Skip to main content
Top

2021 | OriginalPaper | Chapter

7. Synthesis and Characterization of Quantum Cutting Phosphor Materials

Authors : Ram Sagar Yadav, Raghumani S. Ningthoujam

Published in: Handbook on Synthesis Strategies for Advanced Materials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The rare earth ions produce photoluminescence in the entire range of the electromagnetic spectrum particularly in the UV, vis and NIR regions. The present chapter describes the synthesis of quantum cutting phosphor materials using different methods, such as solid-state reaction, combustion, sol–gel, hot-injection, hydrothermal, along with a melting-quenching method for the glass materials and studies the photoluminescence of the rare earth doped quantum cutting phosphor materials. Quantum cutting (QC) is a downconversion (DC) process in which the conversion of a high-energy photon into the two or more low-energy photons takes place. This process not only takes place in the singly rare earth doped materials but also in the doubly and/or triply rare earth doped materials. The difference is only in the energy transfer route between activator and sensitizer ions. This occurs due to cooperative energy transfer (CET) process. In energy transfer process, the photoluminescence intensity of sensitizer ion decreases whereas the photoluminescence intensity of activator ion increases accordingly. The change in photoluminescence intensity of these ions is highly concentration dependent. The photoluminescence intensity versus pump power measurements shows that the photoluminescence intensity of the visible region is a linear process while that of the NIR region occurs due to nonlinear process. The change in photoluminescence intensity of the sensitizer ions can be established from the lifetime measurements. The preparation and characterization of different rare earth-based quantum cutting materials and their applications in large numbers of the emerging fields have been also included.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Han B, Liang H, Huang Y, Tao Y, Su Q (2010) Vacuum ultraviolet-visible spectroscopic properties of Tb3+ in Li(Y, Gd)(PO3)4: tunable emission, quantum cutting, and energy transfer. J Phys Chem C 114:6770CrossRef Han B, Liang H, Huang Y, Tao Y, Su Q (2010) Vacuum ultraviolet-visible spectroscopic properties of Tb3+ in Li(Y, Gd)(PO3)4: tunable emission, quantum cutting, and energy transfer. J Phys Chem C 114:6770CrossRef
2.
go back to reference Xia Z, Meijerink A (2017) Ce3+-doped garnet phosphors: composition modification, luminescence properties and applications. Chem Soc Rev 46:275–299CrossRef Xia Z, Meijerink A (2017) Ce3+-doped garnet phosphors: composition modification, luminescence properties and applications. Chem Soc Rev 46:275–299CrossRef
3.
go back to reference Xia Z, Liu Q (2016) Progress in discovery and structural design of color conversion phosphors for LEDs. Prog Mater Sci 84:59–117CrossRef Xia Z, Liu Q (2016) Progress in discovery and structural design of color conversion phosphors for LEDs. Prog Mater Sci 84:59–117CrossRef
4.
go back to reference Hou D, Liang H, Xie M, Ding X, Zhong J, Su Q, Tao Y, Huang Y, Gao Z (2011) Bright green-emitting, energy transfer and quantum cutting of Ba3Ln(PO4)3:Tb3+ (Ln = La, Gd) under VUV-UV excitation. Opt Express 19:11071–11083CrossRef Hou D, Liang H, Xie M, Ding X, Zhong J, Su Q, Tao Y, Huang Y, Gao Z (2011) Bright green-emitting, energy transfer and quantum cutting of Ba3Ln(PO4)3:Tb3+ (Ln = La, Gd) under VUV-UV excitation. Opt Express 19:11071–11083CrossRef
5.
go back to reference Swarnkar A, Mir WJ, Nag A (2018) Can B-Site doping or alloying improve thermal- and phase-stability of all-inorganic CsPbX3 (X=Cl, Br, I) perovskites? ACS Energy Lett 3:286–289CrossRef Swarnkar A, Mir WJ, Nag A (2018) Can B-Site doping or alloying improve thermal- and phase-stability of all-inorganic CsPbX3 (X=Cl, Br, I) perovskites? ACS Energy Lett 3:286–289CrossRef
6.
go back to reference Das AS, Guria AK, Pradhan N (2019) Insights of doping and the photoluminescence properties of Mn-doped perovskite nanocrystals. J Phys Chem Lett 10:2250–2257CrossRef Das AS, Guria AK, Pradhan N (2019) Insights of doping and the photoluminescence properties of Mn-doped perovskite nanocrystals. J Phys Chem Lett 10:2250–2257CrossRef
7.
go back to reference Yadav RS, Monika, Rai SB, Dhoble SJ (2020) Recent advances on morphological changes in chemically engineered rare earth doped phosphor materials. Prog Solid State Chem 57:100267 Yadav RS, Monika, Rai SB, Dhoble SJ (2020) Recent advances on morphological changes in chemically engineered rare earth doped phosphor materials. Prog Solid State Chem 57:100267
8.
go back to reference Singh P, Yadav RS, Singh P, Rai SB (2021) Upconversion and downshifting emissions of Ho3+-Yb3+ co-doped ATiO3 perovskite phosphors with temperature sensing properties in Ho3+-Yb3+ co-doped BaTiO3 phosphor. J Alloys Compds 855:157452. Singh P, Yadav RS, Singh P, Rai SB (2021) Upconversion and downshifting emissions of Ho3+-Yb3+ co-doped ATiO3 perovskite phosphors with temperature sensing properties in Ho3+-Yb3+ co-doped BaTiO3 phosphor. J Alloys Compds 855:157452.
9.
go back to reference Yadav RS, Monika, Dhoble SJ, Rai SB (2020) Optical properties of lanthanide-based pyrophosphate phosphor materials. Nova Science Publishers Inc., USA, pp 47–69 Yadav RS, Monika, Dhoble SJ, Rai SB (2020) Optical properties of lanthanide-based pyrophosphate phosphor materials. Nova Science Publishers Inc., USA, pp 47–69
10.
go back to reference Rai E, Yadav RS, Kumar D, Singh AK, Fullari V, Rai SB (2020) Influence of Bi3+ ion on structural, optical, dielectric and magnetic properties of Eu3+ doped LaVO4 phosphor. Spectrochim Acta Part A 243:118787 Rai E, Yadav RS, Kumar D, Singh AK, Fullari V, Rai SB (2020) Influence of Bi3+ ion on structural, optical, dielectric and magnetic properties of Eu3+ doped LaVO4 phosphor. Spectrochim Acta Part A 243:118787
11.
go back to reference Yadav RS, Monika, Rai E, Purohit LP, Rai SB (2020) Realizing enhanced downconversion photoluminescence and high color purity in Dy3+ doped MgTiO3 phosphor in presence of Li+ ion. J Lumin 217:116810 Yadav RS, Monika, Rai E, Purohit LP, Rai SB (2020) Realizing enhanced downconversion photoluminescence and high color purity in Dy3+ doped MgTiO3 phosphor in presence of Li+ ion. J Lumin 217:116810
12.
go back to reference Baig N, Yadav RS, Dhoble NS, Barai VL, Dhoble SJ (2019) Near UV excited multi-color photoluminescence in RE3+ (RE = Tb, Sm, Dy and Eu) doped Ca2Pb3(PO4)3Cl phosphors. J Lumin 215:116645 Baig N, Yadav RS, Dhoble NS, Barai VL, Dhoble SJ (2019) Near UV excited multi-color photoluminescence in RE3+ (RE = Tb, Sm, Dy and Eu) doped Ca2Pb3(PO4)3Cl phosphors. J Lumin 215:116645
13.
go back to reference Yadav RS, Rai SB (2017) Structural analysis and enhanced photoluminescence via host sensitization from a lanthanide doped BiVO4 nano-phosphor. J Phys Chem Solids 110:211–217CrossRef Yadav RS, Rai SB (2017) Structural analysis and enhanced photoluminescence via host sensitization from a lanthanide doped BiVO4 nano-phosphor. J Phys Chem Solids 110:211–217CrossRef
14.
go back to reference Monika, Yadav RS, Bahadur A, Rai SB (2020) Near-infrared light excited highly pure green upconversion photoluminescence and intrinsic optical bistability sensing in a Ho3+-Yb3+ co-doped ZnGa2O4 phosphor through Li+ doping. J Phys Chem C 124:10117–10128 Monika, Yadav RS, Bahadur A, Rai SB (2020) Near-infrared light excited highly pure green upconversion photoluminescence and intrinsic optical bistability sensing in a Ho3+-Yb3+ co-doped ZnGa2O4 phosphor through Li+ doping. J Phys Chem C 124:10117–10128
15.
go back to reference Ningthoujam RS (2012)Enhancement of luminescence by rare earth ions doping in semiconductor host. In: Rai SB, Dwivedi Y (eds) Publisher: Nova Science Publisher Inc, USA, Chapter 7, pp 145–182 Ningthoujam RS (2012)Enhancement of luminescence by rare earth ions doping in semiconductor host. In: Rai SB, Dwivedi Y (eds) Publisher: Nova Science Publisher Inc, USA, Chapter 7, pp 145–182
16.
go back to reference Yadav RS, Rai SB (2017) Surface analysis and enhanced photoluminescence via Bi3+ doping in a Tb3+ doped Y2O3 nano-phosphor under UV excitation. J Alloys Compds 700:228–237CrossRef Yadav RS, Rai SB (2017) Surface analysis and enhanced photoluminescence via Bi3+ doping in a Tb3+ doped Y2O3 nano-phosphor under UV excitation. J Alloys Compds 700:228–237CrossRef
17.
go back to reference Mir WJ, Swarnkar A, Nag A (2019) Postsynthesis Mn-doping in CsPbI3 nanocrystals to stabilize the black perovskite phase. Nanoscale 11:4278–4286CrossRef Mir WJ, Swarnkar A, Nag A (2019) Postsynthesis Mn-doping in CsPbI3 nanocrystals to stabilize the black perovskite phase. Nanoscale 11:4278–4286CrossRef
18.
