approach is one of the key issues to achieve the synchronized motion of mechanical systems, which attracts more and more attention from academic research to applications. There are many types of mechanical systems that require synchronized control, which have different kinematics and dynamics. It is not an easy job to use a unified synchronized control algorithm for all mechanical systems. This chapter summarizes the work on synchronized control mainly developed by the authors and their colleagues. In the presentation it tries to use several classical mechanical systems to show the design philosophy of the synchronized control systems, and consequently establishes a reader/user-friendly framework with tutorial, survey, applications, and potential research expansion.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gueaieb W, Al-Sharhan S, Miodrag B (2007) Robust computationally efficient control of cooperative closed-chain manipulators with uncertain dynamics. Automatica 43(5):842–851CrossRefMATHMathSciNet Gueaieb W, Al-Sharhan S, Miodrag B (2007) Robust computationally efficient control of cooperative closed-chain manipulators with uncertain dynamics. Automatica 43(5):842–851CrossRefMATHMathSciNet
2.
go back to reference Gueaieb W, Karray F (2007) A robust hybrid intelligent position/force control scheme for cooperative manipulators. IEEE Trans Mechatron 12(2):109–125CrossRef Gueaieb W, Karray F (2007) A robust hybrid intelligent position/force control scheme for cooperative manipulators. IEEE Trans Mechatron 12(2):109–125CrossRef
3.
go back to reference Nijmeijer H, Rodriguez-Angeles A (2003) Synchronization of mechanical systems. World Scientific, SingaporeMATH Nijmeijer H, Rodriguez-Angeles A (2003) Synchronization of mechanical systems. World Scientific, SingaporeMATH
4.
go back to reference Martinez-Rosas JC, Arteaga MA, Castillo-Sanchez AM (2006) Decentralized control of cooperative robots without velocity-force measurements. Automatica 42(2):329–336CrossRefMATHMathSciNet Martinez-Rosas JC, Arteaga MA, Castillo-Sanchez AM (2006) Decentralized control of cooperative robots without velocity-force measurements. Automatica 42(2):329–336CrossRefMATHMathSciNet
5.
go back to reference Gudino-Lau J, Artegag MA (2005) Dynamic model and simulation of cooperative robots: a case study. Robotica 23(5):615–624CrossRefMATH Gudino-Lau J, Artegag MA (2005) Dynamic model and simulation of cooperative robots: a case study. Robotica 23(5):615–624CrossRefMATH
6.
go back to reference Sun D, Mills JK (2002) Adaptive synchronized control for coordination of multirobot assembly tasks. IEEE Trans Robot Autom 18(4):498–510CrossRef Sun D, Mills JK (2002) Adaptive synchronized control for coordination of multirobot assembly tasks. IEEE Trans Robot Autom 18(4):498–510CrossRef
8.
go back to reference Rodriguez-Angeles A, Nijmeijer H (2004) Mutual synchronization of robots via estimated state feedback: a cooperative approach. IEEE Trans Control Syst Technol 12(4):542–554CrossRef Rodriguez-Angeles A, Nijmeijer H (2004) Mutual synchronization of robots via estimated state feedback: a cooperative approach. IEEE Trans Control Syst Technol 12(4):542–554CrossRef
9.
go back to reference Chung S-J, Slotine EJ-J (2009) Cooperative robot control and concurrent synchronization of Lagrangian systems. IEEE Trans Rob 25(3):686–700CrossRef Chung S-J, Slotine EJ-J (2009) Cooperative robot control and concurrent synchronization of Lagrangian systems. IEEE Trans Rob 25(3):686–700CrossRef
10.
go back to reference Zhao D, Li S, Gao F (2008) Fully adaptive feedforward feedback synchronized tracking control for stewart platform systems. Int J Control Autom Syst 6(5):689–701 Zhao D, Li S, Gao F (2008) Fully adaptive feedforward feedback synchronized tracking control for stewart platform systems. Int J Control Autom Syst 6(5):689–701
11.
go back to reference Zhao D, Li S, Gao F (2009) Finite time position synchronised control for parallel manipulators using fast terminal sliding mode. Int J Syst Sci 40(8):829–843CrossRefMathSciNet Zhao D, Li S, Gao F (2009) Finite time position synchronised control for parallel manipulators using fast terminal sliding mode. Int J Syst Sci 40(8):829–843CrossRefMathSciNet
12.
