Skip to main content
Top

2021 | OriginalPaper | Chapter

10. Synthesis Methods for Carbon-Based Materials

Author : Pradip Kumar

Published in: Handbook on Synthesis Strategies for Advanced Materials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Carbon is a most versatile element and its bonding and special nature have long been noted largely due to the variety and quantity of structures. Carbon can make different allotropes like graphite, diamond and fullerene due to its sp1, sp2 and sp3 possible hybridization nature. The development and understanding of carbon-based materials are topics of major interest in science and technology due to their excellent electrical, thermal, mechanical and optical properties. On the other hand, carbon is hardly considered to be toxic material, which makes it easily biocompatible. Carbon-based materials are synthesized using various top-down and bottom-up synthesis approaches. In this chapter, various conventional and more practical synthesis strategies, as well as their mechanism for diamond, fullerene, carbon nanotubes, carbon nanofibers, graphene and graphene oxide with the extracts from published investigations by numerous researchers, will be discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Andresen JM (2001) Graphite and precursors, world of carbon. In: Delhaès P (ed) vol 1. Gordon and Breach Publishers, Amsterdam, p 297. ISBN 90-5699-228-7. $85, Energy & Fuels 16(1):218-218 Andresen JM (2001) Graphite and precursors, world of carbon. In: Delhaès P (ed) vol 1. Gordon and Breach Publishers, Amsterdam, p 297. ISBN 90-5699-228-7. $85, Energy & Fuels 16(1):218-218
2.
go back to reference Vavilov VS (1997) Diamond in solid state electronics. Phys Usp 40:15–20 Vavilov VS (1997) Diamond in solid state electronics. Phys Usp 40:15–20
3.
go back to reference Wild C, Müller-Sebert W, Eckermann T, Koidl P (1991) Polycrystalline diamond films for optical applications. In: Tzeng Y, Yoshikawa M, Murakawa M, Feldman A (eds) Materials science monographs. Elsevier, pp 197–205 Wild C, Müller-Sebert W, Eckermann T, Koidl P (1991) Polycrystalline diamond films for optical applications. In: Tzeng Y, Yoshikawa M, Murakawa M, Feldman A (eds) Materials science monographs. Elsevier, pp 197–205
4.
go back to reference Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318(6042):162–163CrossRef Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318(6042):162–163CrossRef
5.
go back to reference Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58CrossRef
6.
go back to reference Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R (2011) Methods for carbon nanotubes synthesis—review. J Mater Chem 21(40):15872–15884CrossRef Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R (2011) Methods for carbon nanotubes synthesis—review. J Mater Chem 21(40):15872–15884CrossRef
7.
go back to reference De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339(6119):535–539CrossRef De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339(6119):535–539CrossRef
8.
go back to reference Yadav D, Amini F, Ehrmann A (2020) Recent advances in carbon nanofibers and their applications – a review. Euro Polymer J 138:109963 Yadav D, Amini F, Ehrmann A (2020) Recent advances in carbon nanofibers and their applications – a review. Euro Polymer J 138:109963
9.
go back to reference Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef
10.
go back to reference Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132–145CrossRef Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132–145CrossRef
11.
go back to reference Kumar P (2019) Ultrathin 2D nanomaterials for electromagnetic interference shielding. Adv Mater Interfaces 6(24):1901454CrossRef Kumar P (2019) Ultrathin 2D nanomaterials for electromagnetic interference shielding. Adv Mater Interfaces 6(24):1901454CrossRef
12.
go back to reference Yadav MK, Panwar N, Singh S, Kumar P (2020) Preheated self-aligned graphene oxide for enhanced room temperature hydrogen storage. Int J Hydrogen Energy 45(38):19561–19566CrossRef Yadav MK, Panwar N, Singh S, Kumar P (2020) Preheated self-aligned graphene oxide for enhanced room temperature hydrogen storage. Int J Hydrogen Energy 45(38):19561–19566CrossRef
13.
go back to reference Vikas, Yadav MK, Kumar P, Verma RK (2020) Detection of adulteration in pure honey utilizing Ag-graphene oxide coated fiber optic SPR probes. Food Chem 332:127346 Vikas, Yadav MK, Kumar P, Verma RK (2020) Detection of adulteration in pure honey utilizing Ag-graphene oxide coated fiber optic SPR probes. Food Chem 332:127346
14.
go back to reference Avouris P, Dimitrakopoulos C (2012) Graphene: synthesis and applications. Mater Today 15(3):86–97CrossRef Avouris P, Dimitrakopoulos C (2012) Graphene: synthesis and applications. Mater Today 15(3):86–97CrossRef
15.
go back to reference Edwards RS, Coleman KS (2013) Graphene synthesis: relationship to applications. Nanoscale 5(1):38–51CrossRef Edwards RS, Coleman KS (2013) Graphene synthesis: relationship to applications. Nanoscale 5(1):38–51CrossRef
16.
go back to reference Baddour CE, Fadlallah F, Nasuhoglu D, Mitra R, Vandsburger L, Meunier J-L (2009) A simple thermal CVD method for carbon nanotube synthesis on stainless steel 304 without the addition of an external catalyst. Carbon 47(1):313–318CrossRef Baddour CE, Fadlallah F, Nasuhoglu D, Mitra R, Vandsburger L, Meunier J-L (2009) A simple thermal CVD method for carbon nanotube synthesis on stainless steel 304 without the addition of an external catalyst. Carbon 47(1):313–318CrossRef
17.
18.
go back to reference Arregui-Mena JD, Bodel W, Worth RN, Margetts L, Mummery PM (2016) Spatial variability in the mechanical properties of Gilsocarbon. Carbon 110:497–517CrossRef Arregui-Mena JD, Bodel W, Worth RN, Margetts L, Mummery PM (2016) Spatial variability in the mechanical properties of Gilsocarbon. Carbon 110:497–517CrossRef
19.
go back to reference Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339CrossRef Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339CrossRef
20.
go back to reference Kawamoto M, He P, Ito Y (2017) Green processing of carbon nanomaterials. Adv Mater 29(25):1602423CrossRef Kawamoto M, He P, Ito Y (2017) Green processing of carbon nanomaterials. Adv Mater 29(25):1602423CrossRef
21.
go back to reference Strong HM (1989) Strong, early diamond making at general electric. Am J Phys 57:794CrossRef Strong HM (1989) Strong, early diamond making at general electric. Am J Phys 57:794CrossRef
22.
go back to reference Gogotsi YG, Kofstad P, Yoshimura M, Nickel KG (1996) Formation of sp3-bonded carbon upon hydrothermal treatment of SiC. Diam Relat Mater 5(2):151–162CrossRef Gogotsi YG, Kofstad P, Yoshimura M, Nickel KG (1996) Formation of sp3-bonded carbon upon hydrothermal treatment of SiC. Diam Relat Mater 5(2):151–162CrossRef
23.
go back to reference Shenderova OA, Shames AI, Nunn NA, Torelli MD, Vlasov I, Zaitsev A (2019) Review article: synthesis, properties, and applications of fluorescent diamond particles. J Vacuum Sci Technol B 37(3):030802 Shenderova OA, Shames AI, Nunn NA, Torelli MD, Vlasov I, Zaitsev A (2019) Review article: synthesis, properties, and applications of fluorescent diamond particles. J Vacuum Sci Technol B 37(3):030802
24.
go back to reference Schwander M, Partes K (2011) A review of diamond synthesis by CVD processes. Diam Relat Mater 20(9):1287–1301CrossRef Schwander M, Partes K (2011) A review of diamond synthesis by CVD processes. Diam Relat Mater 20(9):1287–1301CrossRef
25.
go back to reference Kobashi K, Nishimura K, Kawate Y, Horiuchi T (1988) Synthesis of diamonds by use of microwave plasma chemical-vapor deposition: morphology and growth of diamond films. Phys Rev B 38(6):4067–4084CrossRef Kobashi K, Nishimura K, Kawate Y, Horiuchi T (1988) Synthesis of diamonds by use of microwave plasma chemical-vapor deposition: morphology and growth of diamond films. Phys Rev B 38(6):4067–4084CrossRef
26.
go back to reference Liu X, Jia X, Zhang Z, Li Y, Hu M, Zhou Z, Ma H-A (2011) Crystal growth and characterization of diamond from carbonyl iron catalyst under high pressure and high temperature conditions. Cryst Growth Des 11(9):3844–3849CrossRef Liu X, Jia X, Zhang Z, Li Y, Hu M, Zhou Z, Ma H-A (2011) Crystal growth and characterization of diamond from carbonyl iron catalyst under high pressure and high temperature conditions. Cryst Growth Des 11(9):3844–3849CrossRef
27.
go back to reference Palyanov YN, Kupriyanov IN, Borzdov YM, Sokol AG, Khokhryakov AF (2009) Diamond crystallization from a sulfur−carbon system at HPHT conditions. Cryst Growth Des 9(6):2922–2926CrossRef Palyanov YN, Kupriyanov IN, Borzdov YM, Sokol AG, Khokhryakov AF (2009) Diamond crystallization from a sulfur−carbon system at HPHT conditions. Cryst Growth Des 9(6):2922–2926CrossRef
28.
go back to reference Palyanov YN, Kupriyanov IN, Borzdov YM, Khokhryakov AF, Surovtsev NV (2016) High-pressure synthesis and characterization of Ge-doped single crystal diamond. Cryst Growth Des 16(6):3510–3518CrossRef Palyanov YN, Kupriyanov IN, Borzdov YM, Khokhryakov AF, Surovtsev NV (2016) High-pressure synthesis and characterization of Ge-doped single crystal diamond. Cryst Growth Des 16(6):3510–3518CrossRef
29.
go back to reference Palyanov YN, Kupriyanov IN, Sokol AG, Khokhryakov AF, Borzdov YM (2011) Diamond growth from a phosphorus–carbon system at high pressure high temperature conditions. Cryst Growth Des 11(6):2599–2605CrossRef Palyanov YN, Kupriyanov IN, Sokol AG, Khokhryakov AF, Borzdov YM (2011) Diamond growth from a phosphorus–carbon system at high pressure high temperature conditions. Cryst Growth Des 11(6):2599–2605CrossRef
30.
go back to reference Hu M, Ma H-A, Yan B, Li Y, Li Z, Zhou Z, Jia X (2012) Multiseed method for high quality sheet cubic diamonds synthesis: an effective solution for scientific research and commercial production. Cryst Growth Des 12(1):518–521CrossRef Hu M, Ma H-A, Yan B, Li Y, Li Z, Zhou Z, Jia X (2012) Multiseed method for high quality sheet cubic diamonds synthesis: an effective solution for scientific research and commercial production. Cryst Growth Des 12(1):518–521CrossRef
31.
go back to reference Ashfold MNR, May PW, Rego CA, Everitt NM (1994) Thin film diamond by chemical vapour deposition methods. Chem Soc Rev 23(1):21–30CrossRef Ashfold MNR, May PW, Rego CA, Everitt NM (1994) Thin film diamond by chemical vapour deposition methods. Chem Soc Rev 23(1):21–30CrossRef
32.
go back to reference Holland L, Ojha SM (1979) The growth of carbon films with random atomic structure from ion impact damage in a hydrocarbon plasma. Thin Solid Films 58(1):107–116CrossRef Holland L, Ojha SM (1979) The growth of carbon films with random atomic structure from ion impact damage in a hydrocarbon plasma. Thin Solid Films 58(1):107–116CrossRef
33.
go back to reference Angus JC, Will HA, Stanko WS (1968) Growth of diamond seed crystals by vapor deposition. J Appl Phys 39(6):2915–2922CrossRef Angus JC, Will HA, Stanko WS (1968) Growth of diamond seed crystals by vapor deposition. J Appl Phys 39(6):2915–2922CrossRef
34.
go back to reference Rakha SA, Xintai Z, Zhu D, Guojun Y (2010) Effects of N2 addition on nanocrystalline diamond films by HFCVD in Ar/CH4 gas mixture. Curr Appl Phys 10(1):171–175CrossRef Rakha SA, Xintai Z, Zhu D, Guojun Y (2010) Effects of N2 addition on nanocrystalline diamond films by HFCVD in Ar/CH4 gas mixture. Curr Appl Phys 10(1):171–175CrossRef
35.
go back to reference Kondoh E, Ohta T, Mitomo T, Ohtsuka K (1991) Determination of activation energies for diamond growth by an advanced hot filament chemical vapor deposition method. Appl Phys Lett 59(4):488–490CrossRef Kondoh E, Ohta T, Mitomo T, Ohtsuka K (1991) Determination of activation energies for diamond growth by an advanced hot filament chemical vapor deposition method. Appl Phys Lett 59(4):488–490CrossRef
36.
go back to reference Park SS, Lee JY (1991) Synthesis of diamond films on titanium substrates by hot‐filament chemical vapor deposition. J Appl Phys 69(4):2618–2622CrossRef Park SS, Lee JY (1991) Synthesis of diamond films on titanium substrates by hot‐filament chemical vapor deposition. J Appl Phys 69(4):2618–2622CrossRef
37.
go back to reference Kobayashi T, Hirakuri KK, Mutsukura N, Machi Y (1999) Synthesis of CVD diamond at atmospheric pressure using the hot-filament CVD method. Diam Relat Mater 8(6):1057–1060CrossRef Kobayashi T, Hirakuri KK, Mutsukura N, Machi Y (1999) Synthesis of CVD diamond at atmospheric pressure using the hot-filament CVD method. Diam Relat Mater 8(6):1057–1060CrossRef
38.
