Skip to main content
Top

2021 | OriginalPaper | Chapter

3. Synthesis of Noble Gas Compounds: Defying the Common Perception

Author : Adish Tyagi

Published in: Handbook on Synthesis Strategies for Advanced Materials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Although they were not assigned a place in original Mendeleev periodic table, noble gases found a special place in popular science history. Their discovery, prediction about their reactivity, and preparation of first compound of noble gases are a display of utter determination, innovation, scientific temperament, and conviction. Since discovery, noble gases have been considered as inert or rare gases that are unable to react with other elements. This notion was shattered in 1962 when Bartlett prepared first noble gas compound. Subsequently, a flurry of synthetic and structural work ensued in hundreds of noble gas compounds. This chapter will take the readers on a journey of how the noble gases were discovered from the 0.1% discrepancy in assigning the density of nitrogen. Moving further, the chapter will shine light on how a 60 years long dogma related to the inertness of noble gases was overthrown in one master stroke. In addition to this, the chapter will also provide the discussion on the synthesis of compounds of noble gases and how the compounds which are almost impossible to prepare under ambient conditions become reality under high pressure. Furthermore, an enigma related to missing xenon phenomenon and proposed models to explain this paradox has also been included in this chapter. In the last, the chapter would like to draw the attention of the readers toward a question; was coaxing reactivity from these intractable elements not remarkable?