go back to reference Bahadur A, Yadav RS, Yadav RV, Rai SB (2017) Multimodal emissions from Tb3+-Yb3+ co-doped lithium borate glass: Upconversion, downshifting and quantum cutting. J Solid State Chem 246:81–86CrossRef Bahadur A, Yadav RS, Yadav RV, Rai SB (2017) Multimodal emissions from Tb3+-Yb3+ co-doped lithium borate glass: Upconversion, downshifting and quantum cutting. J Solid State Chem 246:81–86CrossRef
19.
go back to reference Yuan R, Liu J, Zhang H, Zhang Z, Shao G, Liang X, Xiang W (eds) Eu3+-doped CsPbBr1.5I1.5 quantum dots glasses: a strong competitor among red fluorescence solid materials. J Am Ceram Soc 101:4927–4932 Yuan R, Liu J, Zhang H, Zhang Z, Shao G, Liang X, Xiang W (eds) Eu3+-doped CsPbBr1.5I1.5 quantum dots glasses: a strong competitor among red fluorescence solid materials. J Am Ceram Soc 101:4927–4932
20.
go back to reference Zhou Y, Chen J, Bakr OM, Sun H-T (2018) Metal-doped lead halide perovskites: synthesis, properties, and optoelectronic applications. Chem Mater 30:6589–6613CrossRef Zhou Y, Chen J, Bakr OM, Sun H-T (2018) Metal-doped lead halide perovskites: synthesis, properties, and optoelectronic applications. Chem Mater 30:6589–6613CrossRef
21.
go back to reference Liu RS, Liu YH, Bagkar NC, Hu SF (2007) Enhanced luminescence of SrSi2O2N2:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions. Appl Phys Lett 91:061119 Liu RS, Liu YH, Bagkar NC, Hu SF (2007) Enhanced luminescence of SrSi2O2N2:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions. Appl Phys Lett 91:061119
22.
go back to reference Parchur AK, Ansari AA, Singh BP, Hasan TN, Syed NA, Rai SB, Ningthoujam RS (2014) Enhanced luminescence of CaMoO4: Eu by core@shell formation and its hyperthermia study after hybrid formation with Fe3O4: Cytotoxicity assessing on human liver cancer cells and mesanchymal stem cells. Integr Biol 6:53–64CrossRef Parchur AK, Ansari AA, Singh BP, Hasan TN, Syed NA, Rai SB, Ningthoujam RS (2014) Enhanced luminescence of CaMoO4: Eu by core@shell formation and its hyperthermia study after hybrid formation with Fe3O4: Cytotoxicity assessing on human liver cancer cells and mesanchymal stem cells. Integr Biol 6:53–64CrossRef
23.
go back to reference Phaomei G, Ningthoujam RS, Singh WR, Loitongbam RS, Singh NS, Rath A, Juluri RR, Vatsa RK (2011) Luminescence switching behavior through redox reaction in Ce3+ co-doped LaPO4:Tb3+ nanorods: Re-dispersible and polymer film. Dalton Trans 40:11571CrossRef Phaomei G, Ningthoujam RS, Singh WR, Loitongbam RS, Singh NS, Rath A, Juluri RR, Vatsa RK (2011) Luminescence switching behavior through redox reaction in Ce3+ co-doped LaPO4:Tb3+ nanorods: Re-dispersible and polymer film. Dalton Trans 40:11571CrossRef
24.
go back to reference Singh NS, Ningthoujam RS, Singh SD, Viswanadh B, Manoj N, Vatsa RK (2010) Preparation of highly crystalline blue emitting MVO4:Tm3+ (M = Gd, Y) spherical nanoparticles: effects of activator concentration and annealing temperature on luminescence, lifetime and quantum yield. J Lumin 130:2452CrossRef Singh NS, Ningthoujam RS, Singh SD, Viswanadh B, Manoj N, Vatsa RK (2010) Preparation of highly crystalline blue emitting MVO4:Tm3+ (M = Gd, Y) spherical nanoparticles: effects of activator concentration and annealing temperature on luminescence, lifetime and quantum yield. J Lumin 130:2452CrossRef
25.
go back to reference Singh LR, Ningthoujam RS, Singh NS, Singh SD (2009) Probing Dy3+ ions on the surface of nanocrystalline YVO4: luminescence study. Opt Mater 32:286CrossRef Singh LR, Ningthoujam RS, Singh NS, Singh SD (2009) Probing Dy3+ ions on the surface of nanocrystalline YVO4: luminescence study. Opt Mater 32:286CrossRef
26.
go back to reference Rao CM, Sudarsan V, Ningthoujam RS, Gautam UK, Vatsa RK, Vinu A, Tyagi AK (2008) Luminescence studies on low temperature synthesized ZnGa2O4:Ln3+ (Ln = Tb and Eu) nanoparticles. J Nanosci Nanotech 8:5776CrossRef Rao CM, Sudarsan V, Ningthoujam RS, Gautam UK, Vatsa RK, Vinu A, Tyagi AK (2008) Luminescence studies on low temperature synthesized ZnGa2O4:Ln3+ (Ln = Tb and Eu) nanoparticles. J Nanosci Nanotech 8:5776CrossRef
27.
go back to reference Ningombam GS, Singh NR, Ningthoujam RS (2017) Controlled synthesis of CaWO4: Sm3+ microsphere particles by a reverse-micelle method and their energy transfer rate in luminescence. Colloids Surf A 518:249–262CrossRef Ningombam GS, Singh NR, Ningthoujam RS (2017) Controlled synthesis of CaWO4: Sm3+ microsphere particles by a reverse-micelle method and their energy transfer rate in luminescence. Colloids Surf A 518:249–262CrossRef
28.
go back to reference Ningthoujam RS, Sharma A, Sharma KS, Barick KC, Hassan PA, Vatsa RK (2015) Roles of solvent, annealing and Bi3+co-doping on the crystal structure and luminescence properties of YPO4:Eu3+ nanoparticles. RSC Adv 5:68234–68242CrossRef Ningthoujam RS, Sharma A, Sharma KS, Barick KC, Hassan PA, Vatsa RK (2015) Roles of solvent, annealing and Bi3+co-doping on the crystal structure and luminescence properties of YPO4:Eu3+ nanoparticles. RSC Adv 5:68234–68242CrossRef
29.
go back to reference Wangkhem R, Yaba T, Singh NS, Ningthoujam RS (2018) Red emission enhancement from CaMoO4:Eu3+ by co-doping of Bi3+ for near UV/blue LED pumped white pcLEDs: Energy transfer studies. J Appl Phys 123:124303 Wangkhem R, Yaba T, Singh NS, Ningthoujam RS (2018) Red emission enhancement from CaMoO4:Eu3+ by co-doping of Bi3+ for near UV/blue LED pumped white pcLEDs: Energy transfer studies. J Appl Phys 123:124303
30.
go back to reference Soni AK, Joshi R, Jangid K, Tewari R, Ningthoujam RS (2018) Low temperature synthesized SrMoO4:Eu3+ nanophosphors functionalized with ethylene glycol: a comparative study of synthesize route, morphology, luminescence and annealing. Mater Res Bull 103:1–12CrossRef Soni AK, Joshi R, Jangid K, Tewari R, Ningthoujam RS (2018) Low temperature synthesized SrMoO4:Eu3+ nanophosphors functionalized with ethylene glycol: a comparative study of synthesize route, morphology, luminescence and annealing. Mater Res Bull 103:1–12CrossRef
31.
go back to reference Parchur AK, Ningthoujam RS (2012) Preparation, microstructure and crystal structure studies of Li+ co-doped YPO4:Eu3+. RSC Adv 2:10854–10858CrossRef Parchur AK, Ningthoujam RS (2012) Preparation, microstructure and crystal structure studies of Li+ co-doped YPO4:Eu3+. RSC Adv 2:10854–10858CrossRef
32.
go back to reference Sahu NK, Singh NS, Ningthoujam RS, Bahadur D (2014) Ce3+ sensitized GdPO4:Tb3+ nanorods: An investigation on energy transfer, luminescence switching and quantum yield. ACS Photonics 1:337–346CrossRef Sahu NK, Singh NS, Ningthoujam RS, Bahadur D (2014) Ce3+ sensitized GdPO4:Tb3+ nanorods: An investigation on energy transfer, luminescence switching and quantum yield. ACS Photonics 1:337–346CrossRef
33.
go back to reference Phaomei G, Singh WR, Singh NS, Ningthoujam RS (2013) Luminescence properties of Ce3+ co-activated LaPO4:Dy3+ nanorods prepared in different solvents and tunable blue to white light emission from Eu3+ co-activated LaPO4:Dy3+, Ce3+. J Lumin 134:649–656CrossRef Phaomei G, Singh WR, Singh NS, Ningthoujam RS (2013) Luminescence properties of Ce3+ co-activated LaPO4:Dy3+ nanorods prepared in different solvents and tunable blue to white light emission from Eu3+ co-activated LaPO4:Dy3+, Ce3+. J Lumin 134:649–656CrossRef
34.
go back to reference Ningombam GS, Khundrakpam NS, Thiyam DS, Ningthoujam RS, Singh NR (2020) Salt assisted size-controlled synthesis and luminescence studies of single phase CaWO4:Dy3+: an insight into morphological evolution, energy transfer and colour evaluation. New J Chem 44:4217–4228CrossRef Ningombam GS, Khundrakpam NS, Thiyam DS, Ningthoujam RS, Singh NR (2020) Salt assisted size-controlled synthesis and luminescence studies of single phase CaWO4:Dy3+: an insight into morphological evolution, energy transfer and colour evaluation. New J Chem 44:4217–4228CrossRef
35.
go back to reference Dutta DP, NingthoujamRS, Tyagi AK (2012) Luminescence properties of Sm3+ doped YPO4: effect of solvent, heat-treatment, Ca2+/W6+-co-doping and its hyperthermia application. AIP-Advances 2:042184 Dutta DP, NingthoujamRS, Tyagi AK (2012) Luminescence properties of Sm3+ doped YPO4: effect of solvent, heat-treatment, Ca2+/W6+-co-doping and its hyperthermia application. AIP-Advances 2:042184
36.