go back to reference Zhao D, Zou T (2012) A finite-time approach to formation control of multiple mobile robots with terminal sliding mode. Int J Syst Sci 34(11):1998–2014 (2012) Zhao D, Zou T (2012) A finite-time approach to formation control of multiple mobile robots with terminal sliding mode. Int J Syst Sci 34(11):1998–2014 (2012)
13.
go back to reference Zhao D, Li S, Gao F, Zhu Q (2009) Robust adaptive terminal sliding mode-based synchronised position control for multiple motion axes systems. IET Control Theory Appl 3(1):136–150CrossRefMathSciNet Zhao D, Li S, Gao F, Zhu Q (2009) Robust adaptive terminal sliding mode-based synchronised position control for multiple motion axes systems. IET Control Theory Appl 3(1):136–150CrossRefMathSciNet
14.
go back to reference Zhao D, Li D, Zhu Q (2011) Low pass filter based position synchronization sliding mode control for multiple robotic manipulators systems. Inst Mech Eng Part I J Syst Control Eng 225(18):1136–1148CrossRef Zhao D, Li D, Zhu Q (2011) Low pass filter based position synchronization sliding mode control for multiple robotic manipulators systems. Inst Mech Eng Part I J Syst Control Eng 225(18):1136–1148CrossRef
15.
go back to reference Zhao D, Zou T, Li S, Zhu Q (2012) Adaptive backstepping sliding mode control for leader-follower multi-agent systems. IET Control Theory Appl 6(8):1109–1117CrossRefMathSciNet Zhao D, Zou T, Li S, Zhu Q (2012) Adaptive backstepping sliding mode control for leader-follower multi-agent systems. IET Control Theory Appl 6(8):1109–1117CrossRefMathSciNet
16.
go back to reference Liu Y-C, Chopra N (2012) Controlled synchronization of heterogeneous robotic manipulators in the task space. IEEE Trans Rob 28(1):268–275CrossRef Liu Y-C, Chopra N (2012) Controlled synchronization of heterogeneous robotic manipulators in the task space. IEEE Trans Rob 28(1):268–275CrossRef
17.
go back to reference Wang H (2013) Passivity based synchronization for networked robotic systems with uncertain kinematics and dynamics. Automatica 49(3):755–761CrossRefMATHMathSciNet Wang H (2013) Passivity based synchronization for networked robotic systems with uncertain kinematics and dynamics. Automatica 49(3):755–761CrossRefMATHMathSciNet
18.
19.
go back to reference Cui R, Yan W (2012) Mutual synchronization of multiple robot manipulators with unknown dynamics. J Intell Rob Syst 68(2):105–119CrossRefMATH Cui R, Yan W (2012) Mutual synchronization of multiple robot manipulators with unknown dynamics. J Intell Rob Syst 68(2):105–119CrossRefMATH
20.
go back to reference Panwara V, Kumarb N, Sukavanamc N, Bormb J-H (2012) Adaptive neural controller for cooperative multiple robot manipulator system manipulating a single rigid object. Appl Soft Comput 12(1):216–227CrossRef Panwara V, Kumarb N, Sukavanamc N, Bormb J-H (2012) Adaptive neural controller for cooperative multiple robot manipulator system manipulating a single rigid object. Appl Soft Comput 12(1):216–227CrossRef
21.
go back to reference Sun D (2010) Synchronization and Control of Multiagent Systems. CRC Press, Taylor and Francis Group, Boca Raton Sun D (2010) Synchronization and Control of Multiagent Systems. CRC Press, Taylor and Francis Group, Boca Raton
22.
go back to reference Koren Y (1980) Cross-coupled biaxial computer control for manufacturing systems. ASME J Dyn Syst Meas Contr 102(4):265–272CrossRefMATH Koren Y (1980) Cross-coupled biaxial computer control for manufacturing systems. ASME J Dyn Syst Meas Contr 102(4):265–272CrossRefMATH
23.
go back to reference Spong MW, Hutchinson S, Vidyasagar M (2006) Robot modeling and control. Wiley, New York Spong MW, Hutchinson S, Vidyasagar M (2006) Robot modeling and control. Wiley, New York
24.
go back to reference Ge SS, Hang CC, Woon LC (1997) Adaptive neural network control of robot manipulators in task space. IEEE Trans Industr Electron 44(6):746–752CrossRef Ge SS, Hang CC, Woon LC (1997) Adaptive neural network control of robot manipulators in task space. IEEE Trans Industr Electron 44(6):746–752CrossRef
25.
