Skip to main content
Top
Published in: Journal of Nanoparticle Research 2/2015

01-02-2015 | Research Paper

Synthesis of 0.3Li2MnO3·0.7LiNi1/3Co1/3Mn1/3O2 cathode materials using 3-D urchin-like MnO2 as precursor for high performance lithium ion battery

Authors: Chenhao Zhao, Zhibiao Hu, Yunlong Zhou, Shuzhen Fang, Shaohan Cai

Published in: Journal of Nanoparticle Research | Issue 2/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the paper, we report synthesis of lithium rich layered oxide 0.3Li2MnO3·0.7LiNi1/3Co1/3Mn1/3O2 by using an urchin-like MnO2 as precursor. The influences of calcination temperatures on the structures and electrochemical performances of as-prepared materials are systematically studied. The results show that the obtained sample can partially retain the morphology of urchin-like precursor especially at low temperature, and a higher calcination temperature helps to improve the layered structure and particle size. As lithium ion battery cathodes, the 750 °C sample with the size of 100–200 nm reveals an optimal electrochemical performance. The initial discharge capacity of 234.6 mAh g−1 with high Coulombic efficiency of 84.6 % can be reached at 0.1C within 2.0–4.7 V. After 50 cycles, the capacity retention can reach 90.2 % at 0.5C. Even at high current density of 5C, the sample also shows a stable discharge capacity of 120.5 mAh g−1. Anyways, the urchin-like MnO2 directed route is suitable to prepare 0.3Li2MnO3·0.7LiNi1/3Co1/3Mn1/3O2 as lithium ion battery cathode.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Armstrong AR, Dupre N, Paterson AJ, Grey CP, Bruce PG (2004) Combined neutron diffraction, NMR, and electrochemical investigation of the layered-to-spinel transformation in LiMnO2. Chem Mater 16:3106–3118CrossRef Armstrong AR, Dupre N, Paterson AJ, Grey CP, Bruce PG (2004) Combined neutron diffraction, NMR, and electrochemical investigation of the layered-to-spinel transformation in LiMnO2. Chem Mater 16:3106–3118CrossRef
go back to reference Bai Y, Li Y, Zhong YX, Chen S, Wu F, Wu C (2014) Li-rich transition metal oxide xLi2MnO3·(1-x)LiMO2 (M = Ni, Co or Mn) for lithium ion batteries. Prog Chem 26:259–269 Bai Y, Li Y, Zhong YX, Chen S, Wu F, Wu C (2014) Li-rich transition metal oxide xLi2MnO3·(1-x)LiMO2 (M = Ni, Co or Mn) for lithium ion batteries. Prog Chem 26:259–269
go back to reference Cho TH, Shiosaki Y, Noguchi H (2006) Preparation and characterization of layered LiNi1/3Co1/3Mn1/3O2 as a cathode material by an oxalate co-precipitation route. J Power Sources 159:1322–1327CrossRef Cho TH, Shiosaki Y, Noguchi H (2006) Preparation and characterization of layered LiNi1/3Co1/3Mn1/3O2 as a cathode material by an oxalate co-precipitation route. J Power Sources 159:1322–1327CrossRef
go back to reference Ellis BL, Lee KT, Nazar LF (2010) Positive electrode materials for Li-ion and Li-batteries. Chem Mater 22:691–714CrossRef Ellis BL, Lee KT, Nazar LF (2010) Positive electrode materials for Li-ion and Li-batteries. Chem Mater 22:691–714CrossRef
go back to reference Fu Y, Jiang H, Hu YJ, Zhang L, Li CZ (2014) Hierarchical porous Li4Mn5O12 nano/micro structure as superior cathode materials for Li-ion batteries. J Power Sources 261:306–310CrossRef Fu Y, Jiang H, Hu YJ, Zhang L, Li CZ (2014) Hierarchical porous Li4Mn5O12 nano/micro structure as superior cathode materials for Li-ion batteries. J Power Sources 261:306–310CrossRef