go back to reference Singh LR, Ningthoujam RS (2011) Critical view on luminescence properties of Y2O3:Eu3+ after dispersion in SiO2. Chem Phys Lett 510:120CrossRef Singh LR, Ningthoujam RS (2011) Critical view on luminescence properties of Y2O3:Eu3+ after dispersion in SiO2. Chem Phys Lett 510:120CrossRef
37.
go back to reference PrasadAI, Singh LR, Joshi R, Ningthoujam RS (2018) Luminescence study on crystalline phase of Y2Si2O7 from mesoporous silica and Y2O3: Ln3+ at 900 °C. AIP Adv 8:105310 PrasadAI, Singh LR, Joshi R, Ningthoujam RS (2018) Luminescence study on crystalline phase of Y2Si2O7 from mesoporous silica and Y2O3: Ln3+ at 900 °C. AIP Adv 8:105310
38.
go back to reference Loitongbam RS, Singh NS, Singh WR, Ningthoujam RS (2013) Observation of exceptional strong emission transitions 5Dj (j = 1–3) to 7Fj (j = 1–3): Multicolor from single Eu3+ ion doped La2O3 nanoparticles. J Lumin 134:14–23CrossRef Loitongbam RS, Singh NS, Singh WR, Ningthoujam RS (2013) Observation of exceptional strong emission transitions 5Dj (j = 1–3) to 7Fj (j = 1–3): Multicolor from single Eu3+ ion doped La2O3 nanoparticles. J Lumin 134:14–23CrossRef
39.
go back to reference Singh LP, Srivastava SK, Mishra R, Ningthoujam RS (2014) Multifunctional hybrid nanomaterials from water dispersible CaF2:Eu3+, Mn2+ and Fe3O4 for luminescence and hyperthermia application. J Phys Chem C 118:18087–18096CrossRef Singh LP, Srivastava SK, Mishra R, Ningthoujam RS (2014) Multifunctional hybrid nanomaterials from water dispersible CaF2:Eu3+, Mn2+ and Fe3O4 for luminescence and hyperthermia application. J Phys Chem C 118:18087–18096CrossRef
40.
go back to reference Singh LP, Jadhav NV, Sharma S, Pandey BN, Srivastava SK, Ningthoujam RS (2015) Hybrid nanomaterials YVO4: Eu/Fe3O4 for optical imaging and hyperthermia in cancer cells. J Mater Chem C 3:1965–1975CrossRef Singh LP, Jadhav NV, Sharma S, Pandey BN, Srivastava SK, Ningthoujam RS (2015) Hybrid nanomaterials YVO4: Eu/Fe3O4 for optical imaging and hyperthermia in cancer cells. J Mater Chem C 3:1965–1975CrossRef
41.
go back to reference Yaiphaba N, Ningthoujam RS, Singh NS, Vatsa RK, Singh NR (2010) Probing of inversion symmetry site in Eu3+ doped GdPO4 by luminescence study: concentration and annealing effect. J Lumin 130:174CrossRef Yaiphaba N, Ningthoujam RS, Singh NS, Vatsa RK, Singh NR (2010) Probing of inversion symmetry site in Eu3+ doped GdPO4 by luminescence study: concentration and annealing effect. J Lumin 130:174CrossRef
42.
go back to reference Sahu NK, Ningthoujam RS, Bahadur D (2012) Disappearance and recovery of luminescence in GdPO4:Eu3+ nanorods: Propose to water/OH. release under near infrared and gamma irradiations. J Appl Phys 112:014306 Sahu NK, Ningthoujam RS, Bahadur D (2012) Disappearance and recovery of luminescence in GdPO4:Eu3+ nanorods: Propose to water/OH. release under near infrared and gamma irradiations. J Appl Phys 112:014306
43.
go back to reference Yaiphaba N, Ningthoujam RS, Singh NR, Vatsa RK (2010) Luminescence properties of redispersible Tb3+-Doped GdPO4 nanoparticles prepared by an ethylene glycol route. Eur J Inorg Chem 2682 Yaiphaba N, Ningthoujam RS, Singh NR, Vatsa RK (2010) Luminescence properties of redispersible Tb3+-Doped GdPO4 nanoparticles prepared by an ethylene glycol route. Eur J Inorg Chem 2682
44.
go back to reference Meetei SD, Singh SD, Singh NS, Sudarsan V, Ningthoujam RS, Tyagi M, Gadkari SC, Tewari R, Vatsa RK (2012) Crystal structure and photoluminescence correlations in white emitting nanocrystalline ZrO2:Eu3+ phosphor: effect of doping and annealing. S. D. Meetei, S. D. Singh, N. S. Singh, V. Sudarsan, R. S. Ningthoujam, M. Tyagi, S. C. Gadkari, R. Tewari and R. K. Vatsa. J. Lumin. 132:537–544 Meetei SD, Singh SD, Singh NS, Sudarsan V, Ningthoujam RS, Tyagi M, Gadkari SC, Tewari R, Vatsa RK (2012) Crystal structure and photoluminescence correlations in white emitting nanocrystalline ZrO2:Eu3+ phosphor: effect of doping and annealing. S. D. Meetei, S. D. Singh, N. S. Singh, V. Sudarsan, R. S. Ningthoujam, M. Tyagi, S. C. Gadkari, R. Tewari and R. K. Vatsa. J. Lumin. 132:537–544
45.
go back to reference Singh LR, Ningthoujam RS, Sudarsan V, Singh SD, Kulshreshtha SK (2008) Probing of surface Eu3+ ions present in ZnO:Eu nanoparticles by covering ZnO: Eu core with Y2O3 shell: Luminescence study. J Lumin 128:1544 Singh LR, Ningthoujam RS, Sudarsan V, Singh SD, Kulshreshtha SK (2008) Probing of surface Eu3+ ions present in ZnO:Eu nanoparticles by covering ZnO: Eu core with Y2O3 shell: Luminescence study. J Lumin 128:1544
46.
go back to reference Ningthoujam RS, Gajbhiye NS, Ahmed A, Umre SS, Sharma SJ (2008) Re-dispersible Li+ and Eu3+ co-doped nanocrystalline ZnO: Luminescence and EPR studies. J Nanosci Nanotech 8:3059CrossRef Ningthoujam RS, Gajbhiye NS, Ahmed A, Umre SS, Sharma SJ (2008) Re-dispersible Li+ and Eu3+ co-doped nanocrystalline ZnO: Luminescence and EPR studies. J Nanosci Nanotech 8:3059CrossRef
47.
go back to reference Gajbhiye NS, Ningthoujam RS, Ahmed A, Panda DK, Umre SS, Sharma SJ (2008) Re-dispersible Li+ and Eu3+ co-doped CdS nanoparticles: luminescence studies. Pramana J Phys 70:313CrossRef Gajbhiye NS, Ningthoujam RS, Ahmed A, Panda DK, Umre SS, Sharma SJ (2008) Re-dispersible Li+ and Eu3+ co-doped CdS nanoparticles: luminescence studies. Pramana J Phys 70:313CrossRef
48.
go back to reference Singh LR, Ningthoujam RS (2010)Critical view on energy transfer, site symmetry, improvement in luminescence of Eu3+, Dy3+ doped YVO4 by core-shell formation. J Appl Phys 107:104304 Singh LR, Ningthoujam RS (2010)Critical view on energy transfer, site symmetry, improvement in luminescence of Eu3+, Dy3+ doped YVO4 by core-shell formation. J Appl Phys 107:104304
49.
go back to reference Ningthoujam RS, Singh LR, Sudarsan V, Singh SD (2009) Energy transfer process and optimum emission studies in luminescence of core-shell nanoparticles: YVO4: Eu-YVO4 and surface state analysis. J Alloys Comp 484:782CrossRef Ningthoujam RS, Singh LR, Sudarsan V, Singh SD (2009) Energy transfer process and optimum emission studies in luminescence of core-shell nanoparticles: YVO4: Eu-YVO4 and surface state analysis. J Alloys Comp 484:782CrossRef
50.
go back to reference Ningthoujam RS, Sudarsan V, Vatsa RK, Kadam RM, Jagannath, Gupta A (2009) Photoluminescence studies on Eu doped TiO2 nanoparticles. J Alloys Comp 486:864 Ningthoujam RS, Sudarsan V, Vatsa RK, Kadam RM, Jagannath, Gupta A (2009) Photoluminescence studies on Eu doped TiO2 nanoparticles. J Alloys Comp 486:864
51.
go back to reference Ningthoujam RS, Vatsa RK, Vinu A, Ariga K, Tyagi AK (2009) Room temperature exciton formation in SnO2 nanocrystals in SiO2: Eu matrix: Quantum dot system, heat-treatment effect. J Nanosci Nanotech 9:2634CrossRef Ningthoujam RS, Vatsa RK, Vinu A, Ariga K, Tyagi AK (2009) Room temperature exciton formation in SnO2 nanocrystals in SiO2: Eu matrix: Quantum dot system, heat-treatment effect. J Nanosci Nanotech 9:2634CrossRef
52.
go back to reference Okram R, Yaiphaba N, Ningthoujam RS, Singh NR (2014) Is higher ratio of monoclinic to tetragonal in LaVO4 a better luminescence host? Redispersion and polymer film formation. Inorg Chem 53:7204–7213CrossRef Okram R, Yaiphaba N, Ningthoujam RS, Singh NR (2014) Is higher ratio of monoclinic to tetragonal in LaVO4 a better luminescence host? Redispersion and polymer film formation. Inorg Chem 53:7204–7213CrossRef
53.
go back to reference Soni AK, Joshi R, Singh BP, Naveen Kumar N, Ningthoujam RS, Near-infrared- and magnetic-field-responsive NaYF4:Er3+/Yb3+@ SiO2@ AuNP@Fe3O4 nanocomposites for hyperthermia applications induced by fluorescence resonance energy transfer and surface plasmon absorption. ACS Appl Nano Mater 2:7350−7361 Soni AK, Joshi R, Singh BP, Naveen Kumar N, Ningthoujam RS, Near-infrared- and magnetic-field-responsive NaYF4:Er3+/Yb3+@ SiO2@ AuNP@Fe3O4 nanocomposites for hyperthermia applications induced by fluorescence resonance energy transfer and surface plasmon absorption. ACS Appl Nano Mater 2:7350−7361
54.