go back to reference Sun D, Shao X, Feng G (2007) A model-free cross-coupled control for position synchronization of multi-axis motions: theory and experiments. IEEE Trans Control Syst Technol 15(2): 306–314 Sun D, Shao X, Feng G (2007) A model-free cross-coupled control for position synchronization of multi-axis motions: theory and experiments. IEEE Trans Control Syst Technol 15(2): 306–314
26.
go back to reference Slotine J-JE, Li W (1990) Applied nonlinear control. Prentice Hall, Englewood Cliffs Slotine J-JE, Li W (1990) Applied nonlinear control. Prentice Hall, Englewood Cliffs
29.
go back to reference Ting Y, Chen Y-S, Jar H-C (2004) Modeling and control for a Gough-Stewart platform CNC machine. J Rob Syst 21(11):609–623CrossRefMATH Ting Y, Chen Y-S, Jar H-C (2004) Modeling and control for a Gough-Stewart platform CNC machine. J Rob Syst 21(11):609–623CrossRefMATH
30.
go back to reference Kim HS, Cho YM (2005) Kyo-II: robust nonlinear task space control for 6DOF parallel manipulator. Automatica 41(9):1591–1600 Kim HS, Cho YM (2005) Kyo-II: robust nonlinear task space control for 6DOF parallel manipulator. Automatica 41(9):1591–1600
31.
go back to reference Tsai LW (1999) Robot analysis the mechanics of serial and parallel manipulators. Wiley, New York Tsai LW (1999) Robot analysis the mechanics of serial and parallel manipulators. Wiley, New York
32.
go back to reference Angeles J (2003) Fundamentals of robotic mechanical systems, theory, methods, and algorithms. Springer, New YorkCrossRef Angeles J (2003) Fundamentals of robotic mechanical systems, theory, methods, and algorithms. Springer, New YorkCrossRef
33.
go back to reference Sun D, Ren L, Mills JK, Wang C (2006) Synchronous tracking control of parallel manipulators using cross-coupling approach. Int J Rob Res 25(11):1137–1147CrossRef Sun D, Ren L, Mills JK, Wang C (2006) Synchronous tracking control of parallel manipulators using cross-coupling approach. Int J Rob Res 25(11):1137–1147CrossRef
34.
go back to reference Xie G, Wang L (2009) Moving formation convergence of a group of mobile robots via decentralised information feedback. Int J Syst Sci 40(10):1019–1027CrossRefMathSciNet Xie G, Wang L (2009) Moving formation convergence of a group of mobile robots via decentralised information feedback. Int J Syst Sci 40(10):1019–1027CrossRefMathSciNet
35.
go back to reference Balch T, Arkin R (1998) Behavior-based formation control for multi-robot teams. IEEE Trans Rob Autom 14(6):926–939CrossRef Balch T, Arkin R (1998) Behavior-based formation control for multi-robot teams. IEEE Trans Rob Autom 14(6):926–939CrossRef
36.
go back to reference Fox D, Burgard W, Kruppa H, Thrun S (2000) A probabilistic approach to collaborative multi-robot localization. Auton Rob 8(3):325–344CrossRef Fox D, Burgard W, Kruppa H, Thrun S (2000) A probabilistic approach to collaborative multi-robot localization. Auton Rob 8(3):325–344CrossRef
37.
go back to reference Tanner HG, Loizou SG, Kyriakopoulos KJ (2003) Nonholonomic navigation and control multiple mobile manipulators. IEEE Trans Rob Autom 19(1):53–64CrossRef Tanner HG, Loizou SG, Kyriakopoulos KJ (2003) Nonholonomic navigation and control multiple mobile manipulators. IEEE Trans Rob Autom 19(1):53–64CrossRef
38.
go back to reference Yang G, Yang Q, Kapila V, Palmer D, Vaidyanathan R (2002) Fuel optimal manoeuvres for multiple spacecraft formation reconfiguration using multi-agent optimization. Int J Robust Nonlinear Control 12(2–3):243–283CrossRefMATH Yang G, Yang Q, Kapila V, Palmer D, Vaidyanathan R (2002) Fuel optimal manoeuvres for multiple spacecraft formation reconfiguration using multi-agent optimization. Int J Robust Nonlinear Control 12(2–3):243–283CrossRefMATH
39.