go back to reference Ali M, Ürgen M (2012) Simultaneous growth of diamond and nanostructured graphite thin films by hot-filament chemical vapor deposition. Solid State Sci 14(1):150–154CrossRef Ali M, Ürgen M (2012) Simultaneous growth of diamond and nanostructured graphite thin films by hot-filament chemical vapor deposition. Solid State Sci 14(1):150–154CrossRef
39.
go back to reference Hirose Y, Amanuma S, Komaki K (1990) The synthesis of high‐quality diamond in combustion flames. J Appl Phys 68(12):6401–6405CrossRef Hirose Y, Amanuma S, Komaki K (1990) The synthesis of high‐quality diamond in combustion flames. J Appl Phys 68(12):6401–6405CrossRef
40.
go back to reference Kamo M, Sato Y, Matsumoto S, Setaka N (1983) Diamond synthesis from gas phase in microwave plasma. J Cryst Growth 62(3):642–644CrossRef Kamo M, Sato Y, Matsumoto S, Setaka N (1983) Diamond synthesis from gas phase in microwave plasma. J Cryst Growth 62(3):642–644CrossRef
41.
go back to reference Matsumoto S (1985) Chemical vapour deposition of diamond in RF glow discharge. J Mater Sci Lett 4(5):600–602CrossRef Matsumoto S (1985) Chemical vapour deposition of diamond in RF glow discharge. J Mater Sci Lett 4(5):600–602CrossRef
42.
go back to reference Kawarada H, Mar KS, Hiraki A (1987) Large area chemical vapour deposition of diamond particles and films using magneto-microwave plasma. Jpn J Appl Phys 26(Part 2, No. 6):L1032–L1034CrossRef Kawarada H, Mar KS, Hiraki A (1987) Large area chemical vapour deposition of diamond particles and films using magneto-microwave plasma. Jpn J Appl Phys 26(Part 2, No. 6):L1032–L1034CrossRef
43.
go back to reference Salvadori MC, Ager JW III, Brown IG, Krishnan KM (1991) Diamond synthesis by microwave plasma chemical vapor deposition using graphite as the carbon source. Appl Phys Lett 59(19):2386–2388 Salvadori MC, Ager JW III, Brown IG, Krishnan KM (1991) Diamond synthesis by microwave plasma chemical vapor deposition using graphite as the carbon source. Appl Phys Lett 59(19):2386–2388
44.
go back to reference Katsumata S (1992) Diamond synthesis by the microwave plasma chemical vapor deposition method using the pretreated carbon dioxide and hydrogen mixed-gas system. Jpn J Appl Phys 31(Part 1, No. 3):868–871CrossRef Katsumata S (1992) Diamond synthesis by the microwave plasma chemical vapor deposition method using the pretreated carbon dioxide and hydrogen mixed-gas system. Jpn J Appl Phys 31(Part 1, No. 3):868–871CrossRef
45.
go back to reference Tiwari RN, Tiwari JN, Chang L, Yoshimura M (2011) Enhanced nucleation and growth of diamond film on Si by CVD using a chemical precursor. J Phys Chem C 115(32):16063–16073CrossRef Tiwari RN, Tiwari JN, Chang L, Yoshimura M (2011) Enhanced nucleation and growth of diamond film on Si by CVD using a chemical precursor. J Phys Chem C 115(32):16063–16073CrossRef
46.
go back to reference Liang Q, Yan C-S, Lai J, Meng Y-F, Krasnicki S, Shu H, Mao H-K, Hemley RJ (2014) Large area single-crystal diamond synthesis by 915 MHz microwave plasma-assisted chemical vapor deposition. Cryst Growth Des 14(7):3234–3238CrossRef Liang Q, Yan C-S, Lai J, Meng Y-F, Krasnicki S, Shu H, Mao H-K, Hemley RJ (2014) Large area single-crystal diamond synthesis by 915 MHz microwave plasma-assisted chemical vapor deposition. Cryst Growth Des 14(7):3234–3238CrossRef
47.
go back to reference Palnichenko AV, Jonas AM, Charlier JC, Aronin AS, Issi JP (1999) Diamond formation by thermal activation of graphite. Nature 402(6758):162–165CrossRef Palnichenko AV, Jonas AM, Charlier JC, Aronin AS, Issi JP (1999) Diamond formation by thermal activation of graphite. Nature 402(6758):162–165CrossRef
48.
go back to reference Szymanski A, Abgarowicz E, Bakon A, Niedbalska A, Salacinski R, Sentek J (1995) Diamond formed at low pressures and temperatures through liquid-phase hydrothermal synthesis. Diam Relat Mater 4(3):234–235CrossRef Szymanski A, Abgarowicz E, Bakon A, Niedbalska A, Salacinski R, Sentek J (1995) Diamond formed at low pressures and temperatures through liquid-phase hydrothermal synthesis. Diam Relat Mater 4(3):234–235CrossRef
49.
go back to reference Gogotsi YG, Yoshimura M (1994) Formation of carbon films on carbides under hydrothermal conditions. Nature 367(6464):628–630CrossRef Gogotsi YG, Yoshimura M (1994) Formation of carbon films on carbides under hydrothermal conditions. Nature 367(6464):628–630CrossRef
50.
go back to reference Lou Z, Chen Q, Zhang Y, Wang W, Qian Y (2003) Diamond formation by reduction of carbon dioxide at low temperatures. J Am Chem Soc 125(31):9302–9303CrossRef Lou Z, Chen Q, Zhang Y, Wang W, Qian Y (2003) Diamond formation by reduction of carbon dioxide at low temperatures. J Am Chem Soc 125(31):9302–9303CrossRef
51.
go back to reference Narayan RJ, Boehm RD, Sumant AV (2011) Medical applications of diamond particles & surfaces. Mater Today 14(4):154–163CrossRef Narayan RJ, Boehm RD, Sumant AV (2011) Medical applications of diamond particles & surfaces. Mater Today 14(4):154–163CrossRef
52.
go back to reference Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347(6291):354–358CrossRef Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347(6291):354–358CrossRef
53.
go back to reference Huczko A, Lange H, Byszewski P, Poplawska M, Starski A (1997) Fullerene formation in carbon arc: electrode gap dependence and plasma spectroscopy. J Phys Chem A 101(7):1267–1269CrossRef Huczko A, Lange H, Byszewski P, Poplawska M, Starski A (1997) Fullerene formation in carbon arc: electrode gap dependence and plasma spectroscopy. J Phys Chem A 101(7):1267–1269CrossRef
54.
go back to reference Howard JB, McKinnon JT, Makarovsky Y, Lafleur AL, Johnson ME (1991) Fullerenes C60 and C70 in flames. Nature 352(6331):139–141CrossRef Howard JB, McKinnon JT, Makarovsky Y, Lafleur AL, Johnson ME (1991) Fullerenes C60 and C70 in flames. Nature 352(6331):139–141CrossRef
55.
go back to reference McKinnon JT, Bell WL, Barkley RM (1992) Combustion synthesis of fullerenes. Combust Flame 88(1):102–112CrossRef McKinnon JT, Bell WL, Barkley RM (1992) Combustion synthesis of fullerenes. Combust Flame 88(1):102–112CrossRef
56.
go back to reference Reilly PTA, Gieray RA, Whitten WB, Ramsey JM (2000) Fullerene evolution in flame-generated soot. J Am Chem Soc 122(47):11596–11601CrossRef Reilly PTA, Gieray RA, Whitten WB, Ramsey JM (2000) Fullerene evolution in flame-generated soot. J Am Chem Soc 122(47):11596–11601CrossRef
57.
go back to reference Chow L, Wang H, Kleckley S, Daly TK, Buseck PR (1995) Fullerene formation during production of chemical vapor deposited diamond. Appl Phys Lett 66(4):430–432CrossRef Chow L, Wang H, Kleckley S, Daly TK, Buseck PR (1995) Fullerene formation during production of chemical vapor deposited diamond. Appl Phys Lett 66(4):430–432CrossRef
58.
go back to reference Kleckley S, Wang H, Oladeji I, Chow L, Daly TK, Buseck PR, Solouki T, Marshall A (1997) Fullerenes and polymers produced by the chemical vapor deposition method, synthesis and characterization of advanced materials. American Chemical Society, pp 51–60 Kleckley S, Wang H, Oladeji I, Chow L, Daly TK, Buseck PR, Solouki T, Marshall A (1997) Fullerenes and polymers produced by the chemical vapor deposition method, synthesis and characterization of advanced materials. American Chemical Society, pp 51–60
59.
go back to reference Inomata K, Aoki N, Koinuma H (1994) Production of fullerenes by low temperature plasma chemical vaper deposition under atmospheric pressure. Jpn J Appl Phys 33(Part 2, No. 2A):L197–L199CrossRef Inomata K, Aoki N, Koinuma H (1994) Production of fullerenes by low temperature plasma chemical vaper deposition under atmospheric pressure. Jpn J Appl Phys 33(Part 2, No. 2A):L197–L199CrossRef
60.
go back to reference Wang X, Xu B, Liu X, Guo J, Ichinose H (2006) Synthesis of Fe-included onion-like fullerenes by chemical vapor deposition. Diam Relat Mater 15(1):147–150CrossRef Wang X, Xu B, Liu X, Guo J, Ichinose H (2006) Synthesis of Fe-included onion-like fullerenes by chemical vapor deposition. Diam Relat Mater 15(1):147–150CrossRef
61.
go back to reference Churilov GN (2008) Synthesis of fullerenes and other nanomaterials in arc discharge, Fullerenes. Nanotubes Carbon Nanostruct 16(5–6):395–403CrossRef Churilov GN (2008) Synthesis of fullerenes and other nanomaterials in arc discharge, Fullerenes. Nanotubes Carbon Nanostruct 16(5–6):395–403CrossRef
62.
go back to reference Lieber CM, Chen CC (1994) Preparation of fullerenes and fullerene-based materials. Solid State Phys Adv Res Appl 109–148 Lieber CM, Chen CC (1994) Preparation of fullerenes and fullerene-based materials. Solid State Phys Adv Res Appl 109–148
63.
go back to reference Caraman M, Lazar JB, Stamate M, La (2008) ARC DISCHARGE INSTALATION FOR FULLERENE PRODUCTION Caraman M, Lazar JB, Stamate M, La (2008) ARC DISCHARGE INSTALATION FOR FULLERENE PRODUCTION
64.
go back to reference Sundar CS, Bharathi A, Hariharan Y, Janaki J, Sankara Sastry V, Radhakrishnan TS (1992) Thermal decomposition of C60. Solid State Commun 84(8):823–826 Sundar CS, Bharathi A, Hariharan Y, Janaki J, Sankara Sastry V, Radhakrishnan TS (1992) Thermal decomposition of C60. Solid State Commun 84(8):823–826
65.
go back to reference Wang CZ, Xu CH, Chan CT, Ho KM (1992) Disintegration and formation of fullerene (C60). J Phys Chem 96(9):3563–3565CrossRef Wang CZ, Xu CH, Chan CT, Ho KM (1992) Disintegration and formation of fullerene (C60). J Phys Chem 96(9):3563–3565CrossRef
66.
go back to reference Taylor R, Parsons JP, Avent AG, Rannard SP, Dennis TJ, Hare JP, Kroto HW, Walton DRM (1991) Degradation of C60 by light. Nature 351(6324):277–277CrossRef Taylor R, Parsons JP, Avent AG, Rannard SP, Dennis TJ, Hare JP, Kroto HW, Walton DRM (1991) Degradation of C60 by light. Nature 351(6324):277–277CrossRef
67.
go back to reference Carbon arc solar simulator. Appl Opt 30(10):1290–1293 Carbon arc solar simulator. Appl Opt 30(10):1290–1293
68.
go back to reference Meubus P (1986) Effects of UV light irradiation on propane in an argon plasma. Plasma Chem Plasma Process 6(2):143–157CrossRef Meubus P (1986) Effects of UV light irradiation on propane in an argon plasma. Plasma Chem Plasma Process 6(2):143–157CrossRef
69.
go back to reference Parker DH, Chatterjee K, Wurz P, Lykke KR, Pellin MJ, Stock LM, Hemminger JC (1992) Fullerenes and giant fullerenes: synthesis, separation, and mass spectrometric characterization. Carbon 30(8):1167–1182CrossRef Parker DH, Chatterjee K, Wurz P, Lykke KR, Pellin MJ, Stock LM, Hemminger JC (1992) Fullerenes and giant fullerenes: synthesis, separation, and mass spectrometric characterization. Carbon 30(8):1167–1182CrossRef
70.
go back to reference Scrivens WA, Tour JM (1992) Synthesis of gram quantities of C60 by plasma discharge in a modified round-bottomed flask. Key parameters for yield optimization and purification. J Org Chem 57(25):6932–6936CrossRef Scrivens WA, Tour JM (1992) Synthesis of gram quantities of C60 by plasma discharge in a modified round-bottomed flask. Key parameters for yield optimization and purification. J Org Chem 57(25):6932–6936CrossRef
71.