go back to reference Soni AK, Ningthoujam RS (2018) Observation of energy transfer phenomenon via up and down conversion in Eu3+ ions for BaMoO4:Er3+-Eu3+ nanophosphor. AIP Conf Proc 1942 (1):140004 Soni AK, Ningthoujam RS (2018) Observation of energy transfer phenomenon via up and down conversion in Eu3+ ions for BaMoO4:Er3+-Eu3+ nanophosphor. AIP Conf Proc 1942 (1):140004
55.
go back to reference Yu D, Yu T, van Bunningen AJ, Zhang Q, Meijerink A, Rabouw FT (2020) Understanding and tuning blue-to-near-infrared photon cutting by the Tm3+/Yb3+ couple. Light Sci Appl 9:107CrossRef Yu D, Yu T, van Bunningen AJ, Zhang Q, Meijerink A, Rabouw FT (2020) Understanding and tuning blue-to-near-infrared photon cutting by the Tm3+/Yb3+ couple. Light Sci Appl 9:107CrossRef
56.
go back to reference van der Ende BM, Aarts L, Meijerink A (2009) Near-infrared quantum cutting for photovoltaics. Adv Mater 21:3073–3077CrossRef van der Ende BM, Aarts L, Meijerink A (2009) Near-infrared quantum cutting for photovoltaics. Adv Mater 21:3073–3077CrossRef
57.
go back to reference Huang XY, Han S, Huang W, Liu XG (2013) Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem Soc Rev 42:173–201CrossRef Huang XY, Han S, Huang W, Liu XG (2013) Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem Soc Rev 42:173–201CrossRef
58.
go back to reference Wegh RT, Donker H, Oskam KD, Meijerink A (1999) Visible quantum cutting in LiGdF4:Eu3+ through downconversion. Sci 283:663–666CrossRef Wegh RT, Donker H, Oskam KD, Meijerink A (1999) Visible quantum cutting in LiGdF4:Eu3+ through downconversion. Sci 283:663–666CrossRef
59.
go back to reference Creutz SE, Fainblat R, Kim Y, Siena, De MC, Gamelin DR (2017) A selective cation exchange strategy for the synthesis of colloidal Yb3+-doped chalcogenide nanocrystals with strong broadband visible absorption and long-lived near-infrared emission. J Am Chem Soc 139:11814–11824 Creutz SE, Fainblat R, Kim Y, Siena, De MC, Gamelin DR (2017) A selective cation exchange strategy for the synthesis of colloidal Yb3+-doped chalcogenide nanocrystals with strong broadband visible absorption and long-lived near-infrared emission. J Am Chem Soc 139:11814–11824
60.
go back to reference Timmerman D, Izeddin I, Stallinga P, Yassievich IN, Gregorkiewicz T (2008) Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications. Nat Photonics 2:105–109CrossRef Timmerman D, Izeddin I, Stallinga P, Yassievich IN, Gregorkiewicz T (2008) Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications. Nat Photonics 2:105–109CrossRef
61.
go back to reference Strumpel C, McCann M, Beaucarne G, Arkhipov V, Slaouic A, Svrcek V, del Canizo C, Tobias I (2007) Modifying the solar spectrum to enhance silicon solar cell efficiency- an overview of available materials. Solar Energy Solar Cells. 91:238–249CrossRef Strumpel C, McCann M, Beaucarne G, Arkhipov V, Slaouic A, Svrcek V, del Canizo C, Tobias I (2007) Modifying the solar spectrum to enhance silicon solar cell efficiency- an overview of available materials. Solar Energy Solar Cells. 91:238–249CrossRef
62.
go back to reference Yu DC, Ye S, Peng MY, Zhang QY, Wondraczek L (2012) Sequential three-step three-photon near-infrared quantum splitting in β-NaYF4:Tm3+. Appl Phys Lett 100:191911 Yu DC, Ye S, Peng MY, Zhang QY, Wondraczek L (2012) Sequential three-step three-photon near-infrared quantum splitting in β-NaYF4:Tm3+. Appl Phys Lett 100:191911
63.
go back to reference Chen XB, Li S, Salamo GJ, Li YL, He LZ, Yang GJ, Gao Y, Liu QL (2015) Sensitized intense near-infrared downconversion quantum cutting three-photon luminescence phenomena of the Tm3+ ion activator in Tm3+Bi3+:YNbO4 powder phosphor. Opt Express 23:A51–A61CrossRef Chen XB, Li S, Salamo GJ, Li YL, He LZ, Yang GJ, Gao Y, Liu QL (2015) Sensitized intense near-infrared downconversion quantum cutting three-photon luminescence phenomena of the Tm3+ ion activator in Tm3+Bi3+:YNbO4 powder phosphor. Opt Express 23:A51–A61CrossRef
64.
go back to reference Piper WW, DeLuca JA, Ham FS (1974) Cascade fluorescent decay in Pr3+-doped fluorides: achievement of a quantum yield greater than unity for emission of visible light. J Lumin 8:344–348CrossRef Piper WW, DeLuca JA, Ham FS (1974) Cascade fluorescent decay in Pr3+-doped fluorides: achievement of a quantum yield greater than unity for emission of visible light. J Lumin 8:344–348CrossRef
65.
go back to reference Sommerdijk JL, Bril A, de Jager AW (1974) Two photon luminescence with ultraviolet excitation of trivalent praseodymium. J Lumin 8:341–343CrossRef Sommerdijk JL, Bril A, de Jager AW (1974) Two photon luminescence with ultraviolet excitation of trivalent praseodymium. J Lumin 8:341–343CrossRef
66.
go back to reference Yu DC, Martın-Rodrıguez R, Zhang QY, Meijerink A, Rabouw FT (2015) Multi-photon quantum cutting in Gd2O2S: Tm3+ to enhance the photo-response of solar cells. Light: Sci Appl 4:e344 Yu DC, Martın-Rodrıguez R, Zhang QY, Meijerink A, Rabouw FT (2015) Multi-photon quantum cutting in Gd2O2S: Tm3+ to enhance the photo-response of solar cells. Light: Sci Appl 4:e344
67.
go back to reference Yadav RS, Verma RK, Bahadur A, Rai SB (2015) Structural characterizations and intense green upconversion emission in Yb3+, Pr3+ co-doped Y2O3 nano-phosphor. Spectrochim Acta Part A 137:357–362CrossRef Yadav RS, Verma RK, Bahadur A, Rai SB (2015) Structural characterizations and intense green upconversion emission in Yb3+, Pr3+ co-doped Y2O3 nano-phosphor. Spectrochim Acta Part A 137:357–362CrossRef
68.
go back to reference Zhang GG, Liu CM, Wang J, Kuang XJ, Su Q (2012) A dual-mode solar spectral converter CaLaGa3S6O:Ce3+, Pr3+: UV-Vis-NIR luminescence properties and solar spectral converting mechanism. J Mater Chem 22:2226–2232CrossRef Zhang GG, Liu CM, Wang J, Kuang XJ, Su Q (2012) A dual-mode solar spectral converter CaLaGa3S6O:Ce3+, Pr3+: UV-Vis-NIR luminescence properties and solar spectral converting mechanism. J Mater Chem 22:2226–2232CrossRef
69.
go back to reference Pan G, Bai X, Yang D, Chen X, Jing P, Qu S, Zhang L, Zhou D, Zhu J, Xu W, Dong B, Song H (2017) Doping lanthanide into perovskite nanocrystals: highly improved and expanded optical properties. Nano Lett 17:8005–8011CrossRef Pan G, Bai X, Yang D, Chen X, Jing P, Qu S, Zhang L, Zhou D, Zhu J, Xu W, Dong B, Song H (2017) Doping lanthanide into perovskite nanocrystals: highly improved and expanded optical properties. Nano Lett 17:8005–8011CrossRef
70.
go back to reference Milstein TJ, Kroupa DM, Gamelin DR (2018) Picosecond quantum cutting generates photoluminescence quantum yields over 100% in ytterbium-doped CsPbCl3 nanocrystals. Nano Lett 18:3792–3799CrossRef Milstein TJ, Kroupa DM, Gamelin DR (2018) Picosecond quantum cutting generates photoluminescence quantum yields over 100% in ytterbium-doped CsPbCl3 nanocrystals. Nano Lett 18:3792–3799CrossRef
71.
go back to reference Ishii A, Miyasaka T (2020) Sensitized Yb3+ luminescence in CsPbCl3 film for highly efficient near-infrared light-emitting diodes. Adv Sci 7:1903142CrossRef Ishii A, Miyasaka T (2020) Sensitized Yb3+ luminescence in CsPbCl3 film for highly efficient near-infrared light-emitting diodes. Adv Sci 7:1903142CrossRef
72.
go back to reference Zhou D, Sun R, Xu W, Ding N, Li D, Chen X, Pan G, Bai X, Song H (2019) Impact of host composition, codoping, or tridoping on quantum-cutting emission of ytterbium in halide perovskite quantum dots and solar cell applications. Nano Lett 19:6904–6913CrossRef Zhou D, Sun R, Xu W, Ding N, Li D, Chen X, Pan G, Bai X, Song H (2019) Impact of host composition, codoping, or tridoping on quantum-cutting emission of ytterbium in halide perovskite quantum dots and solar cell applications. Nano Lett 19:6904–6913CrossRef
73.
go back to reference Kroupa DM, Roh JY, Milstein TJ, Creutz SE, Gamelin DR (2018) Quantum-cutting ytterbium-doped CsPb(Cl1-xBrx)3 perovskite thin films with photoluminescence quantum yields over 190%. ACS Energy Lett 3:2390–2395CrossRef Kroupa DM, Roh JY, Milstein TJ, Creutz SE, Gamelin DR (2018) Quantum-cutting ytterbium-doped CsPb(Cl1-xBrx)3 perovskite thin films with photoluminescence quantum yields over 190%. ACS Energy Lett 3:2390–2395CrossRef
74.