go back to reference McInnes CR (1995) Autonomous ring formation for a planar constellation of satellites. AIAA J Guidance Control Dyn 18(5):1215–1217CrossRefMATH McInnes CR (1995) Autonomous ring formation for a planar constellation of satellites. AIAA J Guidance Control Dyn 18(5):1215–1217CrossRefMATH
40.
go back to reference Giulietti F, Pollini L, Innocent M (2000) Autonomous formation flight. IEEE Control Syst Mag 20(6):34–44CrossRef Giulietti F, Pollini L, Innocent M (2000) Autonomous formation flight. IEEE Control Syst Mag 20(6):34–44CrossRef
41.
go back to reference Stilwell DJ, Bishop BE (2000) Platoons of underwater vehicles. IEEE Control Syst Mag 20(6):45–52CrossRef Stilwell DJ, Bishop BE (2000) Platoons of underwater vehicles. IEEE Control Syst Mag 20(6):45–52CrossRef
42.
go back to reference Ding BC, Xie LH, Cai WJ (2010) Distributed model predictive control for constrained linear systems. Int J Robust Nonlinear Control 20(11):1285–1298CrossRefMATHMathSciNet Ding BC, Xie LH, Cai WJ (2010) Distributed model predictive control for constrained linear systems. Int J Robust Nonlinear Control 20(11):1285–1298CrossRefMATHMathSciNet
43.
go back to reference Berman S, Edan Y, Hamshidi M (2003) Navigation of decentralized autonomous automatic guided vehicles in material handling. IEEE Trans Rob Autom 19(4):743–749CrossRef Berman S, Edan Y, Hamshidi M (2003) Navigation of decentralized autonomous automatic guided vehicles in material handling. IEEE Trans Rob Autom 19(4):743–749CrossRef
44.
go back to reference Lawton JRT, Beard RW, Young BJ (2003) A decentralized approach to formation maneuvers. IEEE Trans Rob Autom 19(6):933–941CrossRef Lawton JRT, Beard RW, Young BJ (2003) A decentralized approach to formation maneuvers. IEEE Trans Rob Autom 19(6):933–941CrossRef
45.
go back to reference Long M, Gage A, Murphy R, Valavanis K (2005) Application of the distributed field robot architecture to a simulated deming task. In: Proceeding of IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp 3204–3211 Long M, Gage A, Murphy R, Valavanis K (2005) Application of the distributed field robot architecture to a simulated deming task. In: Proceeding of IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp 3204–3211
46.
go back to reference Parker LE (1998) ALLIANCE: an architecture for fault tolerant multirobot cooperation. IEEE Trans Rob Autom 14(2):220–240CrossRef Parker LE (1998) ALLIANCE: an architecture for fault tolerant multirobot cooperation. IEEE Trans Rob Autom 14(2):220–240CrossRef
47.
go back to reference Beard RW, Lawton H, Hadaegh FY (2001) A coordination architecture for spacecraft formation control. IEEE Trans Control Syst Technol 9(6):777–790CrossRef Beard RW, Lawton H, Hadaegh FY (2001) A coordination architecture for spacecraft formation control. IEEE Trans Control Syst Technol 9(6):777–790CrossRef
48.
go back to reference Egerstedt M, Hu X (2001) Formation constrained multi-agent control. IEEE Trans Rob Autom 17(6):947–951CrossRef Egerstedt M, Hu X (2001) Formation constrained multi-agent control. IEEE Trans Rob Autom 17(6):947–951CrossRef
49.
go back to reference Kang W, Xi N, Sparks A (2000) Formation control of autonomous agents in 3D workspace. In: Proceeding of IEEE International Conference on Robotics and Automation, San francisco, pp 1755–1760 Kang W, Xi N, Sparks A (2000) Formation control of autonomous agents in 3D workspace. In: Proceeding of IEEE International Conference on Robotics and Automation, San francisco, pp 1755–1760
50.
go back to reference Lewis MA, Tan KH (1997) High precision formation of mobile robots using virtual structures. Auton Rob 4(4):387–403CrossRef Lewis MA, Tan KH (1997) High precision formation of mobile robots using virtual structures. Auton Rob 4(4):387–403CrossRef
51.
go back to reference Das AK, Fierro R, Kumar V, Ostrowski JP, Spletzer J, Taylor CJ (2002) A vision-based formation control framework. IEEE Trans Rob Autom 18(5):813–825CrossRef Das AK, Fierro R, Kumar V, Ostrowski JP, Spletzer J, Taylor CJ (2002) A vision-based formation control framework. IEEE Trans Rob Autom 18(5):813–825CrossRef
52.