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
4.
go back to reference Grandinetti F (2018) Noble gas chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 9469 Weinheim, Germany, Print ISBN: 978-3-527-34180-1 Grandinetti F (2018) Noble gas chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 9469 Weinheim, Germany, Print ISBN: 978-3-527-34180-1
5.
go back to reference Cavendish H (1785) Experiments on air. Philos Trans R Soc Lond 75:372–384 Cavendish H (1785) Experiments on air. Philos Trans R Soc Lond 75:372–384
6.
go back to reference Janssen P (1868) Discovery of helium. Compt Rend 67:839 Janssen P (1868) Discovery of helium. Compt Rend 67:839
8.
go back to reference Rayleigh (1894) Proc R Soc Lond 55:40–344 Rayleigh (1894) Proc R Soc Lond 55:40–344
9.
10.
go back to reference Rayleigh L, Ramsay W (1895) Argon, a new constituent of the atmosphere philosophical transactions. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 186:187–241 Rayleigh L, Ramsay W (1895) Argon, a new constituent of the atmosphere philosophical transactions. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 186:187–241
12.
go back to reference Ramsay W, Collie JN, Travers M (1895) On the behaviour of argon and helium when submitted to the electric discharge. J Chem Soc Trans 67:684–701 Ramsay W, Collie JN, Travers M (1895) On the behaviour of argon and helium when submitted to the electric discharge. J Chem Soc Trans 67:684–701
13.
go back to reference Ramsay W, Travers MW (1900) Argon and its companions. Proc R Soc Lond 67:329–333 Ramsay W, Travers MW (1900) Argon and its companions. Proc R Soc Lond 67:329–333
14.
go back to reference Partington JR (1957) Discovery of radon. Nature 179:912 Partington JR (1957) Discovery of radon. Nature 179:912
16.
go back to reference Neil Bartlett and the Reactive Noble Gases commemorative booklet produced by the National Historic Chemical Landmarks program of the American Chemical Society in 2006 Neil Bartlett and the Reactive Noble Gases commemorative booklet produced by the National Historic Chemical Landmarks program of the American Chemical Society in 2006
17.
go back to reference Yost DM, Kaye AL (1933) An attempt to prepare a chloride or fluoride of xenon. J Am Chem Soc 55:3890–3892 Yost DM, Kaye AL (1933) An attempt to prepare a chloride or fluoride of xenon. J Am Chem Soc 55:3890–3892
18.
go back to reference Antropoff A (1924) Die Wertigkeit der Edelgase und ihre Stellung im periodischen System. Angew Chem 37:217 and 695 Antropoff A (1924) Die Wertigkeit der Edelgase und ihre Stellung im periodischen System. Angew Chem 37:217 and 695
19.
go back to reference Ruff O, Menzel W, Anorg Z (1933) Neue Sauerstofffluoride: O2F2 and OF. Allg Chem 213:206 Ruff O, Menzel W, Anorg Z (1933) Neue Sauerstofffluoride: O2F2 and OF. Allg Chem 213:206
20.
go back to reference Bartlett N (1962) Xenon hexafluoroplatinate(V) Xe+(PtF6)−. Proc Chem Soc 218 Bartlett N (1962) Xenon hexafluoroplatinate(V) Xe+(PtF6)−. Proc Chem Soc 218
21.
go back to reference Christe KO (2013) Bartlett’s discovery of noble gas fluorides, a milestone in chemical history. Chem Commun 49:4588–4590 Christe KO (2013) Bartlett’s discovery of noble gas fluorides, a milestone in chemical history. Chem Commun 49:4588–4590
22.
go back to reference Hargittai I (2009) Neil Bartlett and the first noble-gas compound. Struct Chem 20:953–959 Hargittai I (2009) Neil Bartlett and the first noble-gas compound. Struct Chem 20:953–959
23.
go back to reference Claasen HH, Selig H, Malm JG (1962) Xenon tetrafluoride. J Am Chem Soc 84:3593 Claasen HH, Selig H, Malm JG (1962) Xenon tetrafluoride. J Am Chem Soc 84:3593
24.
go back to reference Hoppe R, Dähne W, Mattauch H, Rödder KM (1962) Fluorination of xenon. Angew Chem Int Ed 1:599 Hoppe R, Dähne W, Mattauch H, Rödder KM (1962) Fluorination of xenon. Angew Chem Int Ed 1:599
25.
go back to reference Smith DF (1963) Xenon trioxide. J Am Chem Soc 85:816–817 Smith DF (1963) Xenon trioxide. J Am Chem Soc 85:816–817
26.
go back to reference Selig H, Classen HW, Chernick CL, Malm JG, Huston JL (1964) Xenon trioxide: preparation and some properties. Science 143:1322–1323 Selig H, Classen HW, Chernick CL, Malm JG, Huston JL (1964) Xenon trioxide: preparation and some properties. Science 143:1322–1323
27.
go back to reference Pitzer KS (1963) Bonding in xenon fluorides and halogen fluorides. Science 139:414 Pitzer KS (1963) Bonding in xenon fluorides and halogen fluorides. Science 139:414
28.
go back to reference Bartlett NR, Rao PR (1963) Xenon hydroxide: an experimental hazard. Science 139:506 Bartlett NR, Rao PR (1963) Xenon hydroxide: an experimental hazard. Science 139:506
29.
go back to reference Templeton DH, Zalkin A, Forrester JD, Williamson SM (1963) Crystal and molecular structure of xenon trioxide. J Am Chem Soc 85:817 Templeton DH, Zalkin A, Forrester JD, Williamson SM (1963) Crystal and molecular structure of xenon trioxide. J Am Chem Soc 85:817
30.
go back to reference Goettel JT, Schrobilgen GJ (2016) Solid-State Structures of XeO3. 55:12975–12981 Goettel JT, Schrobilgen GJ (2016) Solid-State Structures of XeO3. 55:12975–12981
31.
go back to reference Marczenko KM, Mercier HPA, Schrobilgen GJ (2018) A stable crown ether complex with a noble-gas compound. Angew Chem 57:12448–12452 Marczenko KM, Mercier HPA, Schrobilgen GJ (2018) A stable crown ether complex with a noble-gas compound. Angew Chem 57:12448–12452
32.
go back to reference Szarek P, Grochala W (2015) Noble gas monoxides stabilized in a dipolar cavity: a theoretical study. J Phys Chem A 119:2483–2489 Szarek P, Grochala W (2015) Noble gas monoxides stabilized in a dipolar cavity: a theoretical study. J Phys Chem A 119:2483–2489