go back to reference Lamb LD, Huffman DR (1993) Fullerene production. J Phys Chem Solids 54(12):1635–1643CrossRef Lamb LD, Huffman DR (1993) Fullerene production. J Phys Chem Solids 54(12):1635–1643CrossRef
72.
go back to reference Yu T, Li J-C, Cai F-X, Fan X-J (1994) Chen M-SYR, Wu W, Xiao N, Tian D-C, Zhao W-K, Fang Y-L, Kuang A-Y. Fullerene Sci Technol 2(3):223–231CrossRef Yu T, Li J-C, Cai F-X, Fan X-J (1994) Chen M-SYR, Wu W, Xiao N, Tian D-C, Zhao W-K, Fang Y-L, Kuang A-Y. Fullerene Sci Technol 2(3):223–231CrossRef
73.
go back to reference Koprinarov N, Marinov M, Konstantinova M, Ranguelov B (2000) Fullerene structure synthesis by DC arc discharge in ferrocene vapours. Vacuum 58(2):208–214CrossRef Koprinarov N, Marinov M, Konstantinova M, Ranguelov B (2000) Fullerene structure synthesis by DC arc discharge in ferrocene vapours. Vacuum 58(2):208–214CrossRef
74.
go back to reference Chibante LPF, Thess A, Alford JM, Diener MD, Smalley RE (1993) Solar generation of the fullerenes. J Phys Chem 97(34):8696–8700CrossRef Chibante LPF, Thess A, Alford JM, Diener MD, Smalley RE (1993) Solar generation of the fullerenes. J Phys Chem 97(34):8696–8700CrossRef
75.
go back to reference Brusatin G, Signorini R (2002) Linear and nonlinear optical properties of fullerenes in solid state materials. J Mater Chem 12(7):1964–1977CrossRef Brusatin G, Signorini R (2002) Linear and nonlinear optical properties of fullerenes in solid state materials. J Mater Chem 12(7):1964–1977CrossRef
76.
go back to reference He YJ, Chen H-Y, Hou JH, Li YF (2010) Indene−C60 bisadduct: a new acceptor for high-performance polymer solar cells. J Am Chem Soc 132(4):1377–1382CrossRef He YJ, Chen H-Y, Hou JH, Li YF (2010) Indene−C60 bisadduct: a new acceptor for high-performance polymer solar cells. J Am Chem Soc 132(4):1377–1382CrossRef
77.
go back to reference Peng P, Li F-F, Neti VSPK, Metta-Magana AJ, Echegoyen L (2014) Design, synthesis, and X-ray crystal structure of a fullerene-linked metal–organic framework. Angew Chem Int Ed 53(1):160–163CrossRef Peng P, Li F-F, Neti VSPK, Metta-Magana AJ, Echegoyen L (2014) Design, synthesis, and X-ray crystal structure of a fullerene-linked metal–organic framework. Angew Chem Int Ed 53(1):160–163CrossRef
78.
go back to reference Figueira-Duarte TM, Clifford J, Amendola V, Gegout A, Olivier J, Cardinal F, Meneghetti M, Armaroli N, Nierengarten J-F (2006) Synthesis and excited state properties of a fullerene derivative bearing a star-shaped multi-photon absorption chromophore. Chem Commun 19:2054–2056 Figueira-Duarte TM, Clifford J, Amendola V, Gegout A, Olivier J, Cardinal F, Meneghetti M, Armaroli N, Nierengarten J-F (2006) Synthesis and excited state properties of a fullerene derivative bearing a star-shaped multi-photon absorption chromophore. Chem Commun 19:2054–2056
79.
go back to reference Garg V, Kodis G, Chachisvilis M, Hambourger M, Moore AL, Moore TA, Gust D (2011) Conformationally constrained macrocyclic diporphyrin−fullerene artificial photosynthetic reaction center. J Am Chem Soc 133(9):2944–2954CrossRef Garg V, Kodis G, Chachisvilis M, Hambourger M, Moore AL, Moore TA, Gust D (2011) Conformationally constrained macrocyclic diporphyrin−fullerene artificial photosynthetic reaction center. J Am Chem Soc 133(9):2944–2954CrossRef
80.
go back to reference Sawamura M, Kawai K, Matsuo Y, Kanie K, Kato T, Nakamura E (2002) Stacking of conical molecules with a fullerene apex into polar columns in crystals and liquid crystals. Nature 419(6908):702–705CrossRef Sawamura M, Kawai K, Matsuo Y, Kanie K, Kato T, Nakamura E (2002) Stacking of conical molecules with a fullerene apex into polar columns in crystals and liquid crystals. Nature 419(6908):702–705CrossRef
81.
go back to reference Inglis AJ, Pierrat P, Muller T, Bräse S, Barner-Kowollik C (2010) Well-defined star shaped polymer-fullerene hybrids via click chemistry. Soft Matter 6(1):82–84CrossRef Inglis AJ, Pierrat P, Muller T, Bräse S, Barner-Kowollik C (2010) Well-defined star shaped polymer-fullerene hybrids via click chemistry. Soft Matter 6(1):82–84CrossRef
82.
go back to reference Nava MG, Setayesh S, Rameau A, Masson P, Nierengarten J-F (2002) Fullerene-functionalized polyesters: synthesis, characterization and incorporation in photovoltaic cells. New J Chem 26(11):1584–1589CrossRef Nava MG, Setayesh S, Rameau A, Masson P, Nierengarten J-F (2002) Fullerene-functionalized polyesters: synthesis, characterization and incorporation in photovoltaic cells. New J Chem 26(11):1584–1589CrossRef
83.
go back to reference Radushkevich LV, Lukyanovich VM (1952) The structure of carbon forming in thermal decomposition of carbon monoxide on an iron catalyst. Russ J Phys Chem 26:88–95 Radushkevich LV, Lukyanovich VM (1952) The structure of carbon forming in thermal decomposition of carbon monoxide on an iron catalyst. Russ J Phys Chem 26:88–95
84.
go back to reference Oberlin A, Endo M, Koyama T (1976) Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32(3):335–349CrossRef Oberlin A, Endo M, Koyama T (1976) Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32(3):335–349CrossRef
85.
go back to reference Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–605CrossRef Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–605CrossRef
86.
go back to reference Dresselhaus MS, Dresselhaus G, Saito R (1995) Physics of carbon nanotubes. Carbon 33(7):883–891CrossRef Dresselhaus MS, Dresselhaus G, Saito R (1995) Physics of carbon nanotubes. Carbon 33(7):883–891CrossRef
87.
go back to reference Arora N, Sharma NN (2014) Arc discharge synthesis of carbon nanotubes: comprehensive review. Diam Relat Mater 50:135–150CrossRef Arora N, Sharma NN (2014) Arc discharge synthesis of carbon nanotubes: comprehensive review. Diam Relat Mater 50:135–150CrossRef
88.
go back to reference Seraphin S, Zhou D, Jiao J, Minke MA, Wang S, Yadav T, Withers JC (1994) Catalytic role of nickel, palladium, and platinum in the formation of carbon nanoclusters. Chem Phys Let 217(3):191–195CrossRef Seraphin S, Zhou D, Jiao J, Minke MA, Wang S, Yadav T, Withers JC (1994) Catalytic role of nickel, palladium, and platinum in the formation of carbon nanoclusters. Chem Phys Let 217(3):191–195CrossRef
89.
go back to reference Saito Y, Nishikubo K, Kawabata K, Matsumoto T (1996) Carbon nanocapsules and single‐layered nanotubes produced with platinum‐group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge. J Appl Phys 80(5):3062–3067CrossRef Saito Y, Nishikubo K, Kawabata K, Matsumoto T (1996) Carbon nanocapsules and single‐layered nanotubes produced with platinum‐group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge. J Appl Phys 80(5):3062–3067CrossRef
90.
go back to reference Wang H, Li Z, Inoue S, Ando Y (2010) Influence of mo on the growth of single-walled carbon nanotubes in arc discharge. J Nanosci Nanotechnol 10(6):3988–3993CrossRef Wang H, Li Z, Inoue S, Ando Y (2010) Influence of mo on the growth of single-walled carbon nanotubes in arc discharge. J Nanosci Nanotechnol 10(6):3988–3993CrossRef
91.
go back to reference Xing G, Jia S, Xing J, Shi Z (2007) Analysis of the carbon nano-structures formation in liquid arcing. Plasma Sci Technol 9:770 Xing G, Jia S, Xing J, Shi Z (2007) Analysis of the carbon nano-structures formation in liquid arcing. Plasma Sci Technol 9:770
92.
go back to reference Shi Z, Lian Y, Liao F, Zhou X, Gu Z, Zhang Y, Iijima S (1999) Purification of single-wall carbon nanotubes. Solid State Commun 112(1):35–37CrossRef Shi Z, Lian Y, Liao F, Zhou X, Gu Z, Zhang Y, Iijima S (1999) Purification of single-wall carbon nanotubes. Solid State Commun 112(1):35–37CrossRef
93.
go back to reference Maschmann MR, Franklin AD, Amama PB, Zakharov DN, Stach EA, Sands TD, Fisher TS (2006) Vertical single- and double-walled carbon nanotubes grown from modified porous anodic alumina templates. Nanotechnology 17(15):3925–3929CrossRef Maschmann MR, Franklin AD, Amama PB, Zakharov DN, Stach EA, Sands TD, Fisher TS (2006) Vertical single- and double-walled carbon nanotubes grown from modified porous anodic alumina templates. Nanotechnology 17(15):3925–3929CrossRef
94.
go back to reference Hutchison JL, Kiselev NA, Krinichnaya EP, Krestinin AV, Loutfy RO, Morawsky AP, Muradyan VE, Obraztsova ED, Sloan J, Terekhov SV, Zakharov DN (2001) Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon 39(5):761–770CrossRef Hutchison JL, Kiselev NA, Krinichnaya EP, Krestinin AV, Loutfy RO, Morawsky AP, Muradyan VE, Obraztsova ED, Sloan J, Terekhov SV, Zakharov DN (2001) Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon 39(5):761–770CrossRef
95.
go back to reference Sugai T, Yoshida H, Shimada T, Okazaki T, Shinohara H, Bandow S (2003) New synthesis of high-quality double-walled carbon nanotubes by high-temperature pulsed arc discharge. Nano Letter 3(6):769–773CrossRef Sugai T, Yoshida H, Shimada T, Okazaki T, Shinohara H, Bandow S (2003) New synthesis of high-quality double-walled carbon nanotubes by high-temperature pulsed arc discharge. Nano Letter 3(6):769–773CrossRef
96.
go back to reference Huang HJ, Kajiura H, Tsutsui S, Murakami Y, Ata M (2003) High-quality double-walled carbon nanotube super bundles grown in a hydrogen-free atmosphere. J Phys Chem B 107(34):8794–8798CrossRef Huang HJ, Kajiura H, Tsutsui S, Murakami Y, Ata M (2003) High-quality double-walled carbon nanotube super bundles grown in a hydrogen-free atmosphere. J Phys Chem B 107(34):8794–8798CrossRef
97.
go back to reference Liu Q, Ren W, Li F, Cong H, Cheng H-M (2007) Synthesis and high thermal stability of double-walled carbon nanotubes using nickel formate dihydrate as catalyst precursor. J Phys Chem C 111(13):5006–5013CrossRef Liu Q, Ren W, Li F, Cong H, Cheng H-M (2007) Synthesis and high thermal stability of double-walled carbon nanotubes using nickel formate dihydrate as catalyst precursor. J Phys Chem C 111(13):5006–5013CrossRef
98.
go back to reference Li L, Li F, Liu C, Cheng H-M (2005) Synthesis and characterization of double-walled carbon nanotubes from multi-walled carbon nanotubes by hydrogen-arc discharge. Carbon 43(3):623–629CrossRef Li L, Li F, Liu C, Cheng H-M (2005) Synthesis and characterization of double-walled carbon nanotubes from multi-walled carbon nanotubes by hydrogen-arc discharge. Carbon 43(3):623–629CrossRef
99.
go back to reference Wang M, Zhao XL, Ohkohchi M, Ando Y (1996) Carbon nanotubes grown on the surface of cathode deposit by arc discharge. Fullerene Sci Technol 4(5):1027–1039CrossRef Wang M, Zhao XL, Ohkohchi M, Ando Y (1996) Carbon nanotubes grown on the surface of cathode deposit by arc discharge. Fullerene Sci Technol 4(5):1027–1039CrossRef
100.
go back to reference Parkansky N, Boxman RL, Alterkop B, Zontag I, Lereah Y, Barkay Z (2004) Single-pulse arc production of carbon nanotubes in ambient air. J Phys D Appl Phys 37(19):2715–2719CrossRef Parkansky N, Boxman RL, Alterkop B, Zontag I, Lereah Y, Barkay Z (2004) Single-pulse arc production of carbon nanotubes in ambient air. J Phys D Appl Phys 37(19):2715–2719CrossRef
101.
go back to reference Tsai YY, Su JS, Su CY, He WH (2009) Production of carbon nanotubes by single-pulse discharge in air. J Mater Process Technol 209(9):4413–4416CrossRef Tsai YY, Su JS, Su CY, He WH (2009) Production of carbon nanotubes by single-pulse discharge in air. J Mater Process Technol 209(9):4413–4416CrossRef
102.
