Skip to main content
Top
Published in: Journal of Materials Science 6/2014

01-03-2014

Synthesis and properties of bismuth ferrite multiferroic flowers

Authors: K. Chybczyńska, P. Ławniczak, B. Hilczer, B. Łęska, R. Pankiewicz, A. Pietraszko, L. Kępiński, T. Kałuski, P. Cieluch, F. Matelski, B. Andrzejewski

Published in: Journal of Materials Science | Issue 6/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Novel, flowerlike bismuth ferrite BiFeO3 (BFO) multiferroic structures were prepared for the first time by means of microwave assisted hydrothermal synthesis. The flowers are composed of numerous petals formed by BFO nanocrystals and some amount of amorphous phase. The growth of the flowers begins from the central part of calyx composed of only few petals toward which subsequent petals are successively attached. The flowers exhibit enhanced magnetization due to size effect and lack of spin compensation in the spin cycloid. The dielectric properties of the flowers are influenced by BFO amorphous phase resulting in a broad dielectric permittivity maximum at 200–300 K and also by Polomska transition due to anomalous surface magnon damping above the temperature of 450 K. Possible applications of BFO flowerlike structures assume optoelectronic devices, excellent field emitters, effective solar cells, or catalyst supports.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kharisov BI (2008) A review for synthesis of nanoflowers. Recent Pat Nanotechnol 2:190–200CrossRef Kharisov BI (2008) A review for synthesis of nanoflowers. Recent Pat Nanotechnol 2:190–200CrossRef
2.
go back to reference Wang L, Wei G, Guo C, Sun L, Sun Y, Song Y, Yang T, Li Z (2008) Photochemical synthesis and self-assembly of gold nanoparticles. Colloids Surf A Physicochem Eng Asp 312:148–153CrossRef Wang L, Wei G, Guo C, Sun L, Sun Y, Song Y, Yang T, Li Z (2008) Photochemical synthesis and self-assembly of gold nanoparticles. Colloids Surf A Physicochem Eng Asp 312:148–153CrossRef
3.
go back to reference Xu W, Liew KY, Liu H, Huang T, Sun C, Zhao Y (2008) Microwave-assisted synthesis of nickel nanoparticles. Mater Lett 62:2571–2573CrossRef Xu W, Liew KY, Liu H, Huang T, Sun C, Zhao Y (2008) Microwave-assisted synthesis of nickel nanoparticles. Mater Lett 62:2571–2573CrossRef
4.
go back to reference Cha S, Mo Ch, Kim K, Hong S (2005) Ferromagnetic cobalt nanodots, nanorices, nanowires and nanoflowers by polyol process. J Mater Res 20:2148–2153CrossRef Cha S, Mo Ch, Kim K, Hong S (2005) Ferromagnetic cobalt nanodots, nanorices, nanowires and nanoflowers by polyol process. J Mater Res 20:2148–2153CrossRef
5.
go back to reference Du J, Liu Z, Li Z, Han B, Sun Z, Huang Y (2005) Carbon nanoflowers synthesized by a reduction–pyrolysis–catalysis route. Mater Lett 59:456–458CrossRef Du J, Liu Z, Li Z, Han B, Sun Z, Huang Y (2005) Carbon nanoflowers synthesized by a reduction–pyrolysis–catalysis route. Mater Lett 59:456–458CrossRef
6.
go back to reference Thongtem S, Singjai P, Thongtem T, Preyachoti S (2006) Growth of carbon nanoflowers on glass slides using sparked iron as a catalyst. Mater Sci Eng A 423:209–213CrossRef Thongtem S, Singjai P, Thongtem T, Preyachoti S (2006) Growth of carbon nanoflowers on glass slides using sparked iron as a catalyst. Mater Sci Eng A 423:209–213CrossRef
7.
