Skip to main content
Top
Published in: Journal of Nanoparticle Research 3/2016

01-03-2016 | Research Paper

Synthesis of composite nanoparticles using co-precipitation of a magnetic iron-oxide shell onto core nanoparticles

Authors: Darinka Primc, Blaž Belec, Darko Makovec

Published in: Journal of Nanoparticle Research | Issue 3/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Composite nanoparticles can be synthesized by coating a shell made of one material onto core nanoparticles made of another material. Here we report on a novel method for coating a magnetic iron oxide onto the surface of core nanoparticles in an aqueous suspension. The method is based on the heterogeneous nucleation of an initial product of Fe3+/Fe2+ co-precipitation on the core nanoparticles. The close control of the supersaturation of the precipitating species required for an exclusively heterogeneous nucleation and the growth of the shell were achieved by immobilizing the reactive Fe3+ ions in a nitrate complex with urea ([Fe((CO(NH2)2)6](NO3)3) and by using solid Mg(OH)2 as the precipitating reagent. The slow thermal decomposition of the complex at 60 °C homogeneously releases the reactive Fe3+ ions into the suspension of the core nanoparticles. The key stage of the process is the thermal hydrolysis of the released Fe3+ ions prior to the addition of Mg(OH)2. The thermal hydrolysis results in the formation of γ-FeOOH, exclusively at the surfaces of the core nanoparticles. After the addition of the solid hydroxide Mg(OH)2, the pH increases and at pH ~ 5.7 the Fe2+ precipitates and reacts with the γ-FeOOH to form magnetic iron oxide with a spinel structure (spinel ferrite) at the surfaces of the core nanoparticles. The proposed low-temperature method for the synthesis of composite nanoparticles is capable of forming well-defined interfaces between the two components, important for the coupling of the different properties. The procedure is environmentally friendly, inexpensive, and appropriate for scaling up to mass production.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Asuha S, Zhao S, Jin XM, Hai MM, Bao HP (2009) Effects of synthetic routes of Fe–urea complex on the synthesis of γ-Fe2O3 nanopowder. Appl Surf Sci 255:8897–8901CrossRef Asuha S, Zhao S, Jin XM, Hai MM, Bao HP (2009) Effects of synthetic routes of Fe–urea complex on the synthesis of γ-Fe2O3 nanopowder. Appl Surf Sci 255:8897–8901CrossRef
go back to reference Blums A, Cebers M, Maiorov M (1996) Magnetic fluids. Walter de Gruyter & Co., BerlinCrossRef Blums A, Cebers M, Maiorov M (1996) Magnetic fluids. Walter de Gruyter & Co., BerlinCrossRef
go back to reference Borlido L, Azevedo AM, Roque ACA, Aires-Barros MR (2013) Magnetic separations in biotechnology. Biotech Adv 31:1374–1385CrossRef Borlido L, Azevedo AM, Roque ACA, Aires-Barros MR (2013) Magnetic separations in biotechnology. Biotech Adv 31:1374–1385CrossRef
go back to reference Čampelj S, Makovec D, Drofenik M (2009) The functionalization of magnetic nanoparticles with 3-aminopropyl silane. J Mag Mag Mat 321:1346–1350CrossRef Čampelj S, Makovec D, Drofenik M (2009) The functionalization of magnetic nanoparticles with 3-aminopropyl silane. J Mag Mag Mat 321:1346–1350CrossRef