go back to reference Sornsuwit N, Maaithong W (2008) Study of multi-walled carbon nanotube synthesis using liquid nitrogen and post-process filtration. Int J Precis Eng Manuf 9(3):18–21 Sornsuwit N, Maaithong W (2008) Study of multi-walled carbon nanotube synthesis using liquid nitrogen and post-process filtration. Int J Precis Eng Manuf 9(3):18–21
103.
go back to reference Montoro LA, Lofrano RCZ, Rosolen JM (2005) Synthesis of single-walled and multi-walled carbon nanotubes by arc-water method. Carbon 43(1):200–303CrossRef Montoro LA, Lofrano RCZ, Rosolen JM (2005) Synthesis of single-walled and multi-walled carbon nanotubes by arc-water method. Carbon 43(1):200–303CrossRef
104.
go back to reference Jung SH, Kim MR, Jeong SH, Kim SU, Lee OJ, Lee KH, Suh JH, Park CK (2003) High-yield synthesis of multi-walled carbon nanotubes by arc discharge in liquid nitrogen. Appl Phys A Mater Sci Process 76(2):285–286CrossRef Jung SH, Kim MR, Jeong SH, Kim SU, Lee OJ, Lee KH, Suh JH, Park CK (2003) High-yield synthesis of multi-walled carbon nanotubes by arc discharge in liquid nitrogen. Appl Phys A Mater Sci Process 76(2):285–286CrossRef
105.
go back to reference Guo J, Wang X, Yao Y, Yang X, Liu X, Xu B (2007) Structure of nanocarbons prepared by arc discharge in water. Mater Chem Phys 105(2):175–178CrossRef Guo J, Wang X, Yao Y, Yang X, Liu X, Xu B (2007) Structure of nanocarbons prepared by arc discharge in water. Mater Chem Phys 105(2):175–178CrossRef
106.
go back to reference Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE (1995) Catalytic growth of single-walled manotubes by laser vaporization. Chem Phys Lett 243(1):49–54CrossRef Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE (1995) Catalytic growth of single-walled manotubes by laser vaporization. Chem Phys Lett 243(1):49–54CrossRef
107.
go back to reference Yudasaka M, Yamada R, Sensui N, Wilkins T, Ichihashi T, Iijima S (1999) Mechanism of the effect of NiCo, Ni and Co catalysts on the yield of single-wall carbon nanotubes formed by pulsed Nd:YAG laser ablation. J Phys Chem 103(30):6224–6229CrossRef Yudasaka M, Yamada R, Sensui N, Wilkins T, Ichihashi T, Iijima S (1999) Mechanism of the effect of NiCo, Ni and Co catalysts on the yield of single-wall carbon nanotubes formed by pulsed Nd:YAG laser ablation. J Phys Chem 103(30):6224–6229CrossRef
108.
go back to reference Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Linzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE (1996) Crystalline ropes of metallic carbon nanotubes. Science 273(5274):483CrossRef Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Linzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE (1996) Crystalline ropes of metallic carbon nanotubes. Science 273(5274):483CrossRef
109.
go back to reference Bandow S, Asaka S, Saito Y, Rao AM, Grigorian L, Richter E, Eklund PC (1998) Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes. Phys Rev Lett 80(17):3779–3782CrossRef Bandow S, Asaka S, Saito Y, Rao AM, Grigorian L, Richter E, Eklund PC (1998) Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes. Phys Rev Lett 80(17):3779–3782CrossRef
110.
go back to reference Maser WK, Muñoz E, Benito AM, Martı́nez MT, de la Fuente GF, Maniette Y, Anglaret E, Sauvajol JL (1998) Production of high-density single-walled nanotube material by a simple laser-ablation method. Chem Phys Lett 292(4):587–593CrossRef Maser WK, Muñoz E, Benito AM, Martı́nez MT, de la Fuente GF, Maniette Y, Anglaret E, Sauvajol JL (1998) Production of high-density single-walled nanotube material by a simple laser-ablation method. Chem Phys Lett 292(4):587–593CrossRef
111.
go back to reference Braidy N, El Khakani MA, Botton GA (2002) Single-wall carbon nanotubes synthesis by means of UV laser vaporization. Chem Phys Lett 354(1):88–92CrossRef Braidy N, El Khakani MA, Botton GA (2002) Single-wall carbon nanotubes synthesis by means of UV laser vaporization. Chem Phys Lett 354(1):88–92CrossRef
112.
go back to reference Chen M, Chen C-M, Koo H-S, Chen C-F (2003) Catalyzed growth model of carbon nanotubes by microwave plasma chemical vapor deposition using CH4 and CO2 gas mixtures. Diam Relat Mater 12(10):1829–1835CrossRef Chen M, Chen C-M, Koo H-S, Chen C-F (2003) Catalyzed growth model of carbon nanotubes by microwave plasma chemical vapor deposition using CH4 and CO2 gas mixtures. Diam Relat Mater 12(10):1829–1835CrossRef
113.
go back to reference Purohit R, Purohit K, Rana S, Rana RS, Patel V (2014) Carbon nanotubes and their growth methods. Proc Mater Sci 6:716–728CrossRef Purohit R, Purohit K, Rana S, Rana RS, Patel V (2014) Carbon nanotubes and their growth methods. Proc Mater Sci 6:716–728CrossRef
114.
go back to reference Bonaccorso F, Bongiorno C, Fazio B, Gucciardi PG, Maragò OM, Morone A, Spinella C (2007) Pulsed laser deposition of multiwalled carbon nanotubes thin films. Appl Surf Sci 254(4):1260–1263CrossRef Bonaccorso F, Bongiorno C, Fazio B, Gucciardi PG, Maragò OM, Morone A, Spinella C (2007) Pulsed laser deposition of multiwalled carbon nanotubes thin films. Appl Surf Sci 254(4):1260–1263CrossRef
115.
go back to reference Muñoz E, Maser WK, Benito AM, de la Fuente GF, Martı́nez MT (1999) Single-walled carbon nanotubes produced by laser ablation under different inert atmospheres. Synth Met 103(1):2490–2491CrossRef Muñoz E, Maser WK, Benito AM, de la Fuente GF, Martı́nez MT (1999) Single-walled carbon nanotubes produced by laser ablation under different inert atmospheres. Synth Met 103(1):2490–2491CrossRef
116.
go back to reference Muñoz E, Maser WK, Benito AM, Martı́nez MT, de la Fuente GF, Maniette Y, Righi A, Anglaret E, Sauvajol JL (2000) Gas and pressure effects on the production of single-walled carbon nanotubes by laser ablation. Carbon 38(10):1445–1451CrossRef Muñoz E, Maser WK, Benito AM, Martı́nez MT, de la Fuente GF, Maniette Y, Righi A, Anglaret E, Sauvajol JL (2000) Gas and pressure effects on the production of single-walled carbon nanotubes by laser ablation. Carbon 38(10):1445–1451CrossRef
117.
go back to reference Hiura H, Ebbesen TW, Tanigaki K (1995) Opening and purification of carbon nanotubes in high yields, Adv Mater 7(3):275–276 Hiura H, Ebbesen TW, Tanigaki K (1995) Opening and purification of carbon nanotubes in high yields, Adv Mater 7(3):275–276
118.
go back to reference Varshney D, Weiner BR, Morell G (2010) Growth and field emission study of a monolithic carbon nanotube/diamond composite. Carbon 48(12):3353–3358CrossRef Varshney D, Weiner BR, Morell G (2010) Growth and field emission study of a monolithic carbon nanotube/diamond composite. Carbon 48(12):3353–3358CrossRef
119.
go back to reference Tempel H, Joshi R, Schneider JJ (2010) Ink jet printing of ferritin as method for selective catalyst patterning and growth of multiwalled carbon nanotubes. Mater Chem Phys 121(1):178–183CrossRef Tempel H, Joshi R, Schneider JJ (2010) Ink jet printing of ferritin as method for selective catalyst patterning and growth of multiwalled carbon nanotubes. Mater Chem Phys 121(1):178–183CrossRef
120.
go back to reference Patole SP, Alegaonkar PS, Lee H-C, Yoo J-B (2008) Optimization of water assisted chemical vapor deposition parameters for super growth of carbon nanotubes. Carbon 46(14):1987–1993CrossRef Patole SP, Alegaonkar PS, Lee H-C, Yoo J-B (2008) Optimization of water assisted chemical vapor deposition parameters for super growth of carbon nanotubes. Carbon 46(14):1987–1993CrossRef
121.
go back to reference Brown B, Parker CB, Stoner BR, Glass JT (2011) Growth of vertically aligned bamboo-like carbon nanotubes from ammonia/methane precursors using a platinum catalyst. Carbon 49(1):266–274CrossRef Brown B, Parker CB, Stoner BR, Glass JT (2011) Growth of vertically aligned bamboo-like carbon nanotubes from ammonia/methane precursors using a platinum catalyst. Carbon 49(1):266–274CrossRef
122.
go back to reference Andrews R, Jacques D, Qian D, Rantell T (2002) Multiwall carbon nanotubes: synthesis and application. Acc Chem Res 35(12):1008–1017CrossRef Andrews R, Jacques D, Qian D, Rantell T (2002) Multiwall carbon nanotubes: synthesis and application. Acc Chem Res 35(12):1008–1017CrossRef
123.
go back to reference Dumpala S, Jasinski JB, Sumanasekera GU, Sunkara MK (2011) Large area synthesis of conical carbon nanotube arrays on graphite and tungsten foil substrates. Carbon 49(8):2725–2734CrossRef Dumpala S, Jasinski JB, Sumanasekera GU, Sunkara MK (2011) Large area synthesis of conical carbon nanotube arrays on graphite and tungsten foil substrates. Carbon 49(8):2725–2734CrossRef
124.
go back to reference Ramesh P, Okazaki T, Taniguchi R, Kimura J, Sugai T, Sato K, Ozeki Y, Shinohara H (2005) Selective chemical vapor deposition synthesis of double-wall carbon nanotubes on mesoporous silica. J Phys Chem B 109(3):1141–1147CrossRef Ramesh P, Okazaki T, Taniguchi R, Kimura J, Sugai T, Sato K, Ozeki Y, Shinohara H (2005) Selective chemical vapor deposition synthesis of double-wall carbon nanotubes on mesoporous silica. J Phys Chem B 109(3):1141–1147CrossRef
125.
go back to reference Zhu J, Yudasaka M, Iijima S (2003) A catalytic chemical vapor deposition synthesis of double-walled carbon nanotubes over metal catalysts supported on a mesoporous material. Chem Phys Lett 380(5):496–502CrossRef Zhu J, Yudasaka M, Iijima S (2003) A catalytic chemical vapor deposition synthesis of double-walled carbon nanotubes over metal catalysts supported on a mesoporous material. Chem Phys Lett 380(5):496–502CrossRef
126.
go back to reference Szabó A, Perri C, Csató A, Giordano G, Vuono D, Nagy JB (2010) Synthesis methods of carbon nanotubes and related materials. Materials 3(5):3092–3140CrossRef Szabó A, Perri C, Csató A, Giordano G, Vuono D, Nagy JB (2010) Synthesis methods of carbon nanotubes and related materials. Materials 3(5):3092–3140CrossRef
127.
go back to reference Xiang X, Zhang L, Hima HI, Li F, Evans DG (2009) Co-based catalysts from Co/Fe/Al layered double hydroxides for preparation of carbon nanotubes. Appl Clay Sci 42(3):405–409CrossRef Xiang X, Zhang L, Hima HI, Li F, Evans DG (2009) Co-based catalysts from Co/Fe/Al layered double hydroxides for preparation of carbon nanotubes. Appl Clay Sci 42(3):405–409CrossRef
128.
go back to reference Flahaut E, Laurent C, Peigney A (2005) Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation. Carbon 43(2):375–383CrossRef Flahaut E, Laurent C, Peigney A (2005) Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation. Carbon 43(2):375–383CrossRef
129.
go back to reference Jiang Q, Song LJ, Yang H, He ZW, Zhao Y (2008) Preparation and characterization on the carbon nanotube chemically modified electrode grown in situ. Electrochem Commun 10(3):424–427CrossRef Jiang Q, Song LJ, Yang H, He ZW, Zhao Y (2008) Preparation and characterization on the carbon nanotube chemically modified electrode grown in situ. Electrochem Commun 10(3):424–427CrossRef
130.
go back to reference Lyu SC, Liu BC, Lee CJ, Kang HK, Yang C-W, Park CY (2003) High-quality double-walled carbon nanotubes produced by catalytic decomposition of benzene. Chem Mater 15(20):3951–3954CrossRef Lyu SC, Liu BC, Lee CJ, Kang HK, Yang C-W, Park CY (2003) High-quality double-walled carbon nanotubes produced by catalytic decomposition of benzene. Chem Mater 15(20):3951–3954CrossRef
131.
go back to reference Tang N, Kuo W, Jeng C, Wang L, Lin K, Du Y (2010) Coil-in-coil carbon nanocoils: 11 gram-scale synthesis, single nanocoil electrical properties, and electrical contact improvement. ACS Nano 4(2):781–788 Tang N, Kuo W, Jeng C, Wang L, Lin K, Du Y (2010) Coil-in-coil carbon nanocoils: 11 gram-scale synthesis, single nanocoil electrical properties, and electrical contact improvement. ACS Nano 4(2):781–788
132.