go back to reference Hui PB, Xu XL, Guang MZ, Yun HY (2008) Hydrogen peroxide biosensor based on electrodeposition of zinc oxide nanoflowers onto carbon nanotubes film electrode. Chin Chem Lett 19:314–318CrossRef Hui PB, Xu XL, Guang MZ, Yun HY (2008) Hydrogen peroxide biosensor based on electrodeposition of zinc oxide nanoflowers onto carbon nanotubes film electrode. Chin Chem Lett 19:314–318CrossRef
8.
go back to reference Gao HY, Yan FW, Zhang Z, Li JM, Zeng ZP (2008) Synthesis and characterization of ZnO nanoflowers grown on AlN films by solution deposition. Chin Phys Lett 25:640–643CrossRef Gao HY, Yan FW, Zhang Z, Li JM, Zeng ZP (2008) Synthesis and characterization of ZnO nanoflowers grown on AlN films by solution deposition. Chin Phys Lett 25:640–643CrossRef
9.
go back to reference Fang XS, Ye CH, Xie T, Wang ZY, Zhao JW, Zhang LD (2006) Regular MgO nanoflowers and their enhanced dielectric responses. Appl Phys Lett 88:013101–013103CrossRef Fang XS, Ye CH, Xie T, Wang ZY, Zhao JW, Zhang LD (2006) Regular MgO nanoflowers and their enhanced dielectric responses. Appl Phys Lett 88:013101–013103CrossRef
10.
go back to reference Ligang Y, Gengmin Z, Yue W, Xin B, Dengzhu GJ (2008) Cupric oxide nanoflowers synthesized with a simple solution route and their field emission. Cryst Growth 310:3125–3130CrossRef Ligang Y, Gengmin Z, Yue W, Xin B, Dengzhu GJ (2008) Cupric oxide nanoflowers synthesized with a simple solution route and their field emission. Cryst Growth 310:3125–3130CrossRef
11.
go back to reference Gao Y, Wang Z, Liu SXY, Qian YJ (2006) Influence of anions on the morphology of nanophase α-MnO2 crystal via hydrothermal process. Nanosci Nanotechnol 6:2576–2579CrossRef Gao Y, Wang Z, Liu SXY, Qian YJ (2006) Influence of anions on the morphology of nanophase α-MnO2 crystal via hydrothermal process. Nanosci Nanotechnol 6:2576–2579CrossRef
12.
go back to reference Zhang YS, Yu K, Li GD, Peng DY, Zhang QX, Xu F, Bai W, Ouyang SX, Zhu ZQ (2006) Synthesis and field emission of patterned SnO2 nanoflowers. Mater Lett 60:3109–3312CrossRef Zhang YS, Yu K, Li GD, Peng DY, Zhang QX, Xu F, Bai W, Ouyang SX, Zhu ZQ (2006) Synthesis and field emission of patterned SnO2 nanoflowers. Mater Lett 60:3109–3312CrossRef
13.
go back to reference Hsiao MT, Chen SF, Shieh DB, Yeh CS (2006) One-pot synthesis of hollow Au3Cu1 spherical-like and biomineral botallackite Cu2(OH)3Cl flowerlike architectures exhibiting antimicrobial activity. J Phys Chem B 110:205–210CrossRef Hsiao MT, Chen SF, Shieh DB, Yeh CS (2006) One-pot synthesis of hollow Au3Cu1 spherical-like and biomineral botallackite Cu2(OH)3Cl flowerlike architectures exhibiting antimicrobial activity. J Phys Chem B 110:205–210CrossRef
14.
go back to reference Amalnerkar DP, Lee HY, Hwang YK, Kim DP, Chang JS, Swift J (2007) Swift morphosynthesis of hierarchical nanostructures of CdS via microwave-induced semisolvothermal route. Nanosci Nanotechnol 7:4412–4420CrossRef Amalnerkar DP, Lee HY, Hwang YK, Kim DP, Chang JS, Swift J (2007) Swift morphosynthesis of hierarchical nanostructures of CdS via microwave-induced semisolvothermal route. Nanosci Nanotechnol 7:4412–4420CrossRef
15.