go back to reference Cheng M, Xie W, Zong B, Sun B, Qiao M (2013) When magnetic catalyst meets magnetic reactor: etherification of FCC light gasoline as an example. Nat Commun 3:19731–19735 Cheng M, Xie W, Zong B, Sun B, Qiao M (2013) When magnetic catalyst meets magnetic reactor: etherification of FCC light gasoline as an example. Nat Commun 3:19731–19735
go back to reference Cornell RM, Schwertmann U (2003) The iron oxides, structure, properties, reactions, occurrences and uses. Wiley-VCH, Weinheim Cornell RM, Schwertmann U (2003) The iron oxides, structure, properties, reactions, occurrences and uses. Wiley-VCH, Weinheim
go back to reference Corral-Flores V, Bueno-Baques D, Ziolo R (2010) Synthesis and characterization of novel CoFe2O4-BaTiO3 multiferroic core–shell-type nanostructures. Acta Mater 58:764–769CrossRef Corral-Flores V, Bueno-Baques D, Ziolo R (2010) Synthesis and characterization of novel CoFe2O4-BaTiO3 multiferroic core–shell-type nanostructures. Acta Mater 58:764–769CrossRef
go back to reference Cudennec Y, Lecerf A (2005) Topotactic transformation of goethite and lepidocrocite into hematite and maghemite. Sol State Sci 7:520–529CrossRef Cudennec Y, Lecerf A (2005) Topotactic transformation of goethite and lepidocrocite into hematite and maghemite. Sol State Sci 7:520–529CrossRef
go back to reference Dosev D, Nichkova M, Dumas RK, Gee SJ, Hammock BD, Liu K, Kennedy IM (2007) Magnetic/luminescent core/shell particles synthesized by spray pyrolysis and their application in immunoassays with internal standard. Nanotechnology 18:055102–055112CrossRef Dosev D, Nichkova M, Dumas RK, Gee SJ, Hammock BD, Liu K, Kennedy IM (2007) Magnetic/luminescent core/shell particles synthesized by spray pyrolysis and their application in immunoassays with internal standard. Nanotechnology 18:055102–055112CrossRef
go back to reference Estrader M, Lopez-Ortega A, Estrade S, Golosovsky IV, Salazar-Alvarez G, Vasilakaki M, Trohidou KN, Varela M, Stanley DC, Sinko M, Pechan MJ, Keavney DJ, Peiro F, Surinach S, Baro MD, Nogues J (2013) Robust antiferromagnetic coupling in hard-soft Bi-magnetic core/shell nanoparticles. Nat Commun 4:2960–2967CrossRef Estrader M, Lopez-Ortega A, Estrade S, Golosovsky IV, Salazar-Alvarez G, Vasilakaki M, Trohidou KN, Varela M, Stanley DC, Sinko M, Pechan MJ, Keavney DJ, Peiro F, Surinach S, Baro MD, Nogues J (2013) Robust antiferromagnetic coupling in hard-soft Bi-magnetic core/shell nanoparticles. Nat Commun 4:2960–2967CrossRef
go back to reference Fu D, Keech PG, Sun X, Wren CJ (2011) Iron oxyhydroxide nanoparticles formed by forced hydrolysis: dependence of phase composition on solution concentration. Phys Chem Chem Phys 13:18523–18529CrossRef Fu D, Keech PG, Sun X, Wren CJ (2011) Iron oxyhydroxide nanoparticles formed by forced hydrolysis: dependence of phase composition on solution concentration. Phys Chem Chem Phys 13:18523–18529CrossRef
go back to reference Greenwood NN, Earnshaw A (2006) Chemistry of elements. Elsevier Butterworth-Heinemann, Oxford Greenwood NN, Earnshaw A (2006) Chemistry of elements. Elsevier Butterworth-Heinemann, Oxford
go back to reference Guduru R, Liang P, Runowicz C, Nair M, Atluri V, Khizroev S (2013) Magneto-electric nanoparticles to enable field-controlled high-specificity drug delivery to eradicate ovarian cancer cells. Sci Rep 3:29531–29538CrossRef Guduru R, Liang P, Runowicz C, Nair M, Atluri V, Khizroev S (2013) Magneto-electric nanoparticles to enable field-controlled high-specificity drug delivery to eradicate ovarian cancer cells. Sci Rep 3:29531–29538CrossRef