go back to reference Liu Z, Jiao L, Yao Y, Xian X, Zhang J (2010) Aligned, ultralong single-walled carbon nanotubes: from synthesis, sorting, to electronic devices. Adv Mater 22(21):2285–2310CrossRef Liu Z, Jiao L, Yao Y, Xian X, Zhang J (2010) Aligned, ultralong single-walled carbon nanotubes: from synthesis, sorting, to electronic devices. Adv Mater 22(21):2285–2310CrossRef
133.
go back to reference Zhang D, Yan T, Pan C, Shi L, Zhang J (2009) Carbon nanotube-assisted synthesis and high catalytic activity of CeO2 hollow nanobeads. Mater Chem Phys 113(2):527–530CrossRef Zhang D, Yan T, Pan C, Shi L, Zhang J (2009) Carbon nanotube-assisted synthesis and high catalytic activity of CeO2 hollow nanobeads. Mater Chem Phys 113(2):527–530CrossRef
134.
go back to reference Sano N, Ishimaru S, Tamaon H (2010) Synthesis of carbon nanotubes in graphite microchannels in gas-flow and submerged-in-liquid reactors. Mater Chem Phys 122(2):474–479CrossRef Sano N, Ishimaru S, Tamaon H (2010) Synthesis of carbon nanotubes in graphite microchannels in gas-flow and submerged-in-liquid reactors. Mater Chem Phys 122(2):474–479CrossRef
135.
go back to reference Lim S, Luo Z, Shen Z, Lin J (2010) Plasma-assisted synthesis of carbon nanotubes. Nanoscale Res Lett 5(9):1377CrossRef Lim S, Luo Z, Shen Z, Lin J (2010) Plasma-assisted synthesis of carbon nanotubes. Nanoscale Res Lett 5(9):1377CrossRef
136.
go back to reference Kim SM, Gangloff L (2009) Growth of carbon nanotubes (CNTs) on metallic underlayers by diffusion plasma-enhanced chemical vapour deposition (DPECVD). Phys E 41(10):1763–1766CrossRef Kim SM, Gangloff L (2009) Growth of carbon nanotubes (CNTs) on metallic underlayers by diffusion plasma-enhanced chemical vapour deposition (DPECVD). Phys E 41(10):1763–1766CrossRef
137.
go back to reference Vollebregt S, Derakhshandeh J, Ishihara R, Wu MY, Beenakker CIM (2010) Growth of high-density self-aligned carbon nanotubes and nanofibers using palladium catalyst. J Electron Mater 39(4):371–375CrossRef Vollebregt S, Derakhshandeh J, Ishihara R, Wu MY, Beenakker CIM (2010) Growth of high-density self-aligned carbon nanotubes and nanofibers using palladium catalyst. J Electron Mater 39(4):371–375CrossRef
138.
go back to reference Häffner M, Schneider K, Schuster BE, Stamm B, Latteyer F, Fleischer M, Burkhardt C, Chassé T, Stett A, Kern DP (2010) Plasma enhanced chemical vapor deposition grown carbon nanotubes from ferritin catalyst for neural stimulation microelectrodes. Microelectron Eng 87(5):734–737 Häffner M, Schneider K, Schuster BE, Stamm B, Latteyer F, Fleischer M, Burkhardt C, Chassé T, Stett A, Kern DP (2010) Plasma enhanced chemical vapor deposition grown carbon nanotubes from ferritin catalyst for neural stimulation microelectrodes. Microelectron Eng 87(5):734–737
139.
go back to reference Rodriguez NM, Chambers A, Baker RTK (1995) Catalytic engineering of carbon nanostructures. Langmuir 11(10):3862–3866CrossRef Rodriguez NM, Chambers A, Baker RTK (1995) Catalytic engineering of carbon nanostructures. Langmuir 11(10):3862–3866CrossRef
140.
go back to reference Zhou Z, Lai C, Zhang L, Qian Y, Hou H, Reneker DH, Fong H (2009) Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties. Polymer 50(13):2999–3006CrossRef Zhou Z, Lai C, Zhang L, Qian Y, Hou H, Reneker DH, Fong H (2009) Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties. Polymer 50(13):2999–3006CrossRef
141.
go back to reference Motojima S, Kawaguchi M, Nozaki K, Iwanaga H (1990) Growth of regularly coiled carbon filaments by Ni catalyzed pyrolysis of acetylene, and their morphology and extension characteristics. Appl Phys Lett 56(4):321–323CrossRef Motojima S, Kawaguchi M, Nozaki K, Iwanaga H (1990) Growth of regularly coiled carbon filaments by Ni catalyzed pyrolysis of acetylene, and their morphology and extension characteristics. Appl Phys Lett 56(4):321–323CrossRef
142.
go back to reference Motojima S, Chen Q (1999) Three-dimensional growth mechanism of cosmo-mimetic carbon microcoils obtained by chemical vapor deposition. J Appl Phys 85(7):3919–3921CrossRef Motojima S, Chen Q (1999) Three-dimensional growth mechanism of cosmo-mimetic carbon microcoils obtained by chemical vapor deposition. J Appl Phys 85(7):3919–3921CrossRef
143.
go back to reference Zhang M, Nakayama Y, Pan L (2000) Synthesis of carbon tubule nanocoils in high yield using iron-coated indium tin oxide as catalyst. Jpn J Appl Phys 39(Part 2, No. 12A):L1242–L1244CrossRef Zhang M, Nakayama Y, Pan L (2000) Synthesis of carbon tubule nanocoils in high yield using iron-coated indium tin oxide as catalyst. Jpn J Appl Phys 39(Part 2, No. 12A):L1242–L1244CrossRef
144.
go back to reference Raghubanshi H, Dikio ED (2015) Synthesis of helical carbon fibers and related materials: a review on the past and recent developments. Nanomaterials (Basel, Switzerland) 5(2):937–968 Raghubanshi H, Dikio ED (2015) Synthesis of helical carbon fibers and related materials: a review on the past and recent developments. Nanomaterials (Basel, Switzerland) 5(2):937–968
145.
go back to reference Song H, Shen W (2014) Carbon nanofibers: synthesis and applications. J Nanosci Nanotechnol 14(2):1799–1810CrossRef Song H, Shen W (2014) Carbon nanofibers: synthesis and applications. J Nanosci Nanotechnol 14(2):1799–1810CrossRef
146.
go back to reference Minea TM, Point S, Granier A, Touzeau M (2004) Room temperature synthesis of carbon nanofibers containing nitrogen by plasma-enhanced chemical vapor deposition. Appl Phys Lett 85(7):1244–1246CrossRef Minea TM, Point S, Granier A, Touzeau M (2004) Room temperature synthesis of carbon nanofibers containing nitrogen by plasma-enhanced chemical vapor deposition. Appl Phys Lett 85(7):1244–1246CrossRef
147.
go back to reference Zou J-z, Zeng X-r, Xiong X-b, Tang H-l, Li L, Liu Q, Li Z-q (2007) Preparation of vapor grown carbon fibers by microwave pyrolysis chemical vapor deposition. Carbon 45(4):828–832CrossRef Zou J-z, Zeng X-r, Xiong X-b, Tang H-l, Li L, Liu Q, Li Z-q (2007) Preparation of vapor grown carbon fibers by microwave pyrolysis chemical vapor deposition. Carbon 45(4):828–832CrossRef
148.
go back to reference Wen Y, Kok MDR, Tafoya JPV, Sobrido ABJ, Bell E, Gostick JT, Herou S, Schlee P, Titirici M-M, Brett DJL, Shearing PR, Jervis R (2021) Electrospinning as a route to advanced carbon fibre materials for selected low-temperature electrochemical devices: a review. J Energ Che 59:492–529 Wen Y, Kok MDR, Tafoya JPV, Sobrido ABJ, Bell E, Gostick JT, Herou S, Schlee P, Titirici M-M, Brett DJL, Shearing PR, Jervis R (2021) Electrospinning as a route to advanced carbon fibre materials for selected low-temperature electrochemical devices: a review. J Energ Che 59:492–529
149.
go back to reference Huang C, Soenen SJ, Rejman J, Lucas B, Braeckmans K, Demeester J, De Smedt SC (2011) Stimuli-responsive electrospun fibers and their applications. Chem Soc Rev 40(5):2417–2434 Huang C, Soenen SJ, Rejman J, Lucas B, Braeckmans K, Demeester J, De Smedt SC (2011) Stimuli-responsive electrospun fibers and their applications. Chem Soc Rev 40(5):2417–2434
150.
go back to reference Ding B, Wang M, Wang X, Yu J, Sun G (2010) Electrospun nanomaterials for ultrasensitive sensors. Mater Today 13(11):16–27 Ding B, Wang M, Wang X, Yu J, Sun G (2010) Electrospun nanomaterials for ultrasensitive sensors. Mater Today 13(11):16–27
151.
go back to reference Inagaki M, Yang Y, Kang F (2012) Carbon nanofibers prepared via electrospinning. Adv Mater 24(19):2547–2566CrossRef Inagaki M, Yang Y, Kang F (2012) Carbon nanofibers prepared via electrospinning. Adv Mater 24(19):2547–2566CrossRef
152.
go back to reference Zhang L, Aboagye A, Kelkar A, Lai C, Fong H (2014) A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J Mater Sci 9(2):463–480CrossRef Zhang L, Aboagye A, Kelkar A, Lai C, Fong H (2014) A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J Mater Sci 9(2):463–480CrossRef
153.
go back to reference Qing-qiang K, Mang-guo Y, Cheng-meng C, Yong-gang Y (2012) Preparation and characterization of graphene-reinforced polyacrylonitrile-based carbon nanofibers. New Carbon Mater 27(3):188 Qing-qiang K, Mang-guo Y, Cheng-meng C, Yong-gang Y (2012) Preparation and characterization of graphene-reinforced polyacrylonitrile-based carbon nanofibers. New Carbon Mater 27(3):188
154.
go back to reference Zhang L, Hsieh Y-L (2009) Carbon nanofibers with nanoporosity and hollow channels from binary polyacrylonitrile systems. Eur Polym J 45(1):47–56 Zhang L, Hsieh Y-L (2009) Carbon nanofibers with nanoporosity and hollow channels from binary polyacrylonitrile systems. Eur Polym J 45(1):47–56
155.
go back to reference Kim C, Yang KS, Kojima M, Yoshida K, Kim YJ, Kim YA, Endo M (2006) Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries. Adv Func Mater 16(18):2393–2397 Kim C, Yang KS, Kojima M, Yoshida K, Kim YJ, Kim YA, Endo M (2006) Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries. Adv Func Mater 16(18):2393–2397
156.
go back to reference Zussman E, Chen X, Ding W, Calabri L, Dikin DA, Quintana JP, Ruoff RS (2005) Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers. Carbon 43(10):2175–2185 Zussman E, Chen X, Ding W, Calabri L, Dikin DA, Quintana JP, Ruoff RS (2005) Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers. Carbon 43(10):2175–2185
157.
go back to reference Hou H, Ge JJ, Zeng J, Li Q, Reneker DH, Greiner A, Cheng SZD (2005) Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes. Chem Mater 17(5):967–973 Hou H, Ge JJ, Zeng J, Li Q, Reneker DH, Greiner A, Cheng SZD (2005) Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes. Chem Mater 17(5):967–973
158.
go back to reference Ko F, Gogotsi Y, Ali A, Naguib N, Ye H, Yang GL, Li C, Willis P (2003) Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv Mater 15(14):1161–1165 Ko F, Gogotsi Y, Ali A, Naguib N, Ye H, Yang GL, Li C, Willis P (2003) Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv Mater 15(14):1161–1165
159.
go back to reference Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191CrossRef Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191CrossRef
160.
go back to reference Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Elias DC, Jaszczak JA, Geim AK (2008) Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 100(1):016602 Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Elias DC, Jaszczak JA, Geim AK (2008) Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 100(1):016602
161.
go back to reference Ferrari AC, Bonaccorso F, Fal'ko V, Novoselov KS, Roche S, Bøggild P, Borini S, Koppens FHL, Palermo V, Pugno N, Garrido JA, Sordan R, Bianco A, Ballerini L, Prato M, Lidorikis E, Kivioja J, Marinelli C, Ryhänen T, Morpurgo A, Coleman JN, Nicolosi V, Colombo L, Fert A, Garcia-Hernandez M, Bachtold A, Schneider GF, Guinea F, Dekker C, Barbone M, Sun Z, Galiotis C, Grigorenko AN, Konstantatos G, Kis A, Katsnelson M, Vandersypen L, Loiseau A, Morandi V, Neumaier D, Treossi E, Pellegrini V, Polini M, Tredicucci A, Williams GM, Hee Hong B, Ahn J-H, Min Kim J, Zirath H, van Wees BJ, van der Zant H, Occhipinti L, Di Matteo A, Kinloch IA, Seyller T, Quesnel E, Feng X, Teo K, Rupesinghe N, Hakonen P, Neil SRT, Tannock Q, Löfwander T, Kinaret J (2015) Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7(11):4598–4810 Ferrari AC, Bonaccorso F, Fal'ko V, Novoselov KS, Roche S, Bøggild P, Borini S, Koppens FHL, Palermo V, Pugno N, Garrido JA, Sordan R, Bianco A, Ballerini L, Prato M, Lidorikis E, Kivioja J, Marinelli C, Ryhänen T, Morpurgo A, Coleman JN, Nicolosi V, Colombo L, Fert A, Garcia-Hernandez M, Bachtold A, Schneider GF, Guinea F, Dekker C, Barbone M, Sun Z, Galiotis C, Grigorenko AN, Konstantatos G, Kis A, Katsnelson M, Vandersypen L, Loiseau A, Morandi V, Neumaier D, Treossi E, Pellegrini V, Polini M, Tredicucci A, Williams GM, Hee Hong B, Ahn J-H, Min Kim J, Zirath H, van Wees BJ, van der Zant H, Occhipinti L, Di Matteo A, Kinloch IA, Seyller T, Quesnel E, Feng X, Teo K, Rupesinghe N, Hakonen P, Neil SRT, Tannock Q, Löfwander T, Kinaret J (2015) Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7(11):4598–4810
162.
