Skip to main content
Top
Published in: Journal of Polymer Research 2/2024

01-02-2024 | Original Paper

Synthesis and characterization of material derived from Chitosan, malic acid and urea

Authors: Richa Sharma, R. Dhamodharan

Published in: Journal of Polymer Research | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The synthesis of chitosan-based material (CHMAUR) of different forms (foam, porous and non-porous tough gels, porous dry) through crosslinking, facilitated by urea (UR) in the presence of malic acid (MA) as the organic acid, is reported. The new material was characterized extensively using FT IR spectroscopy, CP MAS solid state NMR spectroscopy, powder x-ray diffraction analysis and thermogravimetric analysis. Its structure was found to be independent of the form in which it was prepared. The porous dry form was characterized extensively. Its porosity was determined using helium gas pycnometry, ethanol displacement method while its morphology was examined using scanning electron microscopy. In this form, CHMAUR absorbed water rapidly and supported a compressive load of up to 15 MPa. With the ability to be machined using conventional tools and resistance to flame it might find use as an engineering material.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Younes I, Rinaudo M, Harding D, Sashiwa H (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13:1133–1174CrossRefPubMedPubMedCentral Younes I, Rinaudo M, Harding D, Sashiwa H (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13:1133–1174CrossRefPubMedPubMedCentral
2.
go back to reference Rinaudo M (2006) Chitin and chitosan: Properties and applications. Prog Polym Sci 31:603–632CrossRef Rinaudo M (2006) Chitin and chitosan: Properties and applications. Prog Polym Sci 31:603–632CrossRef
3.
go back to reference Hahn T, Tafi E, Paul A et al (2020) Current state of chitin purification and chitosan production from insects. J Chem Technol Biotechnol 95:2775–2795CrossRef Hahn T, Tafi E, Paul A et al (2020) Current state of chitin purification and chitosan production from insects. J Chem Technol Biotechnol 95:2775–2795CrossRef
4.
go back to reference Blair HS, Guthrie J, Law T, -K, Turkington P (1987) Chitosan and modified chitosan membranes I. Preparation and characterisation. J Appl Polym Sci 33:641–656CrossRef Blair HS, Guthrie J, Law T, -K, Turkington P (1987) Chitosan and modified chitosan membranes I. Preparation and characterisation. J Appl Polym Sci 33:641–656CrossRef
5.
go back to reference Fang J, Liao J, Zhong C et al (2022) High-Strength, Biomimetic Functional Chitosan-based hydrogels for full-thickness osteochondral defect repair. ACS Biomater Sci Eng 8:4449–4461CrossRefPubMed Fang J, Liao J, Zhong C et al (2022) High-Strength, Biomimetic Functional Chitosan-based hydrogels for full-thickness osteochondral defect repair. ACS Biomater Sci Eng 8:4449–4461CrossRefPubMed
6.
go back to reference Sun Y, Chu Y, Deng C et al (2022) High-strength and superamphiphobic chitosan-based aerogels for thermal insulation and flame retardant applications. Colloids Surf Physicochem Eng Asp 651:129663CrossRef Sun Y, Chu Y, Deng C et al (2022) High-strength and superamphiphobic chitosan-based aerogels for thermal insulation and flame retardant applications. Colloids Surf Physicochem Eng Asp 651:129663CrossRef
7.
go back to reference Yang J, Liu Y, Zhang ZZ et al (2022) Preparation protocol of urea cross-linked chitosan aerogels with improved mechanical properties using aqueous aluminum ion medium. J Supercrit Fluids 179:105414CrossRef Yang J, Liu Y, Zhang ZZ et al (2022) Preparation protocol of urea cross-linked chitosan aerogels with improved mechanical properties using aqueous aluminum ion medium. J Supercrit Fluids 179:105414CrossRef
8.
go back to reference Ganesan K, Heyer M, Ratke L, Milow B (2018) Facile Preparation of Nanofibrillar Networks of Ureido-Chitin Containing Ureido and Amine as Chelating Functional groups. Chem – A Eur J 24:19332–19340CrossRef Ganesan K, Heyer M, Ratke L, Milow B (2018) Facile Preparation of Nanofibrillar Networks of Ureido-Chitin Containing Ureido and Amine as Chelating Functional groups. Chem – A Eur J 24:19332–19340CrossRef