go back to reference Deasi JP, Kumar V, Ostrowski P (2001) Modeling and control of formations of nonholonomic mobile robots. IEEE Trans Rob Autom 17(6):905–908CrossRef Deasi JP, Kumar V, Ostrowski P (2001) Modeling and control of formations of nonholonomic mobile robots. IEEE Trans Rob Autom 17(6):905–908CrossRef
53.
go back to reference Huang J, Farritor SM, Qadi A, Goddard S (2006) Localization and follow-the-leader control of a heterogeneous group of mobile robots. IEEE/ASME Trans Mechatron 11(2):205–215CrossRef Huang J, Farritor SM, Qadi A, Goddard S (2006) Localization and follow-the-leader control of a heterogeneous group of mobile robots. IEEE/ASME Trans Mechatron 11(2):205–215CrossRef
54.
go back to reference Takahashi H, Nishi H, Ohnishi K (2004) Autonomous decentralized control for formation of multiple mobile robots considering ability of robot. IEEE Trans Industr Electron 51(6): 1272–1279 Takahashi H, Nishi H, Ohnishi K (2004) Autonomous decentralized control for formation of multiple mobile robots considering ability of robot. IEEE Trans Industr Electron 51(6): 1272–1279
55.
go back to reference Amato F, Ambrosinl R, Ariola, M Cosentino C (2009) Finite-time stability of linear time-varying systems with jumps. Automatica 45(5):1354–1358 Amato F, Ambrosinl R, Ariola, M Cosentino C (2009) Finite-time stability of linear time-varying systems with jumps. Automatica 45(5):1354–1358
56.
57.
go back to reference Hong Y, Jiang ZP (2006) Finite time stabilization of nonlinear systems with parametric and dynamic uncertainties. IEEE Trans Autom Control 51(12):1950–1956CrossRefMathSciNet Hong Y, Jiang ZP (2006) Finite time stabilization of nonlinear systems with parametric and dynamic uncertainties. IEEE Trans Autom Control 51(12):1950–1956CrossRefMathSciNet
58.
go back to reference Zhao D, Li S, Zhu Q, Gao F (2010) Robust finite-time control approach for robotic manipulators. IET Control Theory Appl 4(1):1–15CrossRefMathSciNet Zhao D, Li S, Zhu Q, Gao F (2010) Robust finite-time control approach for robotic manipulators. IET Control Theory Appl 4(1):1–15CrossRefMathSciNet
59.
go back to reference Sun D, Wang C, Shang W, Feng G (2009) A synchronization approach to trajectory tracking of multiple mobile robots while maintaining time-varying formations. IEEE Trans Rob 25(5):1074–1084CrossRef Sun D, Wang C, Shang W, Feng G (2009) A synchronization approach to trajectory tracking of multiple mobile robots while maintaining time-varying formations. IEEE Trans Rob 25(5):1074–1084CrossRef
60.
go back to reference Khoo S, Xie L, Man Z (2009) Robust finite-time consensus tracking algorithm for multirobot system. IEEE/ASME Trans Mechatron 14(2):219–228CrossRef Khoo S, Xie L, Man Z (2009) Robust finite-time consensus tracking algorithm for multirobot system. IEEE/ASME Trans Mechatron 14(2):219–228CrossRef
62.
go back to reference Hong Y, Gao L, Cheng D, Hu J (2007) Lyapunov-based approach to multiagent systems with switching jointly connected interconnection. IEEE Trans Autom Control 52(5):943–948CrossRefMathSciNet Hong Y, Gao L, Cheng D, Hu J (2007) Lyapunov-based approach to multiagent systems with switching jointly connected interconnection. IEEE Trans Autom Control 52(5):943–948CrossRefMathSciNet
63.
go back to reference Dimarogonas D, Kyriakopoulos K (2008) A connection between formation infeasibility and velocity alignment in kinematic multi-agent systems. Automatica 44(10):2648–2654CrossRefMATHMathSciNet Dimarogonas D, Kyriakopoulos K (2008) A connection between formation infeasibility and velocity alignment in kinematic multi-agent systems. Automatica 44(10):2648–2654CrossRefMATHMathSciNet
64.
go back to reference Lin P, Jia Y (2009) Consensus of second-order discrete-time multi-agent systems with nonuniform time-delays and dynamically changing topologies. Automatica 45(9):2154–2158CrossRefMATHMathSciNet Lin P, Jia Y (2009) Consensus of second-order discrete-time multi-agent systems with nonuniform time-delays and dynamically changing topologies. Automatica 45(9):2154–2158CrossRefMATHMathSciNet
65.