go back to reference Kumar P, Yu S, Shahzad F, Hong SM, Kim Y-H, Koo CM (2016) Ultrahigh electrically and thermally conductive self-aligned graphene/polymer composites using large-area reduced graphene oxides. Carbon 101:120–128 Kumar P, Yu S, Shahzad F, Hong SM, Kim Y-H, Koo CM (2016) Ultrahigh electrically and thermally conductive self-aligned graphene/polymer composites using large-area reduced graphene oxides. Carbon 101:120–128
163.
go back to reference Kumar P, Narayan Maiti U, Sikdar A, Kumar Das T, Kumar A, Sudarsan V (2019) Recent advances in polymer and polymer composites for electromagnetic interference shielding: review and future prospects. Polym Rev 59(4):687–738 Kumar P, Narayan Maiti U, Sikdar A, Kumar Das T, Kumar A, Sudarsan V (2019) Recent advances in polymer and polymer composites for electromagnetic interference shielding: review and future prospects. Polym Rev 59(4):687–738
164.
go back to reference Kumar P, Shahzad F, Hong SM, Koo CM (2016) A flexible sandwich graphene/silver nanowires/graphene thin film for high-performance electromagnetic interference shielding. RSC Advances 6(103):101283–101287 Kumar P, Shahzad F, Hong SM, Koo CM (2016) A flexible sandwich graphene/silver nanowires/graphene thin film for high-performance electromagnetic interference shielding. RSC Advances 6(103):101283–101287
165.
go back to reference Kumar P, Kumar A, Cho KY, Das TK, Sudarsan V (2017) An asymmetric electrically conducting self-aligned graphene/polymer composite thin film for efficient electromagnetic interference shielding. AIP Advances 7(1):015103 Kumar P, Kumar A, Cho KY, Das TK, Sudarsan V (2017) An asymmetric electrically conducting self-aligned graphene/polymer composite thin film for efficient electromagnetic interference shielding. AIP Advances 7(1):015103
166.
go back to reference Kumar P, Yadav MK, Panwar N, Kumar A, Singhal R (2019) Temperature dependent thermal conductivity of free-standing reduced graphene oxide/poly (vinylidene fluoride-co-hexafluoropropylene) composite thin film. Mater Res Express 6(11):115604 Kumar P, Yadav MK, Panwar N, Kumar A, Singhal R (2019) Temperature dependent thermal conductivity of free-standing reduced graphene oxide/poly (vinylidene fluoride-co-hexafluoropropylene) composite thin film. Mater Res Express 6(11):115604
167.
go back to reference Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9):351–355CrossRef Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9):351–355CrossRef
168.
go back to reference Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon 48(8):2127–2150 Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon 48(8):2127–2150
169.
go back to reference Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun ZY, De S, McGovern IT, Holland B, Byrne M, Gun’ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568 Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun ZY, De S, McGovern IT, Holland B, Byrne M, Gun’ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568
170.
go back to reference Blake P, Brimicombe PD, Nair RR, Booth TJ, Jiang D, Schedin F, Ponomarenko LA, Morozov SV, Gleeson HF, Hill EW, Geim AK, Novoselov KS (2008) Graphene-based liquid crystal device. Nano Lett 8:1704–1708CrossRef Blake P, Brimicombe PD, Nair RR, Booth TJ, Jiang D, Schedin F, Ponomarenko LA, Morozov SV, Gleeson HF, Hill EW, Geim AK, Novoselov KS (2008) Graphene-based liquid crystal device. Nano Lett 8:1704–1708CrossRef
171.
go back to reference Hernandez Y, Lotya M, Rickard D, Bergin SD, Coleman JN (2010) Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir 26(5):3208–3213CrossRef Hernandez Y, Lotya M, Rickard D, Bergin SD, Coleman JN (2010) Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir 26(5):3208–3213CrossRef
172.
go back to reference Vallés C, Drummond C, Saadaoui H, Furtado CA, He M, Roubeau O, Ortolani L, Monthioux M, Pénicaud A (2008) Solutions of negatively charged graphene sheets and ribbons. J Am Chem Soc 130(47):15802–15804CrossRef Vallés C, Drummond C, Saadaoui H, Furtado CA, He M, Roubeau O, Ortolani L, Monthioux M, Pénicaud A (2008) Solutions of negatively charged graphene sheets and ribbons. J Am Chem Soc 130(47):15802–15804CrossRef
173.
go back to reference Behabtu N, Lomeda JR, Green MJ, Higginbotham AL, Sinitskii A, Kosynkin DV, Tsentalovich D, Parra-Vasquez ANG, Schmidt J, Kesselman E, Cohen Y, Talmon Y, Tour JM, Pasquali M (2010) Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat Nanotechnol 5(6):406–411CrossRef Behabtu N, Lomeda JR, Green MJ, Higginbotham AL, Sinitskii A, Kosynkin DV, Tsentalovich D, Parra-Vasquez ANG, Schmidt J, Kesselman E, Cohen Y, Talmon Y, Tour JM, Pasquali M (2010) Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat Nanotechnol 5(6):406–411CrossRef
174.
go back to reference Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang ZM, McGovern IT, Duesberg GS, Coleman JN (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131(10):3611–3620CrossRef Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang ZM, McGovern IT, Duesberg GS, Coleman JN (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131(10):3611–3620CrossRef
175.
go back to reference Lotya M, King P, Khan U, De S, Coleman JN (2010) Coleman, high-concentration, surfactant-stabilized graphene dispersions. ACS Nano 4(6):3155–3162CrossRef Lotya M, King P, Khan U, De S, Coleman JN (2010) Coleman, high-concentration, surfactant-stabilized graphene dispersions. ACS Nano 4(6):3155–3162CrossRef
176.
go back to reference Parvez K, Wu Z-S, Li R, Liu X, Graf R, Feng X, Mìllen K (2014) Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J Am Chem Soc 136(16):6083–6091CrossRef Parvez K, Wu Z-S, Li R, Liu X, Graf R, Feng X, Mìllen K (2014) Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J Am Chem Soc 136(16):6083–6091CrossRef
177.
go back to reference Huang X, Qi X, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41(2):666–686CrossRef Huang X, Qi X, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41(2):666–686CrossRef
178.
go back to reference Low CTJ, Walsh FC, Chakrabarti MH, Hashim MA, Hussain MA (2013) Electrochemical approaches to the production of graphene flakes and their potential applications. Carbon 54:1–21CrossRef Low CTJ, Walsh FC, Chakrabarti MH, Hashim MA, Hussain MA (2013) Electrochemical approaches to the production of graphene flakes and their potential applications. Carbon 54:1–21CrossRef
179.
go back to reference Su C-Y, Lu A-Y, Xu Y, Chen F-R, Khlobystov AN, Li L-J (2011) High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5(3):2332–2339CrossRef Su C-Y, Lu A-Y, Xu Y, Chen F-R, Khlobystov AN, Li L-J (2011) High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5(3):2332–2339CrossRef
180.
go back to reference Alanyalıoğlu M, Segura JJ, Oró-Solè J, Casañ-Pastor N (2012) The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes. Carbon 50(1):142–152 Alanyalıoğlu M, Segura JJ, Oró-Solè J, Casañ-Pastor N (2012) The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes. Carbon 50(1):142–152
181.
go back to reference Wang J, Manga KK, Bao Q, Loh KP (2011) High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J Am Chem Soc 133(23):8888–8891CrossRef Wang J, Manga KK, Bao Q, Loh KP (2011) High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J Am Chem Soc 133(23):8888–8891CrossRef
182.
go back to reference Ambrosi A, Pumera M (2015) Electrochemically exfoliated graphene and graphene oxide for energy storage and electrochemistry applications. Chem: Euro J 22(1):153–159 Ambrosi A, Pumera M (2015) Electrochemically exfoliated graphene and graphene oxide for energy storage and electrochemistry applications. Chem: Euro J 22(1):153–159
184.
go back to reference Staudenmaier L (1898) Verfahren zur Darstellung der Graphitsäure. Ber Dtsch Chem Ges 31(2):1481–1487 Staudenmaier L (1898) Verfahren zur Darstellung der Graphitsäure. Ber Dtsch Chem Ges 31(2):1481–1487
185.
go back to reference Dreyer DR, Ruoff RS, Bielawski CW (2010) From conception to realization: an historial account of graphene and some perspectives for its future. Angew Chem Int Ed 49(49):9336–9344CrossRef Dreyer DR, Ruoff RS, Bielawski CW (2010) From conception to realization: an historial account of graphene and some perspectives for its future. Angew Chem Int Ed 49(49):9336–9344CrossRef
186.
go back to reference Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924 Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924
187.
go back to reference Stankovich S, Dikin DA, Dommett GHB, Kolhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286CrossRef Stankovich S, Dikin DA, Dommett GHB, Kolhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286CrossRef
188.
go back to reference Kumar P, Shahzad F, Yu S, Hong SM, Kim Y-H, Koo CM (2015) Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon 94:494–500 Kumar P, Shahzad F, Yu S, Hong SM, Kim Y-H, Koo CM (2015) Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon 94:494–500
189.
go back to reference Kumar P, Maiti UN, Lee KE, Kim SO (2014) Rheological properties of graphene oxide liquid crystal. Carbon 80:453–461 Kumar P, Maiti UN, Lee KE, Kim SO (2014) Rheological properties of graphene oxide liquid crystal. Carbon 80:453–461
190.
go back to reference Cho KY, Yeom YS, Seo HY, Kumar P, Lee AS, Baek K-Y, Yoon HG (2017) Molybdenum-doped PdPt@Pt core–shell octahedra supported by ionic block copolymer-functionalized graphene as a highly active and durable oxygen reduction electrocatalyst. ACS Appl Mater Interfaces 9(2):1524–1535 Cho KY, Yeom YS, Seo HY, Kumar P, Lee AS, Baek K-Y, Yoon HG (2017) Molybdenum-doped PdPt@Pt core–shell octahedra supported by ionic block copolymer-functionalized graphene as a highly active and durable oxygen reduction electrocatalyst. ACS Appl Mater Interfaces 9(2):1524–1535
191.
go back to reference Cho KY, Yeom YS, Seo HY, Kumar P, Lee AS, Baek K-Y, Yoon HG (2015) Ionic block copolymer doped reduced graphene oxide supports with ultra-fine Pd nanoparticles: strategic realization of ultra-accelerated nanocatalysis. J Mater Chem A 3(41):20471–20476 Cho KY, Yeom YS, Seo HY, Kumar P, Lee AS, Baek K-Y, Yoon HG (2015) Ionic block copolymer doped reduced graphene oxide supports with ultra-fine Pd nanoparticles: strategic realization of ultra-accelerated nanocatalysis. J Mater Chem A 3(41):20471–20476
192.
go back to reference Cho KY, Seo HY, Yeom YS, Kumar P, Lee AS, Baek K-Y, Yoon HG (2016) Stable 2D-structured supports incorporating ionic block copolymer-wrapped carbon nanotubes with graphene oxide toward compact decoration of metal nanoparticles and high-performance nano-catalysis. Carbon 105:340–352 Cho KY, Seo HY, Yeom YS, Kumar P, Lee AS, Baek K-Y, Yoon HG (2016) Stable 2D-structured supports incorporating ionic block copolymer-wrapped carbon nanotubes with graphene oxide toward compact decoration of metal nanoparticles and high-performance nano-catalysis. Carbon 105:340–352
193.
go back to reference Dimiev AM, Tour JM (2014) Mechanism of graphene oxide formation. ACS Nano 8(3):3060–3068CrossRef Dimiev AM, Tour JM (2014) Mechanism of graphene oxide formation. ACS Nano 8(3):3060–3068CrossRef
194.
go back to reference Kim JE, Han TH, Lee SH, Kim JY, Ahn CW, Yun JM, Kim SO (2011) Graphene oxide liquid crystals. Angew Chem Int Ed 50(13):3043–3047CrossRef Kim JE, Han TH, Lee SH, Kim JY, Ahn CW, Yun JM, Kim SO (2011) Graphene oxide liquid crystals. Angew Chem Int Ed 50(13):3043–3047CrossRef
195.
go back to reference Ang PK, Wang S, Bao Q, Thong JTL, Loh KP (2009) High-throughput synthesis of graphene by intercalation−exfoliation of graphite oxide and study of ionic screening in graphene transistor. ACS Nano 3(11):3587–3594CrossRef Ang PK, Wang S, Bao Q, Thong JTL, Loh KP (2009) High-throughput synthesis of graphene by intercalation−exfoliation of graphite oxide and study of ionic screening in graphene transistor. ACS Nano 3(11):3587–3594CrossRef
196.