go back to reference Guo SH, Yu HJ, Liu P, Liu XZ, Li D, Chen MW, Ishida M, Zhou HS (2014) Surface coating of lithium–manganese-rich layered oxides with delaminated MnO2 nanosheets as cathode materials for Li-ion batteries. J Mater Chem A 2:4422–4428CrossRef Guo SH, Yu HJ, Liu P, Liu XZ, Li D, Chen MW, Ishida M, Zhou HS (2014) Surface coating of lithium–manganese-rich layered oxides with delaminated MnO2 nanosheets as cathode materials for Li-ion batteries. J Mater Chem A 2:4422–4428CrossRef
go back to reference He P, Yu HJ, Li D, Zhou HS (2012) Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. J Mater Chem 22:3680–3695CrossRef He P, Yu HJ, Li D, Zhou HS (2012) Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. J Mater Chem 22:3680–3695CrossRef
go back to reference He W, Yuan DD, Qian JF, Ai XP, Yang HX, Cao YL (2013) Enhanced high-rate capability and cycling stability of Na-stabilized layered Li1.2[Co0.13Ni0.13Mn0.54]O2 cathode material. J Mater Chem A 1:11397–11403CrossRef He W, Yuan DD, Qian JF, Ai XP, Yang HX, Cao YL (2013) Enhanced high-rate capability and cycling stability of Na-stabilized layered Li1.2[Co0.13Ni0.13Mn0.54]O2 cathode material. J Mater Chem A 1:11397–11403CrossRef
go back to reference He X, Wang J, Kloepsch R, Krueger S, Jia HP, Liu HD, Bortmann B, Li J (2014) Enhanced electrochemical properties in lithium ion batteries of a hollow spherical lithium-rich cathode material synthesized by a molten salt method. Nano Res 7:110–118CrossRef He X, Wang J, Kloepsch R, Krueger S, Jia HP, Liu HD, Bortmann B, Li J (2014) Enhanced electrochemical properties in lithium ion batteries of a hollow spherical lithium-rich cathode material synthesized by a molten salt method. Nano Res 7:110–118CrossRef
go back to reference Jiang KC, Wu XL, Yin YX, Lee JS, Kim J, Guo YG (2012) Superior hybrid cathode material containing lithium-excess layered material and graphene for lithium-ion batteries. ACS Appl Mater Interfaces 4:4858–4863CrossRef Jiang KC, Wu XL, Yin YX, Lee JS, Kim J, Guo YG (2012) Superior hybrid cathode material containing lithium-excess layered material and graphene for lithium-ion batteries. ACS Appl Mater Interfaces 4:4858–4863CrossRef
go back to reference Jiang Y, Yang Z, Luo W, Hu XL, Huang YH (2013) Hollow 0.3Li2MnO3·0.7LiNi0.5Mn0.5O2 microspheres as a high-performance cathode material for lithium-ion batteries. Phys Chem Chem Phys 15:2954–2960CrossRef Jiang Y, Yang Z, Luo W, Hu XL, Huang YH (2013) Hollow 0.3Li2MnO3·0.7LiNi0.5Mn0.5O2 microspheres as a high-performance cathode material for lithium-ion batteries. Phys Chem Chem Phys 15:2954–2960CrossRef
go back to reference Johnson CS, Li NC, Lefief C, Vaughey JT, Thackeray MM (2008) Synthesis, characterization, and electrochemistry of lithium battery electrodes: xLi2MnO3·(1-x)LiNi0.333Co0.333Mn0.333O2 (0 ≤ x≤0.7). Chem Mater 20:6095–6106CrossRef Johnson CS, Li NC, Lefief C, Vaughey JT, Thackeray MM (2008) Synthesis, characterization, and electrochemistry of lithium battery electrodes: xLi2MnO3·(1-x)LiNi0.333Co0.333Mn0.333O2 (0 ≤ x≤0.7). Chem Mater 20:6095–6106CrossRef