go back to reference Cohen TA, Milstein TJ, Kroupa DM, MacKenzie JD, Luscombe C, Gamelin DR (2019) Quantum-cutting Yb3+-doped perovskite nanocrystals for monolithic bilayer luminescent solar concentrators. J Mat Chem A 7:9279–9288CrossRef Cohen TA, Milstein TJ, Kroupa DM, MacKenzie JD, Luscombe C, Gamelin DR (2019) Quantum-cutting Yb3+-doped perovskite nanocrystals for monolithic bilayer luminescent solar concentrators. J Mat Chem A 7:9279–9288CrossRef
75.
go back to reference Crane MJ, Kroupa DM, Roh JYD, Anderson RT, Smith MD, Gamelin DR (2019) Single-source vapor deposition of quantum-cutting Yb3+:CsPb(Cl1-XBrx)3 and other complex metal-halide perovskites. ACS Appl Energy Mater 2:4560–4565CrossRef Crane MJ, Kroupa DM, Roh JYD, Anderson RT, Smith MD, Gamelin DR (2019) Single-source vapor deposition of quantum-cutting Yb3+:CsPb(Cl1-XBrx)3 and other complex metal-halide perovskites. ACS Appl Energy Mater 2:4560–4565CrossRef
76.
go back to reference Crane MJ, Kroupa DM, Gamelin DR (2019) Detailed-balance analysis of Yb3+:CsPb(Cl1-xBrx)3 quantum-cutting layers for high-efficiency photovoltaics under real-world conditions. Energy Environ Sci 12:2486–2495CrossRef Crane MJ, Kroupa DM, Gamelin DR (2019) Detailed-balance analysis of Yb3+:CsPb(Cl1-xBrx)3 quantum-cutting layers for high-efficiency photovoltaics under real-world conditions. Energy Environ Sci 12:2486–2495CrossRef
77.
go back to reference Milstein TJ, Kluherz TK, Kroupa DM, Erickson CS, De Yoreo JJ, Gamelin DR (2019) Anion exchange and the quantum-cutting energy threshold in ytterbium-doped CsPb(Cl1-xBrx)3 perovskite nanocrystals. Nano Lett 19:1931–1937CrossRef Milstein TJ, Kluherz TK, Kroupa DM, Erickson CS, De Yoreo JJ, Gamelin DR (2019) Anion exchange and the quantum-cutting energy threshold in ytterbium-doped CsPb(Cl1-xBrx)3 perovskite nanocrystals. Nano Lett 19:1931–1937CrossRef
78.
go back to reference Luo X, Ding T, Liu X, Liu Y, Wu K (2019) Quantum-cutting luminescent solar concentrators using ytterbium-doped perovskite nanocrystals. Nano Lett 19:338–341CrossRef Luo X, Ding T, Liu X, Liu Y, Wu K (2019) Quantum-cutting luminescent solar concentrators using ytterbium-doped perovskite nanocrystals. Nano Lett 19:338–341CrossRef
79.
go back to reference Zeng M, Artizzu F, Liu J, Singh S, Locardi F, Mara D, Hens Z, Deun RV (2020) Boosting the Er3+ 1.5 μm luminescence in CsPbCl3 perovskite nanocrystals for photonic devices operating at telecommunication wavelengths. ACS Appl Nano Mater 3:4699–4707 Zeng M, Artizzu F, Liu J, Singh S, Locardi F, Mara D, Hens Z, Deun RV (2020) Boosting the Er3+ 1.5 μm luminescence in CsPbCl3 perovskite nanocrystals for photonic devices operating at telecommunication wavelengths. ACS Appl Nano Mater 3:4699–4707
80.
go back to reference Yeon J, Roh D, Smith MD, Crane MJ, Biner D, Milstein TJ, Krämer KW, Gamelin DR (2020) Yb3+ speciation and energy-transfer dynamics in quantum-cutting Yb3+-doped CsPbCl3 perovskite nanocrystals and single crystals. Phys Rev Mater 4:105405 Yeon J, Roh D, Smith MD, Crane MJ, Biner D, Milstein TJ, Krämer KW, Gamelin DR (2020) Yb3+ speciation and energy-transfer dynamics in quantum-cutting Yb3+-doped CsPbCl3 perovskite nanocrystals and single crystals. Phys Rev Mater 4:105405
81.
go back to reference Li YQ, de With G, Hintzen HT (2005) Luminescence of a new class of UV-blue-emitting phosphors MSi2O2−δN2+2/3δ:Ce3+ (M = Ca, Sr, Ba). J Mater Chem 15:4492–4496CrossRef Li YQ, de With G, Hintzen HT (2005) Luminescence of a new class of UV-blue-emitting phosphors MSi2O2−δN2+2/3δ:Ce3+ (M = Ca, Sr, Ba). J Mater Chem 15:4492–4496CrossRef
82.
go back to reference Li YQ, Delsing ACA, De With G, Hintzen HT (2005) Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2-δN2+2/3δ (M = Ca, Sr, Ba): a promising class of novel LED conversion phosphors. Chem Mater 17:3242–3248CrossRef Li YQ, Delsing ACA, De With G, Hintzen HT (2005) Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2-δN2+2/3δ (M = Ca, Sr, Ba): a promising class of novel LED conversion phosphors. Chem Mater 17:3242–3248CrossRef
83.
go back to reference Hoppe HA, Lutz H, Morys P, Schnick W, Seilmeier A (2000) Luminescence in Eu2+-doped Ba2Si5N8: fluorescence, thermoluminescence, and upconversion. J Phys Chem Solids 61:2001–2006CrossRef Hoppe HA, Lutz H, Morys P, Schnick W, Seilmeier A (2000) Luminescence in Eu2+-doped Ba2Si5N8: fluorescence, thermoluminescence, and upconversion. J Phys Chem Solids 61:2001–2006CrossRef
84.
go back to reference Wei XT, Wen J, Li S, Huang S, Cheng J, Chen YH, Duan CK, Yin M (2014) Red-shift of vanadate band-gap by cation substitution for application in phosphor-converted white light-emitting diodes. Appl Phys Lett 104:181904 Wei XT, Wen J, Li S, Huang S, Cheng J, Chen YH, Duan CK, Yin M (2014) Red-shift of vanadate band-gap by cation substitution for application in phosphor-converted white light-emitting diodes. Appl Phys Lett 104:181904
85.
go back to reference Yadav RV, Yadav RS, Bahadur A, Rai SB (2016) Down shifting and quantum cutting from Eu3+, Yb3+ co-doped Ca12Al14O33 phosphor: a dual mode emitting material. RSC Adv 6:9049–9056CrossRef Yadav RV, Yadav RS, Bahadur A, Rai SB (2016) Down shifting and quantum cutting from Eu3+, Yb3+ co-doped Ca12Al14O33 phosphor: a dual mode emitting material. RSC Adv 6:9049–9056CrossRef
86.
go back to reference Shukla R, Ningthoujam RS, Tyagi AK, Vatsa RK (2010) Luminescence properties of Dy3+ doped Gd2O3 nanoparticles prepared by glycine route: annealing effect. Int J Nanotechnol 7:843CrossRef Shukla R, Ningthoujam RS, Tyagi AK, Vatsa RK (2010) Luminescence properties of Dy3+ doped Gd2O3 nanoparticles prepared by glycine route: annealing effect. Int J Nanotechnol 7:843CrossRef
87.
go back to reference Ningthoujam RS, Kulshreshtha SK (2009) Nanocrystalline SnO2 from thermal decomposition of tin citrate crystal: luminescence and Raman studies. Mater Res Bull 44:57CrossRef Ningthoujam RS, Kulshreshtha SK (2009) Nanocrystalline SnO2 from thermal decomposition of tin citrate crystal: luminescence and Raman studies. Mater Res Bull 44:57CrossRef
88.
go back to reference Ningthoujam RS, Shukla R, Vatsa RK, Duppel V, Kienle L, Tyagi AK (2009) Gd2O3:Eu3+ particles prepared by glycine-nitrate combustion: Phase, concentration, annealing, and luminescence studies. J Appl Phys 105:084304 Ningthoujam RS, Shukla R, Vatsa RK, Duppel V, Kienle L, Tyagi AK (2009) Gd2O3:Eu3+ particles prepared by glycine-nitrate combustion: Phase, concentration, annealing, and luminescence studies. J Appl Phys 105:084304
89.
go back to reference Ningthoujam RS, Mishra R, Das D, Dey GK, Kulshreshtha SK (2008) Excess enthalpy and luminescence studies of SnO2 nanoparticles. J Nanosci Nanotech 8:4176CrossRef Ningthoujam RS, Mishra R, Das D, Dey GK, Kulshreshtha SK (2008) Excess enthalpy and luminescence studies of SnO2 nanoparticles. J Nanosci Nanotech 8:4176CrossRef
90.
go back to reference Yadav RV, Singh SK, Rai SB (2015) Effect of the Li+ ion on the multimodal emission of a lanthanide doped phosphor. RSC Adv 5:26321–26327CrossRef Yadav RV, Singh SK, Rai SB (2015) Effect of the Li+ ion on the multimodal emission of a lanthanide doped phosphor. RSC Adv 5:26321–26327CrossRef
91.
go back to reference Zhang X, Liu Y, Zhang M, Yang J, Zhu H, Yan D, Liu CG, Xu CS, Wang XJ (2018) Efficient deep ultraviolet to near infrared quantum cutting in Pr3+/Yb3+ codoped CaGdAlO4 phosphors. J Alloys Compd 740:595–602CrossRef Zhang X, Liu Y, Zhang M, Yang J, Zhu H, Yan D, Liu CG, Xu CS, Wang XJ (2018) Efficient deep ultraviolet to near infrared quantum cutting in Pr3+/Yb3+ codoped CaGdAlO4 phosphors. J Alloys Compd 740:595–602CrossRef
92.
go back to reference Rakov N, Maciel GS (2011) Near-infrared quantum cutting in Ce3+, Er3+, and Yb3+ doped yttrium silicate powders prepared by combustion synthesis. J Appl Phys 110:083519 Rakov N, Maciel GS (2011) Near-infrared quantum cutting in Ce3+, Er3+, and Yb3+ doped yttrium silicate powders prepared by combustion synthesis. J Appl Phys 110:083519
93.