go back to reference Consolini L, Morbidi F, Prattichizzo D, Tosques M (2008) Leader-follower formation control of nonholonomic mobile robots with input constraints. Automatica 44(5):1343–1349CrossRefMathSciNet Consolini L, Morbidi F, Prattichizzo D, Tosques M (2008) Leader-follower formation control of nonholonomic mobile robots with input constraints. Automatica 44(5):1343–1349CrossRefMathSciNet
66.
go back to reference Ni W, Cheng D (2010) Leader-following consensus of multi-agent systems under fixed and switching topologies. Syst Control Lett 59(3–4):209–217CrossRefMATHMathSciNet Ni W, Cheng D (2010) Leader-following consensus of multi-agent systems under fixed and switching topologies. Syst Control Lett 59(3–4):209–217CrossRefMATHMathSciNet
67.
go back to reference Gazi V, Fidan B (2007) Coordination and control of multi-agent dynamic systems: models and approaches. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 4433 LNCS. Springer, Berlin, pp 71–102 Gazi V, Fidan B (2007) Coordination and control of multi-agent dynamic systems: models and approaches. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 4433 LNCS. Springer, Berlin, pp 71–102
68.
go back to reference Wu Z-J, Xie X-J, Zhang S-Y (2006) Stochastic adaptive backstepping controller design by introducing dynamic signal and changing supply function. Int J Control 79(12):1635–1646CrossRefMATHMathSciNet Wu Z-J, Xie X-J, Zhang S-Y (2006) Stochastic adaptive backstepping controller design by introducing dynamic signal and changing supply function. Int J Control 79(12):1635–1646CrossRefMATHMathSciNet
69.
go back to reference Ozbay U, Zergeroglu E, Sivrioglu S (2008) Adaptive backsetpping control of variable speed wind turbines. Int J Control 81(6):910–919CrossRefMATHMathSciNet Ozbay U, Zergeroglu E, Sivrioglu S (2008) Adaptive backsetpping control of variable speed wind turbines. Int J Control 81(6):910–919CrossRefMATHMathSciNet
70.
go back to reference Xia Y, Fu M, Shi P, Wu Z, Zhang J (2009) Adaptive backstepping controller design for stochastic jump systems. IEEE Trans Autom Control 54(12):2853–2859CrossRefMathSciNet Xia Y, Fu M, Shi P, Wu Z, Zhang J (2009) Adaptive backstepping controller design for stochastic jump systems. IEEE Trans Autom Control 54(12):2853–2859CrossRefMathSciNet
71.
go back to reference Xia Y, Zhu Z, Fu M (2011) Back-stepping sliding mode control for missile systems based on extended state observer. IET Control Theory Appl 5(1):93–102CrossRefMathSciNet Xia Y, Zhu Z, Fu M (2011) Back-stepping sliding mode control for missile systems based on extended state observer. IET Control Theory Appl 5(1):93–102CrossRefMathSciNet
72.
73.
74.
go back to reference Hong Y, Chen G, Bushnell L (2008) Distributed observers design for leader–follower control of multi-agent networks. Automatica 44(3):846–850CrossRefMathSciNet Hong Y, Chen G, Bushnell L (2008) Distributed observers design for leader–follower control of multi-agent networks. Automatica 44(3):846–850CrossRefMathSciNet
75.
go back to reference Ren W (2007) Multi-vehicle consensus with a time-varying reference state. Syst Controller Lett 56(7–8):474–483CrossRefMATH Ren W (2007) Multi-vehicle consensus with a time-varying reference state. Syst Controller Lett 56(7–8):474–483CrossRefMATH
76.
go back to reference Ren W, Beard RW (2007) Distributed consensus in multi-vehicle cooperative control. Springer, New York Ren W, Beard RW (2007) Distributed consensus in multi-vehicle cooperative control. Springer, New York
77.
go back to reference Ren W, Beard RW (2005) Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans Autom Control 50(5):655–661CrossRefMathSciNet Ren W, Beard RW (2005) Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans Autom Control 50(5):655–661CrossRefMathSciNet
Metadata
Title
Synchronized Control of Mechanical Systems: A Tutorial
Authors
Dongya Zhao
Quanmin Zhu
Shaoyuan Li
Feng Gao
Copyright Year
2014
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-36385-6_1