go back to reference Kim HJ, Jung HG, Scrosati B, Sun YK (2012a) Synthesis of Li[Li0.19Ni0.16Co0.08Mn0.57]O2 cathode materials with a high volumetric capacity for Li-ion batteries. J Power Sources 203:115–120CrossRef Kim HJ, Jung HG, Scrosati B, Sun YK (2012a) Synthesis of Li[Li0.19Ni0.16Co0.08Mn0.57]O2 cathode materials with a high volumetric capacity for Li-ion batteries. J Power Sources 203:115–120CrossRef
go back to reference Kim S, Kim C, Jhon YI, Noh JK, Vemuri SH, Smith R, Chung KY, Jhon MS, Cho BW (2012b) Synthesis of layered-layered 0.5Li2MnO3·0.5LiCoO2 nanocomposite electrode materials by the mechanochemical process and first principles study. J Mater Chem 22:25418–25426CrossRef Kim S, Kim C, Jhon YI, Noh JK, Vemuri SH, Smith R, Chung KY, Jhon MS, Cho BW (2012b) Synthesis of layered-layered 0.5Li2MnO3·0.5LiCoO2 nanocomposite electrode materials by the mechanochemical process and first principles study. J Mater Chem 22:25418–25426CrossRef
go back to reference Lee ES, Manthiram A (2014) Smart design of lithium-rich layered oxide cathode compositions with suppressed voltage decay. J Mater Chem A 2:3932–3939CrossRef Lee ES, Manthiram A (2014) Smart design of lithium-rich layered oxide cathode compositions with suppressed voltage decay. J Mater Chem A 2:3932–3939CrossRef
go back to reference Li J, Klopsch R, Stan MC, Nowak S, Kunze M, Winter M, Passerini S (2011) Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 with improved rate capability. J Power Sources 196:4821–4825CrossRef Li J, Klopsch R, Stan MC, Nowak S, Kunze M, Winter M, Passerini S (2011) Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 with improved rate capability. J Power Sources 196:4821–4825CrossRef
go back to reference Liu YM, Chen BL, Cao F, Zhao XZ, Yuan JK (2011) Synthesis of nanoarchitectured LiNi0.5Mn0.5O2 spheres for high-performance rechargeable lithium-ion batteries via an in situ conversion route. J Mater Chem 21:10434–10441 Liu YM, Chen BL, Cao F, Zhao XZ, Yuan JK (2011) Synthesis of nanoarchitectured LiNi0.5Mn0.5O2 spheres for high-performance rechargeable lithium-ion batteries via an in situ conversion route. J Mater Chem 21:10434–10441
go back to reference Liu JL, Chen L, Xia YY (2012) General synthesis of xLi2MnO3·(1-x)LiNi1/3Co1/3Mn1/3O2 nanomaterials by a molten salt methods: towards a high capacity and high power cathode for rechargeable lithium batteries. J Mater Chem 22:25380–25387CrossRef Liu JL, Chen L, Xia YY (2012) General synthesis of xLi2MnO3·(1-x)LiNi1/3Co1/3Mn1/3O2 nanomaterials by a molten salt methods: towards a high capacity and high power cathode for rechargeable lithium batteries. J Mater Chem 22:25380–25387CrossRef
go back to reference Ryu WH, Eom JY, Yin RZ, Han DW, Kim WK, Kwon HS (2011) Synergistic effects of various morphologies and Al doping of spinel LiMn2O4 nanostructures on the electrochemical performance of lithium-rechargeable batteries. J Mater Chem 21:15337–15342CrossRef Ryu WH, Eom JY, Yin RZ, Han DW, Kim WK, Kwon HS (2011) Synergistic effects of various morphologies and Al doping of spinel LiMn2O4 nanostructures on the electrochemical performance of lithium-rechargeable batteries. J Mater Chem 21:15337–15342CrossRef
go back to reference Ryu WH, Kim DH, Kang SH, Kwon HS (2013) Electrochemical properties of nanosized Li-rich layered oxide as positive electrode materials for Li-ion batteries. RSC Adv 3:8527–8534CrossRef Ryu WH, Kim DH, Kang SH, Kwon HS (2013) Electrochemical properties of nanosized Li-rich layered oxide as positive electrode materials for Li-ion batteries. RSC Adv 3:8527–8534CrossRef