9.
go back to reference Guerrero-Alburquerque N, Zhao S, Adilien N et al (2020) Strong, Machinable, and insulating Chitosan-Urea aerogels: toward ambient pressure drying of Biopolymer Aerogel Monoliths. ACS Appl Mater Interfaces 12:22037–22049CrossRefPubMed Guerrero-Alburquerque N, Zhao S, Adilien N et al (2020) Strong, Machinable, and insulating Chitosan-Urea aerogels: toward ambient pressure drying of Biopolymer Aerogel Monoliths. ACS Appl Mater Interfaces 12:22037–22049CrossRefPubMed
10.
go back to reference Takeshita S, Zhao S, Malfait WJ (2021) Transparent, Aldehyde-Free Chitosan Aerogel. Carbohydr Polym 251:117089CrossRefPubMed Takeshita S, Zhao S, Malfait WJ (2021) Transparent, Aldehyde-Free Chitosan Aerogel. Carbohydr Polym 251:117089CrossRefPubMed
11.
go back to reference Narayanan A, Dhamodharan R (2015) Super water-absorbing new material from Chitosan, EDTA and urea. Carbohydr Polym 134:337–343CrossRefPubMed Narayanan A, Dhamodharan R (2015) Super water-absorbing new material from Chitosan, EDTA and urea. Carbohydr Polym 134:337–343CrossRefPubMed
12.
go back to reference Narayanan A, Kartik R, Sangeetha E, Dhamodharan R (2018) Super water absorbing polymeric gel from Chitosan, citric acid and urea: synthesis and mechanism of water absorption. Carbohydr Polym J 191:152–160CrossRef Narayanan A, Kartik R, Sangeetha E, Dhamodharan R (2018) Super water absorbing polymeric gel from Chitosan, citric acid and urea: synthesis and mechanism of water absorption. Carbohydr Polym J 191:152–160CrossRef
14.
go back to reference Sangeetha E, Narayanan A, Dhamodharan R (2022) Super water-absorbing hydrogel based on chitosan, itaconic acid and urea: preparation, characterization and reversible water absorption. Polym Bull 79:3013–3030CrossRef Sangeetha E, Narayanan A, Dhamodharan R (2022) Super water-absorbing hydrogel based on chitosan, itaconic acid and urea: preparation, characterization and reversible water absorption. Polym Bull 79:3013–3030CrossRef
15.
go back to reference Sangeetha E, Sharma R, Narayanan A et al (2022) Tough gels and Macroporous Foams based on Chitosan through Hydrothermal synthesis of Chitosan, Tartaric Acid, and Urea. ACS Appl Polym Mater 4:1764–1774CrossRef Sangeetha E, Sharma R, Narayanan A et al (2022) Tough gels and Macroporous Foams based on Chitosan through Hydrothermal synthesis of Chitosan, Tartaric Acid, and Urea. ACS Appl Polym Mater 4:1764–1774CrossRef
16.
go back to reference Paleckiene R, Sviklas A, Šlinkšiene R (2005) Reaction of urea with citric acid. Russ J Appl Chem 78:1651–1655CrossRef Paleckiene R, Sviklas A, Šlinkšiene R (2005) Reaction of urea with citric acid. Russ J Appl Chem 78:1651–1655CrossRef
17.
go back to reference Radell J, Brodman BW, Domanski JJ (1967) Dicarboxylic Acid-Urea complexes. Angew Chemie Int Ed 71:1596–1601 Radell J, Brodman BW, Domanski JJ (1967) Dicarboxylic Acid-Urea complexes. Angew Chemie Int Ed 71:1596–1601
18.
go back to reference Dutta A, Maity S, Das RK (2018) A highly stretchable, tough, Self-Healing, and Thermoprocessable polyacrylamide–Chitosan Supramolecular Hydrogel. Macromol Mater Eng 303:1–9CrossRef Dutta A, Maity S, Das RK (2018) A highly stretchable, tough, Self-Healing, and Thermoprocessable polyacrylamide–Chitosan Supramolecular Hydrogel. Macromol Mater Eng 303:1–9CrossRef
19.
go back to reference Xiang X, Chen G, Chen K et al (2020) Facile preparation and characterization of super tough chitosan/poly(vinyl alcohol) hydrogel with low temperature resistance and anti-swelling property. Int J Biol Macromol 142:574–582CrossRefPubMed Xiang X, Chen G, Chen K et al (2020) Facile preparation and characterization of super tough chitosan/poly(vinyl alcohol) hydrogel with low temperature resistance and anti-swelling property. Int J Biol Macromol 142:574–582CrossRefPubMed
20.
go back to reference Li Y, Sun S, Gao P et al (2021) A tough chitosan-alginate porous hydrogel prepared by simple foaming method. J Solid State Chem 294:121797CrossRef Li Y, Sun S, Gao P et al (2021) A tough chitosan-alginate porous hydrogel prepared by simple foaming method. J Solid State Chem 294:121797CrossRef