go back to reference Lee SH, Kim YJ, Park J (2007) Shape evolution of ZnTe nanocrystals: nanoflowers, nanodots, and nanorods. Chem Mater 19:4670–4675CrossRef Lee SH, Kim YJ, Park J (2007) Shape evolution of ZnTe nanocrystals: nanoflowers, nanodots, and nanorods. Chem Mater 19:4670–4675CrossRef
16.
go back to reference Poudel B, Wang WZ, Wang DZ, Huang JY, Ren ZFJ (2006) Shape evolution of lead telluride and selenide nanostructures under different hydrothermal synthesis conditions. Nanosci Nanotechnol 6:1050–1053CrossRef Poudel B, Wang WZ, Wang DZ, Huang JY, Ren ZFJ (2006) Shape evolution of lead telluride and selenide nanostructures under different hydrothermal synthesis conditions. Nanosci Nanotechnol 6:1050–1053CrossRef
17.
go back to reference Kang TT, Hashimoto A, Yamamoto A (2008) Optical properties of InN containing metallic indium. Appl Phys Lett 92:111902–111903CrossRef Kang TT, Hashimoto A, Yamamoto A (2008) Optical properties of InN containing metallic indium. Appl Phys Lett 92:111902–111903CrossRef
18.
go back to reference Liu DB, Bando Y, Tang CC, Golberg D, Xie RG, Sekiguchi T (2005) Synthesis and optical study of crystalline GaP nanoflowers. Appl Phys Lett 86:083107-3 Liu DB, Bando Y, Tang CC, Golberg D, Xie RG, Sekiguchi T (2005) Synthesis and optical study of crystalline GaP nanoflowers. Appl Phys Lett 86:083107-3
19.
go back to reference Chen W, Peng Q, Li Y (2008) Luminescent bis-(8-hydroxyquinoline) Cadmium complex nanorods. Cryst Growth Des 8:564–567CrossRef Chen W, Peng Q, Li Y (2008) Luminescent bis-(8-hydroxyquinoline) Cadmium complex nanorods. Cryst Growth Des 8:564–567CrossRef
20.
go back to reference Xu XJ, Zhou LH, Lu CZ (2007) Mixed-solvothermal synthesis of hybrid nanostructures of alkaline earth phenylphosphonates. Mater Lett 61:4980–4983CrossRef Xu XJ, Zhou LH, Lu CZ (2007) Mixed-solvothermal synthesis of hybrid nanostructures of alkaline earth phenylphosphonates. Mater Lett 61:4980–4983CrossRef
21.
go back to reference Narayanaswamy A, Xu H, Pradhan N, Kim M, Peng X (2006) Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: hydrolysis and alcoholysis vs pyrolysis. J Am Chem Soc 128:10310–10319CrossRef Narayanaswamy A, Xu H, Pradhan N, Kim M, Peng X (2006) Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: hydrolysis and alcoholysis vs pyrolysis. J Am Chem Soc 128:10310–10319CrossRef
22.
go back to reference Xiaomin N, Yongfeng Z, Dayong T, Huagui Z, Xingwei W (2007) Synthesis and characterization of hierarchical NiO nanoflowers with porous structure. J Cryst Growth 306:418–421CrossRef Xiaomin N, Yongfeng Z, Dayong T, Huagui Z, Xingwei W (2007) Synthesis and characterization of hierarchical NiO nanoflowers with porous structure. J Cryst Growth 306:418–421CrossRef
23.
go back to reference Li G, Jiang L, Pang S, Peng H, Hang Z (2006) Molybdenum trioxide nanostructures: the evolution from helical nanosheets to crosslike nanoflowers to nanobelts. J Phys Chem B 110:24472–24475CrossRef Li G, Jiang L, Pang S, Peng H, Hang Z (2006) Molybdenum trioxide nanostructures: the evolution from helical nanosheets to crosslike nanoflowers to nanobelts. J Phys Chem B 110:24472–24475CrossRef
24.