go back to reference Eigler S, Enzelberger-Heim M, Grimm S, Hofmann P, Kroener W, Geworski A, Dotzer C, Röckert M, Xiao J, Papp C, Lytken O, Steinrück H-P, Müller P, Hirsch A (2013) Wet chemical synthesis of graphene. Adv Mater 25(26):3583–3587CrossRef Eigler S, Enzelberger-Heim M, Grimm S, Hofmann P, Kroener W, Geworski A, Dotzer C, Röckert M, Xiao J, Papp C, Lytken O, Steinrück H-P, Müller P, Hirsch A (2013) Wet chemical synthesis of graphene. Adv Mater 25(26):3583–3587CrossRef
197.
go back to reference Peng L, Xu Z, Liu Z, Wei Y, Sun H, Li Z, Zhao X, Gao C (2015) An iron-based green approach to 1-h production of single-layer graphene oxide. Nat Commun 6:5716CrossRef Peng L, Xu Z, Liu Z, Wei Y, Sun H, Li Z, Zhao X, Gao C (2015) An iron-based green approach to 1-h production of single-layer graphene oxide. Nat Commun 6:5716CrossRef
198.
go back to reference Schniepp HC, Li J-L, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110(17):8535–8539 Schniepp HC, Li J-L, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110(17):8535–8539
199.
go back to reference McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK, Aksay IA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19(18):4396–4404 McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK, Aksay IA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19(18):4396–4404
200.
go back to reference Xin G, Sun H, Hu T, Fard HR, Sun X, Koratkar N, Borca-Tasciuc T, Lian J (2014) Large-area freestanding graphene paper for superior thermal management. Adv Mater 26(26):4521–4526CrossRef Xin G, Sun H, Hu T, Fard HR, Sun X, Koratkar N, Borca-Tasciuc T, Lian J (2014) Large-area freestanding graphene paper for superior thermal management. Adv Mater 26(26):4521–4526CrossRef
201.
go back to reference Kotov NA, Dékány I, Fendler JH (1996) Ultrathin graphite oxide–polyelectrolyte composites prepared by self-assembly: transition between conductive and non-conductive states. Adv Mater 8(8):637–641CrossRef Kotov NA, Dékány I, Fendler JH (1996) Ultrathin graphite oxide–polyelectrolyte composites prepared by self-assembly: transition between conductive and non-conductive states. Adv Mater 8(8):637–641CrossRef
202.
go back to reference Ambrosi A, Bonanni A, Sofer Z, Cross JS, Pumera M (2011) Electrochemistry at chemically modified graphenes. Chem: Euro J 17(38):10763–10770 Ambrosi A, Bonanni A, Sofer Z, Cross JS, Pumera M (2011) Electrochemistry at chemically modified graphenes. Chem: Euro J 17(38):10763–10770
203.
go back to reference Jin AS, Yanwu Z, Hwa LS, Meryl DS, Tryggvi E, Sungjin P, Aruna V, Jinho A, Rodney RS (2010) J Phys Chem Lett 1:1259 Jin AS, Yanwu Z, Hwa LS, Meryl DS, Tryggvi E, Sungjin P, Aruna V, Jinho A, Rodney RS (2010) J Phys Chem Lett 1:1259
204.
go back to reference Ambrosi A, Pumera M (2013) Precise tuning of surface composition and electron-transfer properties of graphene oxide films through electroreduction. Chem Euro J 19(15):4748–4753 Ambrosi A, Pumera M (2013) Precise tuning of surface composition and electron-transfer properties of graphene oxide films through electroreduction. Chem Euro J 19(15):4748–4753
205.
go back to reference Hofmann U, König E (1937) Untersuchungen über Graphitoxyd. Zeitschrift für anorganische und allgemeine Chemie 234(4):311–336 Hofmann U, König E (1937) Untersuchungen über Graphitoxyd. Zeitschrift für anorganische und allgemeine Chemie 234(4):311–336
206.
go back to reference Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3):463–470 Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3):463–470
207.
go back to reference Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS (2011) Hydrazine-reduction of graphite- and graphene oxide. Carbon 49(9):3019–3023 Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS (2011) Hydrazine-reduction of graphite- and graphene oxide. Carbon 49(9):3019–3023
208.
go back to reference Shin H-J, Sim KK, Benayad A, Yoon S-M, Park HK, Jung I-S, Jin MH, Jeong H-K, Kim JM, Choi J-Y, Lee YH (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Func Mater 19(12):1987–1992CrossRef Shin H-J, Sim KK, Benayad A, Yoon S-M, Park HK, Jung I-S, Jin MH, Jeong H-K, Kim JM, Choi J-Y, Lee YH (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Func Mater 19(12):1987–1992CrossRef
209.
go back to reference Pei S, Zhao J, Du J, Ren W, Cheng H-M (2010) Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48(15):4466–4474CrossRef Pei S, Zhao J, Du J, Ren W, Cheng H-M (2010) Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48(15):4466–4474CrossRef
210.
go back to reference Gao W, Alemany LB, Ci LJ, Ajayan PM (2009) New insights into the structure and reduction of graphite oxide. Nat Chem 1(5):403–408CrossRef Gao W, Alemany LB, Ci LJ, Ajayan PM (2009) New insights into the structure and reduction of graphite oxide. Nat Chem 1(5):403–408CrossRef
211.
go back to reference Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112(22):8192–8195CrossRef Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112(22):8192–8195CrossRef
212.
go back to reference Thakur S, Karak N (2012) Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50(14):5331–5339CrossRef Thakur S, Karak N (2012) Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50(14):5331–5339CrossRef
213.
go back to reference Akhavan O, Ghaderi E (2012) Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 50(5):1853–1860 Akhavan O, Ghaderi E (2012) Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 50(5):1853–1860
214.
go back to reference Cote LJ, Cruz-Silva R, Huang JX (2009) Flash reduction and patterning of graphite oxide and its polymer composite. J Am Chem Soc 131(31):11027–11032CrossRef Cote LJ, Cruz-Silva R, Huang JX (2009) Flash reduction and patterning of graphite oxide and its polymer composite. J Am Chem Soc 131(31):11027–11032CrossRef
215.
go back to reference Ji T, Hua Y, Sun M, Ma N (2013) The mechanism of the reaction of graphite oxide to reduced graphene oxide under ultraviolet irradiation. Carbon 54:412–418 Ji T, Hua Y, Sun M, Ma N (2013) The mechanism of the reaction of graphite oxide to reduced graphene oxide under ultraviolet irradiation. Carbon 54:412–418
216.
go back to reference Strong V, Dubin S, El-Kady MF, Lech A, Wang Y, Weiller BH, Kaner RB (2012) Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices. ACS Nano 6(2):1395–1403CrossRef Strong V, Dubin S, El-Kady MF, Lech A, Wang Y, Weiller BH, Kaner RB (2012) Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices. ACS Nano 6(2):1395–1403CrossRef
217.
go back to reference Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458(7240):877–880CrossRef Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458(7240):877–880CrossRef
218.
go back to reference Higginbotham A, Kosynkin D, Sinitskii A, Sun Z, Tour JM (2010) Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS Nano 4(4):2059–2069CrossRef Higginbotham A, Kosynkin D, Sinitskii A, Sun Z, Tour JM (2010) Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS Nano 4(4):2059–2069CrossRef
219.
go back to reference Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240):872–876CrossRef Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240):872–876CrossRef
220.
go back to reference Wei D, Liu Y (2010) Controllable synthesis of graphene and its applications. Adv Mater 22:3225–3241CrossRef Wei D, Liu Y (2010) Controllable synthesis of graphene and its applications. Adv Mater 22:3225–3241CrossRef
221.
go back to reference J. Li, S. Ye, T. Li, X. Li, X. Yang, S. Ding, Preparation of Graphene Nanoribbons (GNRs) as an Electronic Component with the Multi-walled Carbon Nanotubes (MWCNTs), Procedia Engineering 102 (2015):492–498 J. Li, S. Ye, T. Li, X. Li, X. Yang, S. Ding, Preparation of Graphene Nanoribbons (GNRs) as an Electronic Component with the Multi-walled Carbon Nanotubes (MWCNTs), Procedia Engineering 102 (2015):492–498
222.
go back to reference Xiao B, Li X, Li X, Wang B, Langford C, Li R, Sun X (2014) Graphene nanoribbons derived from the unzipping of carbon nanotubes: controlled synthesis and superior lithium storage performance. J Phys Chem C 118(2):881–890CrossRef Xiao B, Li X, Li X, Wang B, Langford C, Li R, Sun X (2014) Graphene nanoribbons derived from the unzipping of carbon nanotubes: controlled synthesis and superior lithium storage performance. J Phys Chem C 118(2):881–890CrossRef
223.
go back to reference Lim J, Maiti UN, Kim N-Y, Narayan R, Lee WJ, Choi DS, Oh Y, Lee JM, Lee GY, Kang SH, Kim H, Kim Y-H, Kim SO (2016) Dopant-specific unzipping of carbon nanotubes for intact crystalline graphene nanostructures. Nat Commun 7(1):10364CrossRef Lim J, Maiti UN, Kim N-Y, Narayan R, Lee WJ, Choi DS, Oh Y, Lee JM, Lee GY, Kang SH, Kim H, Kim Y-H, Kim SO (2016) Dopant-specific unzipping of carbon nanotubes for intact crystalline graphene nanostructures. Nat Commun 7(1):10364CrossRef
224.
go back to reference Elías AL, Botello-Méndez AR, Meneses-Rodríguez D, Jehová González V, Ramírez-González D, Ci L, Muñoz-Sandoval E, Ajayan PM, Terrones H, Terrones M (2009) Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels. Nano Lett 10(2):366–372 Elías AL, Botello-Méndez AR, Meneses-Rodríguez D, Jehová González V, Ramírez-González D, Ci L, Muñoz-Sandoval E, Ajayan PM, Terrones H, Terrones M (2009) Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels. Nano Lett 10(2):366–372
225.
go back to reference Li Y-S, Liao J-L, Wang S-Y, Chiang W-H (2016) Intercalation-assisted longitudinal unzipping of carbon nanotubes for green and scalable synthesis of graphene nanoribbons. Sci Rep 6(1):22755 Li Y-S, Liao J-L, Wang S-Y, Chiang W-H (2016) Intercalation-assisted longitudinal unzipping of carbon nanotubes for green and scalable synthesis of graphene nanoribbons. Sci Rep 6(1):22755
226.
go back to reference Cano-Márquez A, Rodríguez-Macías F, Campos-Delgado J, Espinosa-González C, Tristán-López F, Ramírez-González D, Cullen D, Smith D, Terrones M, Vega-Cantú Y (2009) Ex-Mwnts: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Letter 9:1527–1533CrossRef Cano-Márquez A, Rodríguez-Macías F, Campos-Delgado J, Espinosa-González C, Tristán-López F, Ramírez-González D, Cullen D, Smith D, Terrones M, Vega-Cantú Y (2009) Ex-Mwnts: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Letter 9:1527–1533CrossRef
227.
go back to reference Kim WS, Moon SY, Bang SY, Choi BG, Ham H, Sekino T, Shim KB (2009) Fabrication of graphene layers from multiwalled carbon nanotubes using high dc pulse. Appl Phys Lett 95(8):083103CrossRef Kim WS, Moon SY, Bang SY, Choi BG, Ham H, Sekino T, Shim KB (2009) Fabrication of graphene layers from multiwalled carbon nanotubes using high dc pulse. Appl Phys Lett 95(8):083103CrossRef
228.
go back to reference Wu JS, Pisula W, Mullen K (2007) Graphenes as potential material for electronics. Chem Rev 107:718–747CrossRef Wu JS, Pisula W, Mullen K (2007) Graphenes as potential material for electronics. Chem Rev 107:718–747CrossRef
229.
go back to reference Proceedings of the Chemical Society (May) (1958) 125–156 Proceedings of the Chemical Society (May) (1958) 125–156
230.
go back to reference Simpson CD, Brand JD, Berresheim AJ, Przybilla L, Rader HJ, Mullen K (2002) Synthesis of a giant 222 carbon graphite sheet. Chem Eur J 8(6):1424–1429CrossRef Simpson CD, Brand JD, Berresheim AJ, Przybilla L, Rader HJ, Mullen K (2002) Synthesis of a giant 222 carbon graphite sheet. Chem Eur J 8(6):1424–1429CrossRef
231.
go back to reference Eizenberg M, Blakely JM (1979) Carbon monolayer phase condensation on Ni(111). Surf Sci 82(1):228–236 Eizenberg M, Blakely JM (1979) Carbon monolayer phase condensation on Ni(111). Surf Sci 82(1):228–236
232.
go back to reference Aizawa T, Souda R, Otani S, Ishizawa Y, Oshima C (1990) Anomalous bond of monolayer graphite on transition-metal carbide surfaces. Phys Rev Lett 64(7):768–771CrossRef Aizawa T, Souda R, Otani S, Ishizawa Y, Oshima C (1990) Anomalous bond of monolayer graphite on transition-metal carbide surfaces. Phys Rev Lett 64(7):768–771CrossRef
233.
go back to reference Cui Y, Fu Q, Bao X (2010) Dynamic observation of layer-by-layer growth and removal of graphene on Ru(0001). Phys Chem Chem Phys 12(19):5053–5057CrossRef Cui Y, Fu Q, Bao X (2010) Dynamic observation of layer-by-layer growth and removal of graphene on Ru(0001). Phys Chem Chem Phys 12(19):5053–5057CrossRef
234.