21.
go back to reference Sabnis S, Block LH (1997) Improved infrared spectroscopic method for the analysis of degree of N-deacetylation of Chitosan. Polym Bull 39:67–71CrossRef Sabnis S, Block LH (1997) Improved infrared spectroscopic method for the analysis of degree of N-deacetylation of Chitosan. Polym Bull 39:67–71CrossRef
22.
go back to reference Zhang Y, Xue C, Xue Y et al (2005) Determination of the degree of deacetylation of chitin and chitosan by X-ray powder diffraction. Carbohydr Res 340:1914–1917CrossRefPubMed Zhang Y, Xue C, Xue Y et al (2005) Determination of the degree of deacetylation of chitin and chitosan by X-ray powder diffraction. Carbohydr Res 340:1914–1917CrossRefPubMed
23.
go back to reference Ottøy MH, Vårum KM, Smidsrød O (1996) Compositional heterogeneity of heterogeneously deacetylated chitosans. Carbohydr Polym 29:17–24CrossRef Ottøy MH, Vårum KM, Smidsrød O (1996) Compositional heterogeneity of heterogeneously deacetylated chitosans. Carbohydr Polym 29:17–24CrossRef
24.
go back to reference Kasaai MR, Arul J, Charlet G (2000) Intrinsic viscosity-molecular weight relationship for chitosan. J Polym Sci Part B Polym Phys 38:2591–2598ADSCrossRef Kasaai MR, Arul J, Charlet G (2000) Intrinsic viscosity-molecular weight relationship for chitosan. J Polym Sci Part B Polym Phys 38:2591–2598ADSCrossRef
25.
go back to reference Cho YI, No HK, Meyers SP (1998) Physicochemical characteristics and functional properties of various commercial chitin and Chitosan products. J Agric Food Chem 46:3839–3843CrossRef Cho YI, No HK, Meyers SP (1998) Physicochemical characteristics and functional properties of various commercial chitin and Chitosan products. J Agric Food Chem 46:3839–3843CrossRef
26.
go back to reference Han J, Zhou Z, Yin R et al (2010) Alginate–chitosan/hydroxyapatite polyelectrolyte complex porous scaffolds: Preparation and characterization. Int J Biol Macromol 46:199–205CrossRefPubMed Han J, Zhou Z, Yin R et al (2010) Alginate–chitosan/hydroxyapatite polyelectrolyte complex porous scaffolds: Preparation and characterization. Int J Biol Macromol 46:199–205CrossRefPubMed
27.
go back to reference Lei C, Wang Q, Li L (2009) Effect of interactions between poly(vinyl alcohol) and urea on the water solubility of poly(vinyl alcohol). J Appl Polym Sci 114:517–523CrossRef Lei C, Wang Q, Li L (2009) Effect of interactions between poly(vinyl alcohol) and urea on the water solubility of poly(vinyl alcohol). J Appl Polym Sci 114:517–523CrossRef
28.
go back to reference Heux L, Brugnerotto J, Desbrières J et al (2000) Solid state NMR for determination of degree of acetylation of chitin and chitosan. Biomacromol 1:746–751CrossRef Heux L, Brugnerotto J, Desbrières J et al (2000) Solid state NMR for determination of degree of acetylation of chitin and chitosan. Biomacromol 1:746–751CrossRef
29.
go back to reference Huang Y, He M, Lu A et al (2015) Hydrophobic modification of chitin whisker and its potential application in structuring oil. Langmuir 31:1641–1648CrossRefPubMed Huang Y, He M, Lu A et al (2015) Hydrophobic modification of chitin whisker and its potential application in structuring oil. Langmuir 31:1641–1648CrossRefPubMed
30.
go back to reference Ogawa K (1991) Effect of heating an aqueous suspension of Chitosan on the Crystallinity and Polymorphs. Agric Biol Chem 55:2375–2379 Ogawa K (1991) Effect of heating an aqueous suspension of Chitosan on the Crystallinity and Polymorphs. Agric Biol Chem 55:2375–2379
31.
go back to reference Ogawa K, Yui T (1993) Crystallinity of partially n-acetylated chitosans. Biosci Biotechnol Biochem 57:1466–1469CrossRef Ogawa K, Yui T (1993) Crystallinity of partially n-acetylated chitosans. Biosci Biotechnol Biochem 57:1466–1469CrossRef
Metadata
Title
Synthesis and characterization of material derived from Chitosan, malic acid and urea
Authors
Richa Sharma
R. Dhamodharan
Publication date
01-02-2024
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 2/2024
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-024-03891-y

Other articles of this Issue 2/2024

Journal of Polymer Research 2/2024 Go to the issue

Premium Partners