Syntactic and Semantic Bias Detection and Countermeasures | springerprofessional.de Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2020 | OriginalPaper | Chapter

Syntactic and Semantic Bias Detection and Countermeasures

Authors : Roman Englert, Jörg Muschiol

Published in: Computational Science – ICCS 2020

Publisher: Springer International Publishing

share
SHARE

Abstract

Applied Artificial Intelligence (AAI) and, especially Machine Learning (ML), both had recently a breakthrough with high-performant hardware for Deep Learning [1]. Additionally, big companies like Huawei and Google are adapting their product philosophy to AAI and ML [24]. Using ML-based systems require always a training data set to achieve a usable, i.e. trained, AAI system. The quality of the training data set determines the quality of the predictions. One important quality factor is that the training data are unbiased. Bias may lead in the worst case to incorrect and unusable predictions. This paper investigates the most important types of bias, namely syntactic and semantic bias. Countermeasures and methods to detect these biases are provided to diminish the deficiencies.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Groth, O., Nitzberg, M.: Solomon’s Code. Humanity in a World of Thinking Machines. Pegasus Books (2018) Groth, O., Nitzberg, M.: Solomon’s Code. Humanity in a World of Thinking Machines. Pegasus Books (2018)
5.
go back to reference Russell, S., Norvig, P.: AI a Modern Approach. Prentice-Hall, Upper Saddle River (1995) MATH Russell, S., Norvig, P.: AI a Modern Approach. Prentice-Hall, Upper Saddle River (1995) MATH
8.
go back to reference Casella, G., Berger, R.: Statistical Inference. Duxbury Advanced Series, 2nd edn. Thomson Learning Inc., Boston (2002) MATH Casella, G., Berger, R.: Statistical Inference. Duxbury Advanced Series, 2nd edn. Thomson Learning Inc., Boston (2002) MATH
11.
go back to reference Calmon, F, Wei, D., Vinzamuri, B., Ramamurthy, K., Varshney, K.: Optimized pre-processing for discrimination prevention. In: Conference on Neural Information Processing Systems. Advances in Neural Information Processing Systems, vol. 30, pp. 3992–4001 (2017) Calmon, F, Wei, D., Vinzamuri, B., Ramamurthy, K., Varshney, K.: Optimized pre-processing for discrimination prevention. In: Conference on Neural Information Processing Systems. Advances in Neural Information Processing Systems, vol. 30, pp. 3992–4001 (2017)
12.
go back to reference Zemel, R., Wu, Y., Swersky, K., Pitassi, T., Dwork, C.: Learning fair representations. international conference on machine learning. In: Proceedings of Machine Learning Research, pp. 325–333 (2013) Zemel, R., Wu, Y., Swersky, K., Pitassi, T., Dwork, C.: Learning fair representations. international conference on machine learning. In: Proceedings of Machine Learning Research, pp. 325–333 (2013)
18.
go back to reference Sapra, S.: A regression error specification test (RESET) for generalized linear models. Econ. Bull. 3(1), 1–6 (2005) Sapra, S.: A regression error specification test (RESET) for generalized linear models. Econ. Bull. 3(1), 1–6 (2005)
21.
go back to reference Davis, E.: AI amusements: the tragic tale of tay the chatbot. ACM AI Matters 2(4), 20–24 (2016) CrossRef Davis, E.: AI amusements: the tragic tale of tay the chatbot. ACM AI Matters 2(4), 20–24 (2016) CrossRef
22.
go back to reference Rosopa, P., Schaffer, M., Schroeder, A.: Managing heteroscedasticity in general linear models. Psychol. Methods 18(3), 335–351 (2013) CrossRef Rosopa, P., Schaffer, M., Schroeder, A.: Managing heteroscedasticity in general linear models. Psychol. Methods 18(3), 335–351 (2013) CrossRef
Metadata
Title
Syntactic and Semantic Bias Detection and Countermeasures
Authors
Roman Englert
Jörg Muschiol
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-50423-6_47