go back to reference Fan B, Chlique C, Merdrignac-Conanec O, Zhang X, Fan X (2012) Near-infrared quantum cutting material Er3+/Yb3+ doped La2O2S with an external quantum yield higher than 100%. J Phys Chem C 116:11652–11657CrossRef Fan B, Chlique C, Merdrignac-Conanec O, Zhang X, Fan X (2012) Near-infrared quantum cutting material Er3+/Yb3+ doped La2O2S with an external quantum yield higher than 100%. J Phys Chem C 116:11652–11657CrossRef
94.
go back to reference Huang XY, Yu DC, Zhang QY (2009) Enhanced near-infrared quantum cutting in GdBO3:Tb3+, Yb3+ phosphors by Ce3+ cooping. J Appl Phys 106:113521 Huang XY, Yu DC, Zhang QY (2009) Enhanced near-infrared quantum cutting in GdBO3:Tb3+, Yb3+ phosphors by Ce3+ cooping. J Appl Phys 106:113521
95.
go back to reference Yadav RS, Dwivedi Y, Rai SB (2012) Structural and optical characterization of nano-sized La(OH)3:Sm3+ phosphor. Spectrochim Acta Part A 96:148–153 CrossRef Yadav RS, Dwivedi Y, Rai SB (2012) Structural and optical characterization of nano-sized La(OH)3:Sm3+ phosphor. Spectrochim Acta Part A 96:148–153 CrossRef
96.
go back to reference Yadav RS, Verma RK, Rai SB (2013) Intense white light emission in Tm3+/Er3+/Yb3+ co-doped Y2O3-ZnO nano-composite. J Phys D Appl Phys 46:275101 Yadav RS, Verma RK, Rai SB (2013) Intense white light emission in Tm3+/Er3+/Yb3+ co-doped Y2O3-ZnO nano-composite. J Phys D Appl Phys 46:275101
97.
go back to reference Yadav RS, Dwivedi Y, Rai SB (2014) Structural and optical properties of Eu3+, Sm3+ co-doped La(OH)3 nano-crystalline red emitting phosphor. Spectrochim Acta Part A 132:599–603CrossRef Yadav RS, Dwivedi Y, Rai SB (2014) Structural and optical properties of Eu3+, Sm3+ co-doped La(OH)3 nano-crystalline red emitting phosphor. Spectrochim Acta Part A 132:599–603CrossRef
98.
go back to reference Yadav RS, Dwivedi Y, Rai SB (2015) Structural and optical properties of Eu3+ doped red emitting BiVO4 nano-phosphor. Appl Mech Mater 752–753:272–276CrossRef Yadav RS, Dwivedi Y, Rai SB (2015) Structural and optical properties of Eu3+ doped red emitting BiVO4 nano-phosphor. Appl Mech Mater 752–753:272–276CrossRef
99.
go back to reference Yadav RS, Kumar D, Singh AK, Rai E, Rai SB (2018) Effect of Bi3+ ion on upconversion-based induced optical heating and temperature sensing characteristics in the Er3+/Yb3+ co-doped La2O3 nano-phosphor. RSC Adv 8:34699–34711CrossRef Yadav RS, Kumar D, Singh AK, Rai E, Rai SB (2018) Effect of Bi3+ ion on upconversion-based induced optical heating and temperature sensing characteristics in the Er3+/Yb3+ co-doped La2O3 nano-phosphor. RSC Adv 8:34699–34711CrossRef
100.
go back to reference Varma A, Mukasyan AS, Rogachev AS, Manukyan KV (2016) Solution combustion synthesis of nanoscale materials. Chem Rev 116:14493–14586CrossRef Varma A, Mukasyan AS, Rogachev AS, Manukyan KV (2016) Solution combustion synthesis of nanoscale materials. Chem Rev 116:14493–14586CrossRef
101.
go back to reference Papadas IT, Ioakeimidis A, Armatas GS, Choulis SA (2018) Low-temperature combustion pynthesis of a spinel NiCo2O4 hole transport layer for perovskite photovoltaics. Adv Sci 5:1701029CrossRef Papadas IT, Ioakeimidis A, Armatas GS, Choulis SA (2018) Low-temperature combustion pynthesis of a spinel NiCo2O4 hole transport layer for perovskite photovoltaics. Adv Sci 5:1701029CrossRef
102.
go back to reference Jayasimhadri M, Ratnam BV, Jang K, Lee HS, Chen B, Yi S-S, Jeong J-H, Moorthy LR (2011) Combustion synthesis and luminescent properties of nano and submicrometer-size Gd2O3:Dy3+ phosphors for white LEDs. Int J Appl Ceram Technol 8:709–717CrossRef Jayasimhadri M, Ratnam BV, Jang K, Lee HS, Chen B, Yi S-S, Jeong J-H, Moorthy LR (2011) Combustion synthesis and luminescent properties of nano and submicrometer-size Gd2O3:Dy3+ phosphors for white LEDs. Int J Appl Ceram Technol 8:709–717CrossRef
103.
go back to reference Yadav RS, Rai SB (2019) Effect of annealing and excitation wavelength on the downconversion photoluminescence of Sm3+ doped Y2O3 nano-crystalline phosphor. Opt Laser Technol 111:169–175CrossRef Yadav RS, Rai SB (2019) Effect of annealing and excitation wavelength on the downconversion photoluminescence of Sm3+ doped Y2O3 nano-crystalline phosphor. Opt Laser Technol 111:169–175CrossRef
104.
go back to reference Sikka S (2005) Handbook of sol-gel science and technology: Processing, characterization and applications. Kluwar Academic Publishers Sikka S (2005) Handbook of sol-gel science and technology: Processing, characterization and applications. Kluwar Academic Publishers
105.
go back to reference Yang Y, Liu L, Cai S, Jiao F, Mi C, Su XY, Zhang J, Yu F, Li XD, Li Z (2014) Up-conversion luminescence and near-infrared quantum cutting in Dy3+, Yb3+ co-doped BaGd2ZnO5 nanocrystal. J Lumin 146:284–287CrossRef Yang Y, Liu L, Cai S, Jiao F, Mi C, Su XY, Zhang J, Yu F, Li XD, Li Z (2014) Up-conversion luminescence and near-infrared quantum cutting in Dy3+, Yb3+ co-doped BaGd2ZnO5 nanocrystal. J Lumin 146:284–287CrossRef
106.
go back to reference Wei X-T, Zhao J-B, Chen Y-H, Yin M, Li Y (2010) Quantum cutting downconversion by cooperative energy transfer from Bi3+ to Yb3+ in Y2O3 phosphor. Chin Phys B 19:077804 Wei X-T, Zhao J-B, Chen Y-H, Yin M, Li Y (2010) Quantum cutting downconversion by cooperative energy transfer from Bi3+ to Yb3+ in Y2O3 phosphor. Chin Phys B 19:077804
107.
go back to reference Gao X, Li T, He J, Ye K, Song X, Wang N, Su JG, Hui CL, Zhang X (2017) Synthesis of Yb3+, Ho3+ and Tm3+ co-doped β-NaYF4 nanoparticles by sol-gel method and the multi-color upconversion luminescence properties. J Mater Sci Mater Electron 28:11644–11653CrossRef Gao X, Li T, He J, Ye K, Song X, Wang N, Su JG, Hui CL, Zhang X (2017) Synthesis of Yb3+, Ho3+ and Tm3+ co-doped β-NaYF4 nanoparticles by sol-gel method and the multi-color upconversion luminescence properties. J Mater Sci Mater Electron 28:11644–11653CrossRef
108.
go back to reference Mirzaei A, Janghorban K, Hashemi B, Bonyani M, Leonardi SG, Neri G (2016) Highly stable and selective ethanol sensor based on α-Fe2O3 nanoparticles prepared by pechini sol-gel method. Ceram Int 42:6136–6144CrossRef Mirzaei A, Janghorban K, Hashemi B, Bonyani M, Leonardi SG, Neri G (2016) Highly stable and selective ethanol sensor based on α-Fe2O3 nanoparticles prepared by pechini sol-gel method. Ceram Int 42:6136–6144CrossRef
109.
go back to reference Islam S, Bidin N, Riaz S, Naseem S, Marsin FM (2016) Correlation between structural and optical properties of surfactant assisted sol-gel based mesoporous SiO2-TiO2 hybrid nanoparticles for pH sensing/optochemical sensor. Sens Actuators B Chem 225:66–73CrossRef Islam S, Bidin N, Riaz S, Naseem S, Marsin FM (2016) Correlation between structural and optical properties of surfactant assisted sol-gel based mesoporous SiO2-TiO2 hybrid nanoparticles for pH sensing/optochemical sensor. Sens Actuators B Chem 225:66–73CrossRef
110.
go back to reference Ciciliati MA, Silva MF, Fernandes DM, de Melo MAC, Hechenleitner AAW, Pineda EAG (2015) Fe-doped ZnO nanoparticles: synthesis by a modified sol-gel method and characterization. Mater Lett 159:84–86CrossRef Ciciliati MA, Silva MF, Fernandes DM, de Melo MAC, Hechenleitner AAW, Pineda EAG (2015) Fe-doped ZnO nanoparticles: synthesis by a modified sol-gel method and characterization. Mater Lett 159:84–86CrossRef
111.
go back to reference Wang X, Liu C-S, Yu T, Yan XH (2014) Controlled synthesis, photoluminescence, and the quantum cutting mechanism of Eu3+ doped NaYbF4 nanotubes. Phys Chem Chem Phys 16:13440–13446CrossRef Wang X, Liu C-S, Yu T, Yan XH (2014) Controlled synthesis, photoluminescence, and the quantum cutting mechanism of Eu3+ doped NaYbF4 nanotubes. Phys Chem Chem Phys 16:13440–13446CrossRef
112.