go back to reference Cao X, Lu Q, Xu X, Yan J, Zeng H (2008) Single-crystal snowflake of Cu7S4: low temperature, large scale synthesis and growth mechanism. Mater Lett 62:2567–2570CrossRef Cao X, Lu Q, Xu X, Yan J, Zeng H (2008) Single-crystal snowflake of Cu7S4: low temperature, large scale synthesis and growth mechanism. Mater Lett 62:2567–2570CrossRef
25.
go back to reference Dong L, Chu Y, Liu Y, Li M, Yang F, Li L (2006) Surfactant-assisted fabrication PbS nanorods, nanobelts, nanovelvet-flowers and dendritic nanostructures at lower temperature in aqueous solution. J Colloid Interface Sci 301:503–510CrossRef Dong L, Chu Y, Liu Y, Li M, Yang F, Li L (2006) Surfactant-assisted fabrication PbS nanorods, nanobelts, nanovelvet-flowers and dendritic nanostructures at lower temperature in aqueous solution. J Colloid Interface Sci 301:503–510CrossRef
26.
go back to reference Das K, Datta A, Chaudhuri S (2007) CuInS2 flower vaselike nanostructure arrays on a Cu tape substrate by the copper indium sulfide on Cu-tape (CISCuT) method: growth and characterization. Cryst Growth Des 7:1547–1552CrossRef Das K, Datta A, Chaudhuri S (2007) CuInS2 flower vaselike nanostructure arrays on a Cu tape substrate by the copper indium sulfide on Cu-tape (CISCuT) method: growth and characterization. Cryst Growth Des 7:1547–1552CrossRef
27.
go back to reference Kang TT, Liu X, Zhang RX, Hu WG, Cong G, Zhao FA, Zhu Q (2006) InN nanoflowers grown by metal organic chemical vapor deposition. Appl Phys Lett 89:071113-3 Kang TT, Liu X, Zhang RX, Hu WG, Cong G, Zhao FA, Zhu Q (2006) InN nanoflowers grown by metal organic chemical vapor deposition. Appl Phys Lett 89:071113-3
28.
go back to reference Qian L, Yang X (2006) Polyamidoamine dendrimers-assisted electrodeposition of gold–platinum bimetallic nanoflowers. J Phys Chem B 110:16672–16678CrossRef Qian L, Yang X (2006) Polyamidoamine dendrimers-assisted electrodeposition of gold–platinum bimetallic nanoflowers. J Phys Chem B 110:16672–16678CrossRef
29.
go back to reference Zheng Z, Xu B, Huang L, He L, Ni (2008) Novel composite of Co/carbon nanotubes: synthesis, magnetism and microwave absorption properties. Solid State Sci 10:316–320CrossRef Zheng Z, Xu B, Huang L, He L, Ni (2008) Novel composite of Co/carbon nanotubes: synthesis, magnetism and microwave absorption properties. Solid State Sci 10:316–320CrossRef
30.
go back to reference Yufeng H, Guowen M, Zhou Y, Kong M, Wei Q, Ye M, Zhang L (2006) Tuning the architecture of MgO nanostructures by chemical vapour transport and condensation. Nanotechnology 17:5006–5012CrossRef Yufeng H, Guowen M, Zhou Y, Kong M, Wei Q, Ye M, Zhang L (2006) Tuning the architecture of MgO nanostructures by chemical vapour transport and condensation. Nanotechnology 17:5006–5012CrossRef
31.
go back to reference Yao WT, Yu SH, Liu SJ, Chen JP, Liu XM, Li FQ (2006) Architectural control syntheses of CdS and CdSe nanoflowers, branched nanowires, and nanotrees via a solvothermal approach in a mixed solution and their photocatalytic property. J Phys Chem B 110:11704–11710CrossRef Yao WT, Yu SH, Liu SJ, Chen JP, Liu XM, Li FQ (2006) Architectural control syntheses of CdS and CdSe nanoflowers, branched nanowires, and nanotrees via a solvothermal approach in a mixed solution and their photocatalytic property. J Phys Chem B 110:11704–11710CrossRef
32.