33.
go back to reference Brock DS, Schrobilgen GJ (2011) Synthesis of the missing oxide of xenon, XeO2, and its implications for earth’s missing xenon. J Am Chem Soc 133:6265–6269 Brock DS, Schrobilgen GJ (2011) Synthesis of the missing oxide of xenon, XeO2, and its implications for earth’s missing xenon. J Am Chem Soc 133:6265–6269
34.
go back to reference Zhu Q, Zung DY, Oganov AR, Glass CW, Gatti C, Lyakhov AO (2013) Stability of xenon oxides at high pressures. Nat Chem 5:61–65 Zhu Q, Zung DY, Oganov AR, Glass CW, Gatti C, Lyakhov AO (2013) Stability of xenon oxides at high pressures. Nat Chem 5:61–65
35.
go back to reference Rupp HH, Seppelt K (1974) Struktur von Xenonhexafluorid in Lösung: Xe4F24. Angew Chem Int Ed Engl 13:612 Rupp HH, Seppelt K (1974) Struktur von Xenonhexafluorid in Lösung: Xe4F24. Angew Chem Int Ed Engl 13:612
36.
go back to reference Burbank RD, Jones GR (1971) Xenon hexafluoride: structural crystallography of tetrameric phases. Science 171:485 Burbank RD, Jones GR (1971) Xenon hexafluoride: structural crystallography of tetrameric phases. Science 171:485
37.
go back to reference Howard WF Jr, Andrews L (1974) Synthesis of noble-gas dihalides by laser photolysis of matrix-isolated halogens. J Am Chem Soc 96:7864 Howard WF Jr, Andrews L (1974) Synthesis of noble-gas dihalides by laser photolysis of matrix-isolated halogens. J Am Chem Soc 96:7864
38.
go back to reference Jortner J, Wilson EG, Rice SA (1963) The heats of sublimation of XeF2 and XeF4 and a conjecture on bonding in the solids. J Am Chem Soc 85:814–815 Jortner J, Wilson EG, Rice SA (1963) The heats of sublimation of XeF2 and XeF4 and a conjecture on bonding in the solids. J Am Chem Soc 85:814–815
39.
go back to reference Tavcar G, Tramsek M (2015) J Fluorine Chem 174:14–21 Tavcar G, Tramsek M (2015) J Fluorine Chem 174:14–21
40.
go back to reference Hagiwara R, Hollander F, Maines C, Bartlett N (1991) The crystal structure of [Ag (XeF2)2]AsF6 formed in the oxidation of Xe by AgFAsF6. J Eur Solid State Inorg Chem 28:855–866 Hagiwara R, Hollander F, Maines C, Bartlett N (1991) The crystal structure of [Ag (XeF2)2]AsF6 formed in the oxidation of Xe by AgFAsF6. J Eur Solid State Inorg Chem 28:855–866
41.
go back to reference Brau CA, Ewing JJ (1975) Emission spectra of XeBr, XeCl, XeF, and KrF. J Chem Phys 63:4640 Brau CA, Ewing JJ (1975) Emission spectra of XeBr, XeCl, XeF, and KrF. J Chem Phys 63:4640
42.
go back to reference Ault BS, Andrews L (1976) Absorption and emission spectra of matrix‐isolated XeF, KrF, XeCl, and XeBr. J Chem Phys 65:4192 Ault BS, Andrews L (1976) Absorption and emission spectra of matrix‐isolated XeF, KrF, XeCl, and XeBr. J Chem Phys 65:4192
43.
go back to reference Huston JL (1971) Xenon dioxide tetrafluoride. J Am Chem Soc 93:5255 Huston JL (1971) Xenon dioxide tetrafluoride. J Am Chem Soc 93:5255
44.
go back to reference Malm JG, Appelman EH (1969) At Energy Rev 7:3 Malm JG, Appelman EH (1969) At Energy Rev 7:3
45.
go back to reference Gunn SR (1967) Heat of formation of krypton difluoride. J Phys Chem 71:2934 Gunn SR (1967) Heat of formation of krypton difluoride. J Phys Chem 71:2934
46.
go back to reference Johnson GK, Malm JG, Hubbard WN (1972) The enthalpies of formation of XeF6(c), XeF4(c), XeF2(c), and PF3(g). J Chem Thermodyn 4:879 Johnson GK, Malm JG, Hubbard WN (1972) The enthalpies of formation of XeF6(c), XeF4(c), XeF2(c), and PF3(g). J Chem Thermodyn 4:879
47.
go back to reference Lehmann JF, Mercier HPA, Schrobilgen GJ (2002) The chemistry of krypton. Coord Chem Rev 233–234:1–39 Lehmann JF, Mercier HPA, Schrobilgen GJ (2002) The chemistry of krypton. Coord Chem Rev 233–234:1–39
48.
go back to reference Zhu L, Liu H, Pickard CJ, Zou G, Ma Y (2014) Reactions of xenon with iron and nickel are predicted in the Earth’s inner core. Nat Chem 6:644–648 Zhu L, Liu H, Pickard CJ, Zou G, Ma Y (2014) Reactions of xenon with iron and nickel are predicted in the Earth’s inner core. Nat Chem 6:644–648
49.
go back to reference Wacker JF, Andres E (1984) Where is the Earth’s missing xenon. SAO/NASA Astrophysics Data System (ADS) 48:2373–2380 Wacker JF, Andres E (1984) Where is the Earth’s missing xenon. SAO/NASA Astrophysics Data System (ADS) 48:2373–2380
50.
go back to reference Sanloup C, Bonev SA, Hochalf M, Casley HEM (2013) Reactivity of xenon with ice at planetary conditions. Phy Rev Lett 110:265501 Sanloup C, Bonev SA, Hochalf M, Casley HEM (2013) Reactivity of xenon with ice at planetary conditions. Phy Rev Lett 110:265501
51.
go back to reference Sanloup C, Schmidt BC, Perez EMC, Jambon A, Gregoryanz E (2005) Retention of xenon in quartz and Earth’s missing xenon. Science 310:1174 Sanloup C, Schmidt BC, Perez EMC, Jambon A, Gregoryanz E (2005) Retention of xenon in quartz and Earth’s missing xenon. Science 310:1174
52.
go back to reference Probert MIJ (2010) Retention of xenon in quartz and Earth’s missing xenon. J Phys 22:025501 Probert MIJ (2010) Retention of xenon in quartz and Earth’s missing xenon. J Phys 22:025501
53.
go back to reference Cynn H, Yoo CS, Baer B, Herbei VL, McMahan AK, Nicol M, Carlson S (2001) Martensitic fcc-to-hcp transformation observed in xenon at high pressure. Phys Rev Lett 86:4552 Cynn H, Yoo CS, Baer B, Herbei VL, McMahan AK, Nicol M, Carlson S (2001) Martensitic fcc-to-hcp transformation observed in xenon at high pressure. Phys Rev Lett 86:4552
Metadata
Title
Synthesis of Noble Gas Compounds: Defying the Common Perception
Author
Adish Tyagi
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-1892-5_3

Premium Partners