go back to reference Liu M, Zhang Y, Chen Y, Gao Y, Gao T, Ma D, Ji Q, Zhang Y, Li C, Liu Z (2012) Thinning segregated graphene layers on high carbon solubility substrates of rhodium foils by tuning the quenching process. ACS Nano 6(12):10581–10589CrossRef Liu M, Zhang Y, Chen Y, Gao Y, Gao T, Ma D, Ji Q, Zhang Y, Li C, Liu Z (2012) Thinning segregated graphene layers on high carbon solubility substrates of rhodium foils by tuning the quenching process. ACS Nano 6(12):10581–10589CrossRef
235.
go back to reference Sutter P, Sadowski JT, Sutter E (2009) Graphene on Pt(111): growth and substrate interaction. Phys Rev B 80(24):245411 Sutter P, Sadowski JT, Sutter E (2009) Graphene on Pt(111): growth and substrate interaction. Phys Rev B 80(24):245411
236.
go back to reference Nie S, Walter AL, Bartelt NC, Starodub E, Bostwick A, Rotenberg E, McCarty KF (2011) Growth from below: graphene bilayers on Ir(111). ACS Nano 5(3):2298–2306 Nie S, Walter AL, Bartelt NC, Starodub E, Bostwick A, Rotenberg E, McCarty KF (2011) Growth from below: graphene bilayers on Ir(111). ACS Nano 5(3):2298–2306
237.
go back to reference Li X, Cai W, Colombo L, Ruoff RS (2009) Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett 9(12):4268–4272 Li X, Cai W, Colombo L, Ruoff RS (2009) Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett 9(12):4268–4272
238.
go back to reference Kim R-H, Bae M-H, Kim DG, Cheng H, Kim BH, Kim D-H, Li M, Wu J, Du F, Kim H-S, Kim S, Estrada D, Hong SW, Huang Y, Pop E, Rogers JA (2011) Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. Nano Lett 11(9):3881–3886 Kim R-H, Bae M-H, Kim DG, Cheng H, Kim BH, Kim D-H, Li M, Wu J, Du F, Kim H-S, Kim S, Estrada D, Hong SW, Huang Y, Pop E, Rogers JA (2011) Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. Nano Lett 11(9):3881–3886
239.
go back to reference Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(1):30–35 Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(1):30–35
240.
go back to reference Sun Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour JM (2010) Growth of graphene from solid carbon sources. Nature 468(7323):549–552 Sun Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour JM (2010) Growth of graphene from solid carbon sources. Nature 468(7323):549–552
241.
go back to reference Yu Q, Lian J, Siriponglert S, Li H, Chen YP, Pei S-S (2008) Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett 93(11):113103 Yu Q, Lian J, Siriponglert S, Li H, Chen YP, Pei S-S (2008) Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett 93(11):113103
242.
go back to reference Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932):1312–1314 Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932):1312–1314
243.
go back to reference Arco LGD, Zhang Y, Kumar A, Zhou C (2009) Synthesis, transfer, and devices of single- and few-layer graphene by chemical vapor deposition. IEEE Trans Nanotechnol 8(2):135–138CrossRef Arco LGD, Zhang Y, Kumar A, Zhou C (2009) Synthesis, transfer, and devices of single- and few-layer graphene by chemical vapor deposition. IEEE Trans Nanotechnol 8(2):135–138CrossRef
244.
go back to reference Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn J-H, Kim P, Choi J-Y, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710 Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn J-H, Kim P, Choi J-Y, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710
245.
go back to reference Li X, Magnuson CW, Venugopal A, Tromp RM, Hannon JB, Vogel EM, Colombo L, Ruoff RS (2011) Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J Am Chem Soc 133(9):2816–2819CrossRef Li X, Magnuson CW, Venugopal A, Tromp RM, Hannon JB, Vogel EM, Colombo L, Ruoff RS (2011) Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J Am Chem Soc 133(9):2816–2819CrossRef
246.
go back to reference Gong Y, Zhang X, Liu G, Wu L, Geng X, Long M, Cao X, Guo Y, Li W, Xu J, Sun M, Lu L, Liu L (2012) Layer-controlled and wafer-scale synthesis of uniform and high-quality graphene films on a polycrystalline nickel catalyst. Adv Func Mater 22(15):3153–3159CrossRef Gong Y, Zhang X, Liu G, Wu L, Geng X, Long M, Cao X, Guo Y, Li W, Xu J, Sun M, Lu L, Liu L (2012) Layer-controlled and wafer-scale synthesis of uniform and high-quality graphene films on a polycrystalline nickel catalyst. Adv Func Mater 22(15):3153–3159CrossRef
247.
go back to reference Zhang Y, Zhang L, Zhou C (2013) Review of chemical vapor deposition of graphene and related applications. Accounts Chem Res 46(10):2329–2339 Zhang Y, Zhang L, Zhou C (2013) Review of chemical vapor deposition of graphene and related applications. Accounts Chem Res 46(10):2329–2339
248.
go back to reference Kang J, Shin D, Bae S, Hong B (2012) Graphene transfer: key for applications. Nanoscale 4(18):5527–5537CrossRef Kang J, Shin D, Bae S, Hong B (2012) Graphene transfer: key for applications. Nanoscale 4(18):5527–5537CrossRef
249.
go back to reference Liang X, Sperling BA, Calizo I, Cheng G, Hacker CA, Zhang Q, Obeng Y, Yan K, Peng H, Li Q, Zhu X, Yuan H, Walker ARH, Liu Z, Peng L-M, Richter CA (2011) Toward clean and crackless transfer of graphene. ACS Nano 5(11):9144–9153CrossRef Liang X, Sperling BA, Calizo I, Cheng G, Hacker CA, Zhang Q, Obeng Y, Yan K, Peng H, Li Q, Zhu X, Yuan H, Walker ARH, Liu Z, Peng L-M, Richter CA (2011) Toward clean and crackless transfer of graphene. ACS Nano 5(11):9144–9153CrossRef
250.
go back to reference Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner R, Colombo L, Ruoff RS (2009) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9(12):4359–4363CrossRef Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner R, Colombo L, Ruoff RS (2009) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9(12):4359–4363CrossRef
251.
go back to reference Martins LG, Song Y, Zeng T, Dresselhaus MS, Kong J, Araujo PT (2013) Direct transfer of graphene onto flexible substrates. Proc Natl Acad Sci 110(44):17762–7 Martins LG, Song Y, Zeng T, Dresselhaus MS, Kong J, Araujo PT (2013) Direct transfer of graphene onto flexible substrates. Proc Natl Acad Sci 110(44):17762–7
252.
go back to reference Hu FM, Ma TX, Lin HQ, Gubernatis JE (2011) Magnetic impurities in graphene. Phys Rev B 84(7):075414 Hu FM, Ma TX, Lin HQ, Gubernatis JE (2011) Magnetic impurities in graphene. Phys Rev B 84(7):075414
253.
go back to reference Krasheninnikov AV, Nieminen RM (2011) Attractive interaction between transition-metal atom impurities and vacancies in graphene: a first-principles study. Theoret Chem Acc 129(3):625–630CrossRef Krasheninnikov AV, Nieminen RM (2011) Attractive interaction between transition-metal atom impurities and vacancies in graphene: a first-principles study. Theoret Chem Acc 129(3):625–630CrossRef
254.
go back to reference Alemán B, Regan W, Aloni S, Altoe V, Alem N, Girit C, Geng BS, Maserati L, Crommie M, Wang F, Zettl A (2010) Transfer-free batch fabrication of large-area suspended graphene membranes. ACS Nano 4(8):4762–4768CrossRef Alemán B, Regan W, Aloni S, Altoe V, Alem N, Girit C, Geng BS, Maserati L, Crommie M, Wang F, Zettl A (2010) Transfer-free batch fabrication of large-area suspended graphene membranes. ACS Nano 4(8):4762–4768CrossRef
255.
go back to reference Ambrosi A, Pumera M (2014) The CVD graphene transfer procedure introduces metallic impurities which alter the graphene electrochemical properties. Nanoscale 6(1):472–476CrossRef Ambrosi A, Pumera M (2014) The CVD graphene transfer procedure introduces metallic impurities which alter the graphene electrochemical properties. Nanoscale 6(1):472–476CrossRef
256.
go back to reference Gorantla S, Bachmatiuk A, Hwang J, Alsalman HA, Kwak JY, Seyller T, Eckert J, Spencer MG, Rummeli MH (2014) A universal transfer route for graphene. Nanoscale 6(2):889–896CrossRef Gorantla S, Bachmatiuk A, Hwang J, Alsalman HA, Kwak JY, Seyller T, Eckert J, Spencer MG, Rummeli MH (2014) A universal transfer route for graphene. Nanoscale 6(2):889–896CrossRef
257.
go back to reference Gao L, Ni G-X, Liu Y, Liu B, Castro Neto AH, Loh KP (2014) Face-to-face transfer of wafer-scale graphene films. Nature 505(7482):190–194 Gao L, Ni G-X, Liu Y, Liu B, Castro Neto AH, Loh KP (2014) Face-to-face transfer of wafer-scale graphene films. Nature 505(7482):190–194
258.
go back to reference Jacob MV, Rawat RS, Ouyang B, Bazaka K, Kumar DS, Taguchi D, Iwamoto M, Neupane R, Varghese OK (2015) Catalyst-free plasma enhanced growth of graphene from sustainable sources. Nano Lett 15(9):5702–5708CrossRef Jacob MV, Rawat RS, Ouyang B, Bazaka K, Kumar DS, Taguchi D, Iwamoto M, Neupane R, Varghese OK (2015) Catalyst-free plasma enhanced growth of graphene from sustainable sources. Nano Lett 15(9):5702–5708CrossRef
259.
go back to reference Kar R, Patel NN, Chand N, Shilpa RK, Dusane RO, Patil DS, Sinha S (2016) Detailed investigation on the mechanism of co-deposition of different carbon nanostructures by microwave plasma CVD. Carbon 106:233–242CrossRef Kar R, Patel NN, Chand N, Shilpa RK, Dusane RO, Patil DS, Sinha S (2016) Detailed investigation on the mechanism of co-deposition of different carbon nanostructures by microwave plasma CVD. Carbon 106:233–242CrossRef
260.
go back to reference Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Roehrl J, Rotenberg E, Schmid AK, Waldmann D, Weber HB, Seyller T (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8(3):203–7CrossRef Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Roehrl J, Rotenberg E, Schmid AK, Waldmann D, Weber HB, Seyller T (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8(3):203–7CrossRef
261.
go back to reference Tromp RM, Hannon JB (2009) Thermodynamics and kinetics of graphene growth on SiC(0001). Phys Rev Lett 102(10):106104 Tromp RM, Hannon JB (2009) Thermodynamics and kinetics of graphene growth on SiC(0001). Phys Rev Lett 102(10):106104
262.
go back to reference Mishra N, Boeck J, Motta N, Iacopi F (2016) Graphene growth on silicon carbide: A review. Phys Status Solidi A 213(9):2277–2289CrossRef Mishra N, Boeck J, Motta N, Iacopi F (2016) Graphene growth on silicon carbide: A review. Phys Status Solidi A 213(9):2277–2289CrossRef
263.
go back to reference Hupalo M, Conrad EH, Tringides MC (2009) Growth mechanism for epitaxial graphene on vicinal $6H\text{-SiC}(0001)$ surfaces: A scanning tunneling microscopy study. Phys Rev B 80(4):041401 Hupalo M, Conrad EH, Tringides MC (2009) Growth mechanism for epitaxial graphene on vicinal $6H\text{-SiC}(0001)$ surfaces: A scanning tunneling microscopy study. Phys Rev B 80(4):041401
264.
go back to reference Moreau E, Ferrer FJ, Vignaud D, Godey S, Wallart X (2010) Graphene growth by molecular beam epitaxy using a solid carbon source. Phys Status Solidi A 207(2):300–303CrossRef Moreau E, Ferrer FJ, Vignaud D, Godey S, Wallart X (2010) Graphene growth by molecular beam epitaxy using a solid carbon source. Phys Status Solidi A 207(2):300–303CrossRef
265.
go back to reference Hu M, Yao Z, Wang X (2017) Graphene-based nanomaterials for catalysis. Ind Eng Chem Res 56(13):3477–3502CrossRef Hu M, Yao Z, Wang X (2017) Graphene-based nanomaterials for catalysis. Ind Eng Chem Res 56(13):3477–3502CrossRef
266.
go back to reference Ambrosi A, Chua CK, Bonanni A, Pumera M (2014) Electrochemistry of graphene and related materials. Chem Rev 114(14):7150–7188CrossRef Ambrosi A, Chua CK, Bonanni A, Pumera M (2014) Electrochemistry of graphene and related materials. Chem Rev 114(14):7150–7188CrossRef
267.
go back to reference Syama S, Mohanan PV (2019) Comprehensive application of graphene: emphasis on biomedical concerns. Nano-Micro Lett 11(1):6 Syama S, Mohanan PV (2019) Comprehensive application of graphene: emphasis on biomedical concerns. Nano-Micro Lett 11(1):6
Metadata
Title
Synthesis Methods for Carbon-Based Materials
Author
Pradip Kumar
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-1892-5_10

Premium Partners