go back to reference Kadam AR, Yadav RS, Mishra GC, Dhoble SJ (2020) Effect of singly, doubly and triply ionized ions on downconversion photoluminescence in Eu3+ doped Na2Sr2Al2PO4Cl9 phosphor: a comparative study. Ceram Int 46:3264–3274CrossRef Kadam AR, Yadav RS, Mishra GC, Dhoble SJ (2020) Effect of singly, doubly and triply ionized ions on downconversion photoluminescence in Eu3+ doped Na2Sr2Al2PO4Cl9 phosphor: a comparative study. Ceram Int 46:3264–3274CrossRef
113.
go back to reference Parauha YR, Yadav RS, Dhoble SJ (2020) Enhanced photoluminescence via doping of phosphate, sulphate and vanadate ions in Eu3+ doped La2(MoO4)3 downconversion phosphors for white LEDs. Opt Laser Technol 124:105974 Parauha YR, Yadav RS, Dhoble SJ (2020) Enhanced photoluminescence via doping of phosphate, sulphate and vanadate ions in Eu3+ doped La2(MoO4)3 downconversion phosphors for white LEDs. Opt Laser Technol 124:105974
114.
go back to reference Yadav RS, Monika, Rai SB (2020) Upconversion photoluminescence in the rare earth doped Y2O3 phosphor materials, vol. 12. CRC Press, Taylor & Francis Group, UK Yadav RS, Monika, Rai SB (2020) Upconversion photoluminescence in the rare earth doped Y2O3 phosphor materials, vol. 12. CRC Press, Taylor & Francis Group, UK
115.
go back to reference Yu DC, Huang XY, Ye S, Peng MY, Zhang QY, Wondraczek L (2011) Three-photon near-infrared quantum splitting in β-NaYF4:Ho3+. Appl Phys Lett 99:161904 Yu DC, Huang XY, Ye S, Peng MY, Zhang QY, Wondraczek L (2011) Three-photon near-infrared quantum splitting in β-NaYF4:Ho3+. Appl Phys Lett 99:161904
116.
go back to reference Dubey A, Soni AK, Kumari A, Dey R, Rai VK (2017) Enhanced green upconversion emission in NaYF4:Er3+/Yb3+/Li+ phosphors for optical thermometry. J Alloys Compds 693:194–200CrossRef Dubey A, Soni AK, Kumari A, Dey R, Rai VK (2017) Enhanced green upconversion emission in NaYF4:Er3+/Yb3+/Li+ phosphors for optical thermometry. J Alloys Compds 693:194–200CrossRef
117.
go back to reference Li X, Zhu J, Man Z, Ao Y, Chen H (2014) Investigation on the structure and upconversion fluorescence of Yb3+/Ho3+ co-doped fluorapatite crystals for potential biomedical applications. Sci Rep 4:446 Li X, Zhu J, Man Z, Ao Y, Chen H (2014) Investigation on the structure and upconversion fluorescence of Yb3+/Ho3+ co-doped fluorapatite crystals for potential biomedical applications. Sci Rep 4:446
118.
go back to reference Guo L, Wang Y, Zhang J, Wang Y, Dong P (2012) Near-infrared quantum cutting in Ho3+, Yb3+-codoped BaGdF5 nanoparticles via first and second-order energy transfers. Nanoscale Res Lett 7:636CrossRef Guo L, Wang Y, Zhang J, Wang Y, Dong P (2012) Near-infrared quantum cutting in Ho3+, Yb3+-codoped BaGdF5 nanoparticles via first and second-order energy transfers. Nanoscale Res Lett 7:636CrossRef
119.
go back to reference Zhang L, Zhao S, Liang Z, Zhang J, Zhu W, Liu P, Sun H (2017) The colour tuning of upconversion emission from green to red in NaScF4:Yb3+/Er3+ nanocrystals by adjusting the reaction time. J Alloys Compd 699:1–6CrossRef Zhang L, Zhao S, Liang Z, Zhang J, Zhu W, Liu P, Sun H (2017) The colour tuning of upconversion emission from green to red in NaScF4:Yb3+/Er3+ nanocrystals by adjusting the reaction time. J Alloys Compd 699:1–6CrossRef
120.
go back to reference Ningthoujam RS, Gautam A, Padma N (2017) Oleylamine as reducing agent in syntheses of magic-size clusters and monodisperse quantum dots: optical and photoconductivity studies. Phys Chem Chem Phys 19:2294–2303CrossRef Ningthoujam RS, Gautam A, Padma N (2017) Oleylamine as reducing agent in syntheses of magic-size clusters and monodisperse quantum dots: optical and photoconductivity studies. Phys Chem Chem Phys 19:2294–2303CrossRef
121.
go back to reference Tong J, Wu J, Shen W, Zhang Y, Liu Y, Zhang T, Nie S, Deng Z (2019) Direct hot-injection synthesis of lead halide perovskite nanocubes in acrylic monomers for ultrastable and bright nanocrystal-polymer composite films. ACS Appl Mater Interfaces 11:9317–9325CrossRef Tong J, Wu J, Shen W, Zhang Y, Liu Y, Zhang T, Nie S, Deng Z (2019) Direct hot-injection synthesis of lead halide perovskite nanocubes in acrylic monomers for ultrastable and bright nanocrystal-polymer composite films. ACS Appl Mater Interfaces 11:9317–9325CrossRef
122.
go back to reference Imran M, Caligiuri V, Wang M, Goldoni L, Prato M, Krahne R, De Trizio L, Manna L (2018) Benzoyl halides as alternative precursors for the colloidal synthesis of lead-based halide perovskite nanocrystals. J Am Chem Soc 140:2656–2664CrossRef Imran M, Caligiuri V, Wang M, Goldoni L, Prato M, Krahne R, De Trizio L, Manna L (2018) Benzoyl halides as alternative precursors for the colloidal synthesis of lead-based halide perovskite nanocrystals. J Am Chem Soc 140:2656–2664CrossRef
123.
go back to reference Creutz SE, Crites EN, De Siena MC, Gamelin DR (2018) Anion exchange in cesium lead halide perovskite nanocrystals and thin films using trimethylsilyl halide reagents. Chem Mater 30:4887–4891CrossRef Creutz SE, Crites EN, De Siena MC, Gamelin DR (2018) Anion exchange in cesium lead halide perovskite nanocrystals and thin films using trimethylsilyl halide reagents. Chem Mater 30:4887–4891CrossRef
124.
go back to reference Zhou D, Liu D, Pan G, Chen X, Li D, Xu W, Bai X, Song H (2017) Cerium and ytterbium codoped halide perovskite quantum dots: a novel and efficient downconverter for improving the performance of silicon solar cells. Adv Mater 29:1704149CrossRef Zhou D, Liu D, Pan G, Chen X, Li D, Xu W, Bai X, Song H (2017) Cerium and ytterbium codoped halide perovskite quantum dots: a novel and efficient downconverter for improving the performance of silicon solar cells. Adv Mater 29:1704149CrossRef
125.
go back to reference Cai T, Wang J, Li W, Hills-Kimball K, Yang H, Nagaoka Y, Yuan Y, Zia R, Chen O (2020) Mn2+/Yb3+ codoped CsPbCl3 perovskite nanocrystals with triple-wavelength emission for luminescent solar concentrators. Adv Sci 7:2001317CrossRef Cai T, Wang J, Li W, Hills-Kimball K, Yang H, Nagaoka Y, Yuan Y, Zia R, Chen O (2020) Mn2+/Yb3+ codoped CsPbCl3 perovskite nanocrystals with triple-wavelength emission for luminescent solar concentrators. Adv Sci 7:2001317CrossRef
126.
go back to reference Parobek D, Dong Y, Qiao T, Son DH (2018) Direct hot-injection synthesis of Mn-doped CsPbBr 3 nanocrystals. Chem Mater 30:2939–2944CrossRef Parobek D, Dong Y, Qiao T, Son DH (2018) Direct hot-injection synthesis of Mn-doped CsPbBr 3 nanocrystals. Chem Mater 30:2939–2944CrossRef
127.
go back to reference Sudhakar N, Ningthoujam RS, Gajbhiye NS, Rajeev KP (2007) Structural, magnetic and electron transport studies on nanocrystalline layered manganite La1.2Ba1.8Mn2O7 system. J Nanosci Nanotech 7:965 Sudhakar N, Ningthoujam RS, Gajbhiye NS, Rajeev KP (2007) Structural, magnetic and electron transport studies on nanocrystalline layered manganite La1.2Ba1.8Mn2O7 system. J Nanosci Nanotech 7:965
128.
go back to reference Mishra R, Ninghthoujam RS (2017) High temperature ceramics. In: Banerjee S, Tyagi AK (eds) 2017 in Materials under extreme conditions: recent trends and future prospects. Elsevier Inc., USA, Chapter 11, pp 377–410 Mishra R, Ninghthoujam RS (2017) High temperature ceramics. In: Banerjee S, Tyagi AK (eds) 2017 in Materials under extreme conditions: recent trends and future prospects. Elsevier Inc., USA, Chapter 11, pp 377–410
129.
go back to reference Zou Z, Feng L, Cao C, Zhang J, Wang Y (2016) Near-infrared quantum cutting long persistent luminescence. Sci Rep 6:24884CrossRef Zou Z, Feng L, Cao C, Zhang J, Wang Y (2016) Near-infrared quantum cutting long persistent luminescence. Sci Rep 6:24884CrossRef
130.
go back to reference Dong SL, Lin HH, Yu T, Zhang QY (2014) Near-infrared quantum-cutting luminescence and energy transfer properties of Ca3(PO4)2: Tm3+,Ce3+ phosphors. J Appl Phys 116:023517 Dong SL, Lin HH, Yu T, Zhang QY (2014) Near-infrared quantum-cutting luminescence and energy transfer properties of Ca3(PO4)2: Tm3+,Ce3+ phosphors. J Appl Phys 116:023517
131.
go back to reference Sun J, Sun Y, Cao C, Xia Z, Du H (2013) Near-infrared luminescence and quantum cutting mechanism in CaWO4:Nd3+, Yb3+. Appl Phys B 111:367–371CrossRef Sun J, Sun Y, Cao C, Xia Z, Du H (2013) Near-infrared luminescence and quantum cutting mechanism in CaWO4:Nd3+, Yb3+. Appl Phys B 111:367–371CrossRef
132.