go back to reference Tong Y, Liu Y, Dong L, Zhao D, Zhang J, Lu Y, Shen D, Fan X (2006) Growth of ZnO nanostructures with different morphologies by using hydrothermal technique. J Phys Chem B 110:20263–20267CrossRef Tong Y, Liu Y, Dong L, Zhao D, Zhang J, Lu Y, Shen D, Fan X (2006) Growth of ZnO nanostructures with different morphologies by using hydrothermal technique. J Phys Chem B 110:20263–20267CrossRef
33.
go back to reference Yuan GZ, You CC, Yin GZ (2007) Synthesis and magnetic properties of Co3O4 nanoflowers. Chin J Chem Phys 20:601–606CrossRef Yuan GZ, You CC, Yin GZ (2007) Synthesis and magnetic properties of Co3O4 nanoflowers. Chin J Chem Phys 20:601–606CrossRef
34.
go back to reference Yan C, Xue D, Zou L, Yan X, Wang W (2005) Preparation of magnesium hydroxide nanoflowers. J Cryst Growth 282:448–454CrossRef Yan C, Xue D, Zou L, Yan X, Wang W (2005) Preparation of magnesium hydroxide nanoflowers. J Cryst Growth 282:448–454CrossRef
35.
go back to reference Guoan T, Wanlin G (2008) Sonochemistry-assisted microwave synthesis and optical study of single-crystalline CdS nanoflowers. Ultrason Sonochem 15:350–356CrossRef Guoan T, Wanlin G (2008) Sonochemistry-assisted microwave synthesis and optical study of single-crystalline CdS nanoflowers. Ultrason Sonochem 15:350–356CrossRef
36.
go back to reference Jena BK, Raj CR (2007) Synthesis of flower-like gold nanoparticles and their electrocatalytic activity towards the oxidation of methanol and the reduction of oxygen. Langmuir 23:4064–4070CrossRef Jena BK, Raj CR (2007) Synthesis of flower-like gold nanoparticles and their electrocatalytic activity towards the oxidation of methanol and the reduction of oxygen. Langmuir 23:4064–4070CrossRef
37.
go back to reference Li YB, Bando Y, Golberg D (2003) MoS2 nanoflowers and their field-emission properties. Appl Phys Lett 82:1962–1964CrossRef Li YB, Bando Y, Golberg D (2003) MoS2 nanoflowers and their field-emission properties. Appl Phys Lett 82:1962–1964CrossRef
38.
go back to reference Tang YB, Cong HT, Wang ZM, Cheng HM (2006) Catalyst-seeded synthesis and field emission properties of flowerlike Si-doped AlN nanoneedle array. Appl Phys Lett 89:253112–253113CrossRef Tang YB, Cong HT, Wang ZM, Cheng HM (2006) Catalyst-seeded synthesis and field emission properties of flowerlike Si-doped AlN nanoneedle array. Appl Phys Lett 89:253112–253113CrossRef
39.
go back to reference Li C, Fang G, Liu N, Ren Y, Huang H, Zhao X (2008) Snowflake-like ZnO structures: self-assembled growth and characterization. Mater Lett 62:1761–1764CrossRef Li C, Fang G, Liu N, Ren Y, Huang H, Zhao X (2008) Snowflake-like ZnO structures: self-assembled growth and characterization. Mater Lett 62:1761–1764CrossRef
40.
go back to reference Xiuli Chen, Ying Tang, Liang Fang, Zhang Hui, Changzheng Hu, Huanfu Zhou (2012) Self-assembly growth of flower-like BiFeO3 powders at low temperature. J Mater Sci Mater Electron 23:1500–1503. doi:10.1007/s10854-011-0617-1 CrossRef Xiuli Chen, Ying Tang, Liang Fang, Zhang Hui, Changzheng Hu, Huanfu Zhou (2012) Self-assembly growth of flower-like BiFeO3 powders at low temperature. J Mater Sci Mater Electron 23:1500–1503. doi:10.​1007/​s10854-011-0617-1 CrossRef
41.