go back to reference Jolivet JP, Chaneac C, Tronc E (2004) Iron oxide chemistry. From molecular clusters to extend solid networks. Chem Commun 20:481–487 Jolivet JP, Chaneac C, Tronc E (2004) Iron oxide chemistry. From molecular clusters to extend solid networks. Chem Commun 20:481–487
go back to reference Juhin A, Lopez-Ortega A, Sikora M, Carvallo C, Estrader M, Estrade S, Peiro F, Dolors Baro M, Sainctavit P, Glatzeli P, Nogues J (2014) Direct evidence for an interdiffused intermediate layer in Bi-magnetic core-shell nanoparticles. Nanoscale 6:11911–11920CrossRef Juhin A, Lopez-Ortega A, Sikora M, Carvallo C, Estrader M, Estrade S, Peiro F, Dolors Baro M, Sainctavit P, Glatzeli P, Nogues J (2014) Direct evidence for an interdiffused intermediate layer in Bi-magnetic core-shell nanoparticles. Nanoscale 6:11911–11920CrossRef
go back to reference Lee J-H, Jang J-T, Choi J-S, Moon S-H, Noh S-H, Kim J-W, Kim J-G, Kim I-S, Park K-I, Cheon J (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 6:418–422CrossRef Lee J-H, Jang J-T, Choi J-S, Moon S-H, Noh S-H, Kim J-W, Kim J-G, Kim I-S, Park K-I, Cheon J (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 6:418–422CrossRef
go back to reference Lopez-Ortega A, Estrader M, Salazar-Alvarez G, Roca AG, Nogues J (2015) Applications of exchange coupled Bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles. Phys Rep 553:1–32CrossRef Lopez-Ortega A, Estrader M, Salazar-Alvarez G, Roca AG, Nogues J (2015) Applications of exchange coupled Bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles. Phys Rep 553:1–32CrossRef
go back to reference Makovec D, Sajko M, Selišnik A, Drofenik M (2011) Magnetically recoverable photocatalytic nanocomposite particles for water treatment. Mater Chem Phys 129:83–89CrossRef Makovec D, Sajko M, Selišnik A, Drofenik M (2011) Magnetically recoverable photocatalytic nanocomposite particles for water treatment. Mater Chem Phys 129:83–89CrossRef
go back to reference Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17:1247–1248CrossRef Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17:1247–1248CrossRef
go back to reference Meffre A, Mehdaoui B, Kelsen V, Fazzini PF, Carrey J (2012) A simple chemical route toward monodisperse iron carbide nanoparticles displaying tunable magnetic and unprecedented hyperthermia properties. Nano Lett 12:4722–4728CrossRef Meffre A, Mehdaoui B, Kelsen V, Fazzini PF, Carrey J (2012) A simple chemical route toward monodisperse iron carbide nanoparticles displaying tunable magnetic and unprecedented hyperthermia properties. Nano Lett 12:4722–4728CrossRef
go back to reference Navrotsky A, Mazeina L, Majzlan J (2008) Size-driven structural and thermodynamic complexity in iron oxides. Science 319:1635–1638CrossRef Navrotsky A, Mazeina L, Majzlan J (2008) Size-driven structural and thermodynamic complexity in iron oxides. Science 319:1635–1638CrossRef
go back to reference Primc D, Makovec D (2015) Composite nanoplatelets combining soft-magnetic iron oxide with hard-magnetic barium hexaferrite. Nanoscale 7:2688–2697CrossRef Primc D, Makovec D (2015) Composite nanoplatelets combining soft-magnetic iron oxide with hard-magnetic barium hexaferrite. Nanoscale 7:2688–2697CrossRef
go back to reference Shaw WR, Bordeaux JJ (1955) The decomposition of urea in aqueous media. J Am Chem Soc 77:4729–4733CrossRef Shaw WR, Bordeaux JJ (1955) The decomposition of urea in aqueous media. J Am Chem Soc 77:4729–4733CrossRef