go back to reference Shi SJ, Tu JP, Tang YY, Xu YX, Zhang YQ, Wang XL (2013) Synthesis and electrochemical performance of Li1.131Mn0.504Ni0.243Co0.122O2 cathode materials for lithium ion batteries via freeze drying. J Power Sources 221:300–307CrossRef Shi SJ, Tu JP, Tang YY, Xu YX, Zhang YQ, Wang XL (2013) Synthesis and electrochemical performance of Li1.131Mn0.504Ni0.243Co0.122O2 cathode materials for lithium ion batteries via freeze drying. J Power Sources 221:300–307CrossRef
go back to reference Shi YF, Zhu SM, Zhu CL, Li Y, Chen ZX, Zhang D (2015) Synthesis of porous LiFe0.2Mn1.8O4 with high performance for lithium-ion battery. Electrochim Acta 154:17–23CrossRef Shi YF, Zhu SM, Zhu CL, Li Y, Chen ZX, Zhang D (2015) Synthesis of porous LiFe0.2Mn1.8O4 with high performance for lithium-ion battery. Electrochim Acta 154:17–23CrossRef
go back to reference Song BH, Liu ZW, Lai MO, Lu L (2012) Structural evolution and the capacity fade mechanism upon long-term cycling in Li-rich cathode material. Phys Chem Chem Phys 14:12875–12883CrossRef Song BH, Liu ZW, Lai MO, Lu L (2012) Structural evolution and the capacity fade mechanism upon long-term cycling in Li-rich cathode material. Phys Chem Chem Phys 14:12875–12883CrossRef
go back to reference Tao ZL, Chen S, Li L, Zhang XF, Chen RJ, Belharouak I, Wu F, Amine K (2013) Synthesis, characterization and electrochemistry of cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 using organic chelating agent for lithium-on batteries. J Power Sources 228:206–213CrossRef Tao ZL, Chen S, Li L, Zhang XF, Chen RJ, Belharouak I, Wu F, Amine K (2013) Synthesis, characterization and electrochemistry of cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 using organic chelating agent for lithium-on batteries. J Power Sources 228:206–213CrossRef
go back to reference Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 17:3112–3125CrossRef Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 17:3112–3125CrossRef
go back to reference Wang ZY, Liu EZ, He CN, Shi CS, Li JJ, Zhao NQ (2013) Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for Li-ion batteries. J Power Sources 236:25–32CrossRef Wang ZY, Liu EZ, He CN, Shi CS, Li JJ, Zhao NQ (2013) Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for Li-ion batteries. J Power Sources 236:25–32CrossRef
go back to reference Xi LJ, Wang HE, Lu ZG, Yang SL, Ma RG, Deng JQ, Chung CY (2012) Facile synthesis of porous LiMn2O4 spheres as positive electrode for high-power lithium ion batteries. J Power Sources 198:251–257CrossRef Xi LJ, Wang HE, Lu ZG, Yang SL, Ma RG, Deng JQ, Chung CY (2012) Facile synthesis of porous LiMn2O4 spheres as positive electrode for high-power lithium ion batteries. J Power Sources 198:251–257CrossRef
go back to reference Yang JG, Cheng FY, Zhang XD, Gao HT, Tao ZL, Chen J (2014) Porous 0.2Li2MnO3·0.8LiNi0.5Mn0.5O2 nanorods as cathode materials for lithium-ion batteries. J Mater Chem A 2:1636–1640CrossRef Yang JG, Cheng FY, Zhang XD, Gao HT, Tao ZL, Chen J (2014) Porous 0.2Li2MnO3·0.8LiNi0.5Mn0.5O2 nanorods as cathode materials for lithium-ion batteries. J Mater Chem A 2:1636–1640CrossRef
go back to reference Yu HJ, Zhou HS (2013) High-energy cathode materials (Li2MnO3–LiMO2) for lithium-ion batteries. J Phys Chem Lett 4:1268–1280CrossRef Yu HJ, Zhou HS (2013) High-energy cathode materials (Li2MnO3–LiMO2) for lithium-ion batteries. J Phys Chem Lett 4:1268–1280CrossRef