go back to reference Sakar M, Balakumar S, Saravanan P, Jaisankar SN (2013) Annealing temperature mediated physical properties of bismuth ferrite (BiFeO3) nanostructures synthesized by a novel wet chemical method. Mater Res Bull 48:2878–2885CrossRef Sakar M, Balakumar S, Saravanan P, Jaisankar SN (2013) Annealing temperature mediated physical properties of bismuth ferrite (BiFeO3) nanostructures synthesized by a novel wet chemical method. Mater Res Bull 48:2878–2885CrossRef
42.
go back to reference Smolenskii G, Yudin V, Sher E, Stolypin ZE (1963) Antiferromagnetic properties of some perovskites. Sov Phys JETP 16:622–624 Smolenskii G, Yudin V, Sher E, Stolypin ZE (1963) Antiferromagnetic properties of some perovskites. Sov Phys JETP 16:622–624
43.
go back to reference Fiebig M (2005) Revival of the magnetoelectric effect. J Phys D Appl Phys 38:R123–R152CrossRef Fiebig M (2005) Revival of the magnetoelectric effect. J Phys D Appl Phys 38:R123–R152CrossRef
44.
go back to reference Kadomtseva AM, Popov YuF, Pyatakov AP, Vorobev GP, Zvezdin AK, Viehland D (2006) Phase transitions in multiferroic BiFeO crystals, thin-layers, and ceramics: enduring potential. Phase Transit 79:1019–1042CrossRef Kadomtseva AM, Popov YuF, Pyatakov AP, Vorobev GP, Zvezdin AK, Viehland D (2006) Phase transitions in multiferroic BiFeO crystals, thin-layers, and ceramics: enduring potential. Phase Transit 79:1019–1042CrossRef
45.
go back to reference Lebeugle D, Colson D, Forget A, Viret M, Boville P, Marucco JM, Fusil S (2007) Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals. Phys Rev B 76:024116–024118CrossRef Lebeugle D, Colson D, Forget A, Viret M, Boville P, Marucco JM, Fusil S (2007) Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals. Phys Rev B 76:024116–024118CrossRef
46.
go back to reference Catalan G, Scott JF (2009) Physics and applications of bismuth ferrite. Adv Mater 21:2463–2485CrossRef Catalan G, Scott JF (2009) Physics and applications of bismuth ferrite. Adv Mater 21:2463–2485CrossRef
47.
go back to reference Sosnowska I, Peterlin-Neumaier T, Steichele E (1982) Spiral magnetic ordering in bismuth ferrite. J Phys C Solid State Phys 15:4835–4846CrossRef Sosnowska I, Peterlin-Neumaier T, Steichele E (1982) Spiral magnetic ordering in bismuth ferrite. J Phys C Solid State Phys 15:4835–4846CrossRef
48.
go back to reference Park TJ, Papaefthymiou GC, Viescas AJ, Moodenbaugh AR, Wong SS (2007) Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett 7:766–772CrossRef Park TJ, Papaefthymiou GC, Viescas AJ, Moodenbaugh AR, Wong SS (2007) Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett 7:766–772CrossRef
49.
go back to reference Andrzejewski B, Chybczyńska K, Pogorzelec-Glaser K, Hilczer B, Łęska B, Pankiewicz R, Cieluch P (2013) Magnetic properties of BiFeO3 micro-cubes synthesized by microwave agitation. Phase Transit 86:748–757CrossRef Andrzejewski B, Chybczyńska K, Pogorzelec-Glaser K, Hilczer B, Łęska B, Pankiewicz R, Cieluch P (2013) Magnetic properties of BiFeO3 micro-cubes synthesized by microwave agitation. Phase Transit 86:748–757CrossRef
50.
go back to reference Prado-Gonjal J, Villafuerte-Castrejón ME, Fuentes L, Morán E (2009) Microwave–hydrothermal synthesis of the multiferroic BiFeO3. Mat Res Bull 44:1734–1737CrossRef Prado-Gonjal J, Villafuerte-Castrejón ME, Fuentes L, Morán E (2009) Microwave–hydrothermal synthesis of the multiferroic BiFeO3. Mat Res Bull 44:1734–1737CrossRef
51.