go back to reference Song Q, Zhang ZJ (2012) Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe2O4 and MnFe2O4 nanocrystals with core–shell architecture. J Am Chem Soc 134:10182–10190CrossRef Song Q, Zhang ZJ (2012) Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe2O4 and MnFe2O4 nanocrystals with core–shell architecture. J Am Chem Soc 134:10182–10190CrossRef
go back to reference Sugimoto T (2001) Monodispersed particles. Elsevier, Amsterdam Sugimoto T (2001) Monodispersed particles. Elsevier, Amsterdam
go back to reference Takahashi M, Mohan M, Nakade A, Higashimine K, Mott D, Hamada T, Matsumura K, Taguchi T, Maenosono S (2015) Ag/FeCo/Ag core/shell/shell magnetic nanoparticles with plasmonic imaging capability. Langmuir 31:2228–2236CrossRef Takahashi M, Mohan M, Nakade A, Higashimine K, Mott D, Hamada T, Matsumura K, Taguchi T, Maenosono S (2015) Ag/FeCo/Ag core/shell/shell magnetic nanoparticles with plasmonic imaging capability. Langmuir 31:2228–2236CrossRef
go back to reference Thanh TKN (ed) (2012) Magnetic nanoparticles: from fabrication to clinical applications. CRC Press, Boca Raton Thanh TKN (ed) (2012) Magnetic nanoparticles: from fabrication to clinical applications. CRC Press, Boca Raton
go back to reference Wang L, Wang X, Luo J, Wanjala BN, Wang C, Chernova NA, Engelhard MH, Liu Y, Bae I-T, Zhong C-J (2010) Core-shell-structured magnetic ternary nanocubes. J Am Chem Soc 132:17686–17689CrossRef Wang L, Wang X, Luo J, Wanjala BN, Wang C, Chernova NA, Engelhard MH, Liu Y, Bae I-T, Zhong C-J (2010) Core-shell-structured magnetic ternary nanocubes. J Am Chem Soc 132:17686–17689CrossRef
go back to reference Wang H, Sun L, Li Y, Fei X, Sun M, Zhang C, Li Y, Yang Y (2011) Layer-by-layer assembled Fe3O4@C@CdTe core/shell microspheres as separable luminescent probe for sensitive sensing of Cu2+ ions. Langmuir 27:11609–11615CrossRef Wang H, Sun L, Li Y, Fei X, Sun M, Zhang C, Li Y, Yang Y (2011) Layer-by-layer assembled Fe3O4@C@CdTe core/shell microspheres as separable luminescent probe for sensitive sensing of Cu2+ ions. Langmuir 27:11609–11615CrossRef
go back to reference Zhang H, Harpster MH, Wilson WC, Johnson PA (2012) Surface-enhanced raman scattering detection of DNAs derived from virus genomes using Au-coated paramagnetic nanoparticles. Langmuir 28:4030–4037CrossRef Zhang H, Harpster MH, Wilson WC, Johnson PA (2012) Surface-enhanced raman scattering detection of DNAs derived from virus genomes using Au-coated paramagnetic nanoparticles. Langmuir 28:4030–4037CrossRef
go back to reference Zhou L, Gao Z, Xu W (2010) Robust Fe3O4/SiO2-Pt/Au/Pd magnetic nanocatalysts with multifunctional hyperbranched polyglycerol amplifiers. Langmuir 26:11217–11225CrossRef Zhou L, Gao Z, Xu W (2010) Robust Fe3O4/SiO2-Pt/Au/Pd magnetic nanocatalysts with multifunctional hyperbranched polyglycerol amplifiers. Langmuir 26:11217–11225CrossRef
Metadata
Title
Synthesis of composite nanoparticles using co-precipitation of a magnetic iron-oxide shell onto core nanoparticles
Authors
Darinka Primc
Blaž Belec
Darko Makovec
Publication date
01-03-2016
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 3/2016
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-016-3374-5

Other articles of this Issue 3/2016

Journal of Nanoparticle Research 3/2016 Go to the issue

Premium Partners