Skip to main content
Top

2019 | OriginalPaper | Chapter

Synthesis and Electrocatalytic Properties of Ni–Fe-Layered Double Hydroxide Nanomaterials

Authors : Mengxin Miao, Xiaobo Han, Rulong Jia, Wei Ma, Guihong Han

Published in: Energy Technology 2019

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Designing efficient electrocatalysts for oxygen evolution reaction (OER) is very important for renewable energy storage. Layered double hydroxides (LDHs) attract widespread attention because of their excellent performance in electrochemical oxygen evolution. In this paper, the layered catalyst materials with different ratio of Ni and Fe were synthesized by one-pot hydrothermal synthesis technique. It was found that the Ni–Fe-layered double hydroxides with a ratio of 3:1 had a higher catalytic activity for oxygen evolution with an overpotential of 366 mV and a Tafel slope of 38.34 mV dec−1. The Ni–Fe compound with the ratio of 3:1 hold a higher electrical conductivity when the Ni–Fe LDH was calcinated at 600 °C and nitrogen protection conditions, resulting in a higher catalytic activity for oxygen evolution reactions. And its overpotential is 270 mV and the Tafel slope is 32.8 mV dec−1.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488(7411):294–303CrossRef Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488(7411):294–303CrossRef
2.
go back to reference Cook TR, Dogutan DK, Reece SY et al (2010) solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev 110(11):6474–6502CrossRef Cook TR, Dogutan DK, Reece SY et al (2010) solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev 110(11):6474–6502CrossRef
3.
go back to reference Benson EE, Kubiak CP, Sathrum AJ et al (2008) Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Cheminformatics 38(1):89–99 Benson EE, Kubiak CP, Sathrum AJ et al (2008) Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Cheminformatics 38(1):89–99
4.
go back to reference Turner JA (2004) Sustainable hydrogen production. Science 305(5686):972–974CrossRef Turner JA (2004) Sustainable hydrogen production. Science 305(5686):972–974CrossRef
5.
go back to reference Zeng K, Zhang DK (2010) Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci 36(3):307–326CrossRef Zeng K, Zhang DK (2010) Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci 36(3):307–326CrossRef
6.
go back to reference Marini S, Salvi P, Nelli P et al (2012) Advanced alkaline water electrolysis. Electrochim Acta 82(82):384–391CrossRef Marini S, Salvi P, Nelli P et al (2012) Advanced alkaline water electrolysis. Electrochim Acta 82(82):384–391CrossRef
7.
go back to reference Carrette L, Friedrich KA, Stimming U (2015) Fuel cells—Fundamentals and applications. Fuel Cells 1(1):5–39CrossRef Carrette L, Friedrich KA, Stimming U (2015) Fuel cells—Fundamentals and applications. Fuel Cells 1(1):5–39CrossRef
8.
go back to reference Aricò AS, Srinivasan S, Antonucci V (2015) DMFCs: From fundamental aspects to technology development. Fuel Cells 1(2):133–161CrossRef Aricò AS, Srinivasan S, Antonucci V (2015) DMFCs: From fundamental aspects to technology development. Fuel Cells 1(2):133–161CrossRef
9.
go back to reference Palacin MR (2009) Cheminform abstract: recent advances in rechargeable battery materials: a chemist’s perspective. Chem Soc Rev 38(9):2565–2575CrossRef Palacin MR (2009) Cheminform abstract: recent advances in rechargeable battery materials: a chemist’s perspective. Chem Soc Rev 38(9):2565–2575CrossRef
10.
go back to reference Suntivich J, Gasteiger HA, Yabuuchi N et al (2011) Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat Chem 3(8):546–550CrossRef Suntivich J, Gasteiger HA, Yabuuchi N et al (2011) Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat Chem 3(8):546–550CrossRef
11.
go back to reference Cheng F, Chen J (2012) Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev 41(6):2172–2192CrossRef Cheng F, Chen J (2012) Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev 41(6):2172–2192CrossRef
12.
go back to reference Lee Y, Suntivich J, May KJ et al (2012) Synthesis and activities of Rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett 3(3):399–404CrossRef Lee Y, Suntivich J, May KJ et al (2012) Synthesis and activities of Rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett 3(3):399–404CrossRef
Metadata
Title
Synthesis and Electrocatalytic Properties of Ni–Fe-Layered Double Hydroxide Nanomaterials
Authors
Mengxin Miao
Xiaobo Han
Rulong Jia
Wei Ma
Guihong Han
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-06209-5_30