go back to reference Denardin JC, Brandl AL, Knobel M, Panissod P, Pakhomov AB, Liu H, Zhang XX (2002) Thermoremanence and zero-field-cooled/field-cooled magnetization study of Cox(SiO2)1-x granular films. Phys Rev B 65:064422–064428CrossRef Denardin JC, Brandl AL, Knobel M, Panissod P, Pakhomov AB, Liu H, Zhang XX (2002) Thermoremanence and zero-field-cooled/field-cooled magnetization study of Cox(SiO2)1-x granular films. Phys Rev B 65:064422–064428CrossRef
52.
go back to reference Scherrer P (1918) Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten Gesell Wiss Göttingen 26:98–100 Scherrer P (1918) Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten Gesell Wiss Göttingen 26:98–100
53.
go back to reference Li Z (2011) Characterization of different shaped nanocrystallites using X-ray diffraction line profiles. Part Part Syst Charact 28:19–24CrossRef Li Z (2011) Characterization of different shaped nanocrystallites using X-ray diffraction line profiles. Part Part Syst Charact 28:19–24CrossRef
54.
go back to reference Kavanagh CM, Goff RJ, Daoud-Aladine A, Linghfoot P, Morrison FD (2012) Magnetically driven dielectric and structural behavior in Bi0.5La0.5FeO3. Chem Mater 24:4563–4571CrossRef Kavanagh CM, Goff RJ, Daoud-Aladine A, Linghfoot P, Morrison FD (2012) Magnetically driven dielectric and structural behavior in Bi0.5La0.5FeO3. Chem Mater 24:4563–4571CrossRef
55.
go back to reference Nakamura S, Soeya S, Ikeda N, Tanaka M (1993) Spin-glass behavior in amorphous BiFeO3. J Appl Phys 74:5652–5657CrossRef Nakamura S, Soeya S, Ikeda N, Tanaka M (1993) Spin-glass behavior in amorphous BiFeO3. J Appl Phys 74:5652–5657CrossRef
56.
go back to reference Połomska M, Kaczmarek W, Pajak Z (1974) Electric and magnetic properties of (Bi1−xLax)FeO3 solid solutions. Phys Status Solidi A 23:567–5774CrossRef Połomska M, Kaczmarek W, Pajak Z (1974) Electric and magnetic properties of (Bi1−xLax)FeO3 solid solutions. Phys Status Solidi A 23:567–5774CrossRef
57.
go back to reference Fischer P, Połomska M, Sosnowska I, Szymański M (1980) Temperature-dependence of the crystal and magnetic structures o f BiFeO3. J Phys C 13:1931–1940CrossRef Fischer P, Połomska M, Sosnowska I, Szymański M (1980) Temperature-dependence of the crystal and magnetic structures o f BiFeO3. J Phys C 13:1931–1940CrossRef
58.
go back to reference Kumar A, Scott JF, Katiyar RS (2012) Magnon Raman spectroscopy and in-plane dielectric response in BiFeO3: relation to the Polomska transition. Phys Rev B 85:224410–224414CrossRef Kumar A, Scott JF, Katiyar RS (2012) Magnon Raman spectroscopy and in-plane dielectric response in BiFeO3: relation to the Polomska transition. Phys Rev B 85:224410–224414CrossRef
Metadata
Title
Synthesis and properties of bismuth ferrite multiferroic flowers
Authors
K. Chybczyńska
P. Ławniczak
B. Hilczer
B. Łęska
R. Pankiewicz
A. Pietraszko
L. Kępiński
T. Kałuski
P. Cieluch
F. Matelski
B. Andrzejewski
Publication date
01-03-2014
Publisher
Springer US
Published in
Journal of Materials Science / Issue 6/2014
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-013-7957-6

Other articles of this Issue 6/2014

Journal of Materials Science 6/2014 Go to the issue

Premium Partners