go back to reference Yadav RV, Yadav RS, Bahadur A, Singh AK, Rai SB (2016) Enhanced quantum cutting emission through Li+ doping from Bi3+, Yb3+ co-doped gadolinium tungstate phosphor. Inorg Chem 55:10928–10935CrossRef Yadav RV, Yadav RS, Bahadur A, Singh AK, Rai SB (2016) Enhanced quantum cutting emission through Li+ doping from Bi3+, Yb3+ co-doped gadolinium tungstate phosphor. Inorg Chem 55:10928–10935CrossRef
133.
go back to reference Yadav RS, Dhoble SJ, Rai SB (2018) Improved photon upconversion photoluminescence and intrinsic optical bistability from a rare earth co-doped lanthanum oxide phosphor via Bi3+ doping. New J Chem 42:7272–7282CrossRef Yadav RS, Dhoble SJ, Rai SB (2018) Improved photon upconversion photoluminescence and intrinsic optical bistability from a rare earth co-doped lanthanum oxide phosphor via Bi3+ doping. New J Chem 42:7272–7282CrossRef
134.
go back to reference Yadav RS, Dhoble SJ, Rai SB (2018) Enhanced photoluminescence in Tm3+, Yb3+, Mg2+ tri-doped ZnWO4 phosphor: Three photon upconversion, laser induced optical heating and temperature sensing. Sens Actua B Chem 273:1425–1434CrossRef Yadav RS, Dhoble SJ, Rai SB (2018) Enhanced photoluminescence in Tm3+, Yb3+, Mg2+ tri-doped ZnWO4 phosphor: Three photon upconversion, laser induced optical heating and temperature sensing. Sens Actua B Chem 273:1425–1434CrossRef
135.
go back to reference Kim D, Park SW, Park SH, Choi BC, Kim JH, Jeong JH (2018) Wide range yellow emission Sr8MgLa(PO4)7: Eu2+, Mn2+, Tb3+ phosphors for near ultraviolet white LEDs. Mater Res Bull 107:280–285CrossRef Kim D, Park SW, Park SH, Choi BC, Kim JH, Jeong JH (2018) Wide range yellow emission Sr8MgLa(PO4)7: Eu2+, Mn2+, Tb3+ phosphors for near ultraviolet white LEDs. Mater Res Bull 107:280–285CrossRef
136.
go back to reference Li L, Chang W, He J, Yan Y, Cui M, Jiang S, Xiang G, Zhou X (2018) Molybdenum substitution simultaneously induced band structure modulation and luminescence enhancement in LiLaMg(W, Mo)O6:Eu3+ red-emitting phosphor for near ultraviolet excited white light diodes. J Alloys Compd 763:278–288CrossRef Li L, Chang W, He J, Yan Y, Cui M, Jiang S, Xiang G, Zhou X (2018) Molybdenum substitution simultaneously induced band structure modulation and luminescence enhancement in LiLaMg(W, Mo)O6:Eu3+ red-emitting phosphor for near ultraviolet excited white light diodes. J Alloys Compd 763:278–288CrossRef
137.
go back to reference Vijayakumar R, Devakumar B, Annadurai G, Guo H, Huang XY (2018) Novel high color purity and thermally stable Eu3+ ions activated Ba2Gd5B5O17 red emitting phosphor for near-UV based WLEDs. Opt Mater 84:312–317CrossRef Vijayakumar R, Devakumar B, Annadurai G, Guo H, Huang XY (2018) Novel high color purity and thermally stable Eu3+ ions activated Ba2Gd5B5O17 red emitting phosphor for near-UV based WLEDs. Opt Mater 84:312–317CrossRef
138.
go back to reference Tadge P, Yadav RS, Vishwakarma PK, Rai SB, Chen TM, Sapra S, Ray S (2020) Enhanced photovoltaic performance of Y2O3:Ho3+/Yb3+ upconversion nanophosphor based DSSC and investigation of color tunability in Ho3+/Tm3+/Yb3+ tridoped Y2O3. J Alloys Compds 821:153230 Tadge P, Yadav RS, Vishwakarma PK, Rai SB, Chen TM, Sapra S, Ray S (2020) Enhanced photovoltaic performance of Y2O3:Ho3+/Yb3+ upconversion nanophosphor based DSSC and investigation of color tunability in Ho3+/Tm3+/Yb3+ tridoped Y2O3. J Alloys Compds 821:153230
139.
go back to reference Liu X, Ye S, Qiao Y, Dong G, Zhu B, Chen D, Lakshminarayana G, Qiu J (2009) Cooperative downconversion and near-infrared luminescence of Tb3+-Yb3+ codoped lanthanum borogermanate glasses. Appl Phys B 96:51–55CrossRef Liu X, Ye S, Qiao Y, Dong G, Zhu B, Chen D, Lakshminarayana G, Qiu J (2009) Cooperative downconversion and near-infrared luminescence of Tb3+-Yb3+ codoped lanthanum borogermanate glasses. Appl Phys B 96:51–55CrossRef
140.
go back to reference Zhou X, Wang Y, Zhao X, Li L, Wang ZQ, Li Q (2014) Near-infrared quantum cutting via downconversion energy transfers in Ho3+/Yb3+ codoped tellurite glass ceramics. J Am Ceram Soc 97:179–184CrossRef Zhou X, Wang Y, Zhao X, Li L, Wang ZQ, Li Q (2014) Near-infrared quantum cutting via downconversion energy transfers in Ho3+/Yb3+ codoped tellurite glass ceramics. J Am Ceram Soc 97:179–184CrossRef
141.
go back to reference Zhang J, Wang Y, Chen G, Huang Y (2014) Investigation on visible quantum cutting of Tb3+ in oxide hosts. J Appl Phys 115:093108 Zhang J, Wang Y, Chen G, Huang Y (2014) Investigation on visible quantum cutting of Tb3+ in oxide hosts. J Appl Phys 115:093108
142.
go back to reference Huang XY, Zhang QY (2010) Near-infrared quantum cutting via cooperative energy transfer in Gd2O3: Bi3+, Yb3+ phosphors. J Appl Phys 107:063505 Huang XY, Zhang QY (2010) Near-infrared quantum cutting via cooperative energy transfer in Gd2O3: Bi3+, Yb3+ phosphors. J Appl Phys 107:063505
143.
go back to reference Mir WJ, Sheikh T, Arfin H, Xia Z, Nag A (2020) Lanthanide doping in metal halide perovskite nanocrystals: spectral shifting, quantum cutting and optoelectronic applications. NPG Asia Mater 12:9CrossRef Mir WJ, Sheikh T, Arfin H, Xia Z, Nag A (2020) Lanthanide doping in metal halide perovskite nanocrystals: spectral shifting, quantum cutting and optoelectronic applications. NPG Asia Mater 12:9CrossRef
144.
go back to reference Teng Y, Zhou J, Liu X, Ye S, Qiu J (2010) Efficient broadband near-infrared quantum cutting for solar cells. Opt Express 18:9671–9676CrossRef Teng Y, Zhou J, Liu X, Ye S, Qiu J (2010) Efficient broadband near-infrared quantum cutting for solar cells. Opt Express 18:9671–9676CrossRef
145.
go back to reference Duan Q, Qin F, Zhang Z, Cao W (2012) Quantum cutting mechanism in NaYF4:Tb3+, Yb3+. Opt Lett 27:521–523CrossRef Duan Q, Qin F, Zhang Z, Cao W (2012) Quantum cutting mechanism in NaYF4:Tb3+, Yb3+. Opt Lett 27:521–523CrossRef
146.
go back to reference Shestakov MV, Tikhomirov VK, Kirilenko D, Kuznetsov AS, Chibotaru LF, Baranov AN, Van Tendeloo G, Moshchalkov VV (2011) Quantum cutting in Li (770 nm) and Yb (1000 nm) co-dopant emission bands by energy transfer from the ZnO nano-crystalline host. Opt Express 19:15955–15964CrossRef Shestakov MV, Tikhomirov VK, Kirilenko D, Kuznetsov AS, Chibotaru LF, Baranov AN, Van Tendeloo G, Moshchalkov VV (2011) Quantum cutting in Li (770 nm) and Yb (1000 nm) co-dopant emission bands by energy transfer from the ZnO nano-crystalline host. Opt Express 19:15955–15964CrossRef
147.
go back to reference Terra IAA, Borrero-Gonzalez LJ, Carvalho JM, Terrile MC, Felinto MCFC, Brito HF, Nunes LAO (2013) Spectroscopic properties and quantum cutting in Tb3+-Yb3+ co-doped ZrO2 nanocrystals. J Appl Phys 113:073105 Terra IAA, Borrero-Gonzalez LJ, Carvalho JM, Terrile MC, Felinto MCFC, Brito HF, Nunes LAO (2013) Spectroscopic properties and quantum cutting in Tb3+-Yb3+ co-doped ZrO2 nanocrystals. J Appl Phys 113:073105
148.
go back to reference Yadav RS, Rai SB (2018) Concentration and wavelength dependent frequency downshifting photoluminescence from a Tb3+ doped yttria nano-phosphor: a photochromic phosphor. J Phys Chem Solids 114:179–186CrossRef Yadav RS, Rai SB (2018) Concentration and wavelength dependent frequency downshifting photoluminescence from a Tb3+ doped yttria nano-phosphor: a photochromic phosphor. J Phys Chem Solids 114:179–186CrossRef
149.
go back to reference Xie L, Wang Y, Zhang H (2009) Near-infrared quantum cutting in YPO4:Yb3+, Tm3+ via cooperative energy transfer. Appl Phys Lett 94:061905 Xie L, Wang Y, Zhang H (2009) Near-infrared quantum cutting in YPO4:Yb3+, Tm3+ via cooperative energy transfer. Appl Phys Lett 94:061905
Metadata
Title
Synthesis and Characterization of Quantum Cutting Phosphor Materials
Authors
Ram Sagar Yadav
Raghumani S. Ningthoujam
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-1892-5_7

Premium Partners