go back to reference Zeng JH, Wang YF, Yang Y, Zhang J (2010) Synthesis of sea-urchin shaped γ-MnO2 nanostructures and their application in lithium batteries. J Mater Chem 20:10915–10918CrossRef Zeng JH, Wang YF, Yang Y, Zhang J (2010) Synthesis of sea-urchin shaped γ-MnO2 nanostructures and their application in lithium batteries. J Mater Chem 20:10915–10918CrossRef
go back to reference Zhao CH, Liu R, Liu XR, Wang XX, Feng F, Shen Q (2013) Sacrificed template synthesis of Li1.2Ni0.13Co0.13Mn0.54O2 spheres for lithium-ion battery cathodes. J Nanopart Res 15:2064CrossRef Zhao CH, Liu R, Liu XR, Wang XX, Feng F, Shen Q (2013) Sacrificed template synthesis of Li1.2Ni0.13Co0.13Mn0.54O2 spheres for lithium-ion battery cathodes. J Nanopart Res 15:2064CrossRef
go back to reference Zhao CH, Wang XX, Liu XR, Zhang H, Shen Q (2014a) Mn-Ni content-dependent structures and electrochemical behaviors of series Li1.2Ni0.13+x Co0.13Mn0.54-x O2 as lithium-ion battery cathodes. ACS Appl Mater Interfaces 6:2386–2392CrossRef Zhao CH, Wang XX, Liu XR, Zhang H, Shen Q (2014a) Mn-Ni content-dependent structures and electrochemical behaviors of series Li1.2Ni0.13+x Co0.13Mn0.54-x O2 as lithium-ion battery cathodes. ACS Appl Mater Interfaces 6:2386–2392CrossRef
go back to reference Zhao TL, Li L, Chen S, Chen RJ, Zhang XX, Lu J, Wu F, Amine K (2014b) The effect of chromium substitution on improving electrochemical performance of low-cost Fe-Mn based Li-rich layered oxide as cathode material for lithium-ion batteries. J Power Sources 245:898–907CrossRef Zhao TL, Li L, Chen S, Chen RJ, Zhang XX, Lu J, Wu F, Amine K (2014b) The effect of chromium substitution on improving electrochemical performance of low-cost Fe-Mn based Li-rich layered oxide as cathode material for lithium-ion batteries. J Power Sources 245:898–907CrossRef
go back to reference Zheng JM, Wu XB, Yang Y (2011) A comparison of preparation methods on the electrochemical performance of cathode material Li [Li0.2Mn0.54Ni0.13Co0.13] O2 for lithium ion battery. Electrochim Acta 56:3071–3078CrossRef Zheng JM, Wu XB, Yang Y (2011) A comparison of preparation methods on the electrochemical performance of cathode material Li [Li0.2Mn0.54Ni0.13Co0.13] O2 for lithium ion battery. Electrochim Acta 56:3071–3078CrossRef
go back to reference Zhu SM, Yao F, Yin C, Li Y, Peng WH, Ma J, Zhang D (2014) Fe2O3/TiO2 photocatalyst of hierarchical structure for H2 production from water under visible light irradiation. Microporous Mesoporous Mater 190:10–16CrossRef Zhu SM, Yao F, Yin C, Li Y, Peng WH, Ma J, Zhang D (2014) Fe2O3/TiO2 photocatalyst of hierarchical structure for H2 production from water under visible light irradiation. Microporous Mesoporous Mater 190:10–16CrossRef
Metadata
Title
Synthesis of 0.3Li2MnO3·0.7LiNi1/3Co1/3Mn1/3O2 cathode materials using 3-D urchin-like MnO2 as precursor for high performance lithium ion battery
Authors
Chenhao Zhao
Zhibiao Hu
Yunlong Zhou
Shuzhen Fang
Shaohan Cai
Publication date
01-02-2015
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 2/2015
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-015-2903-y

Other articles of this Issue 2/2015

Journal of Nanoparticle Research 2/2015 Go to the issue

Premium Partners