Skip to main content
Top
Published in: Optical Memory and Neural Networks 1/2023

01-11-2023

Synthesis of Porous and Oxide Nanostructures by the Method of Laser Irradiation Using Computer Optics Elements

Author: V. A. Danilov

Published in: Optical Memory and Neural Networks | Special Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Laser radiation produces an effect that is mainly determined by the ability of the optical system to create a given energy distribution over the worked surface of the material. The variety of existing and developing optical systems indicates the importance of solving this problem. The use of computer optics elements for redistribution of laser intensity in the focal plane is also important. This largely determines the course of structure formation processes in processed materials. The features of synthesis of porous and oxide nanostructures by laser irradiation are considered. When frequency-modulated laser beam is used, the synergistic effect between the thermal effects of laser irradiation and the pulse-periodic laser-induced vibrations leads to a significant increase in the diffusion coefficient. This is caused by the non-stationary stress-strain state of the material to be treated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
8.
go back to reference Dickey, F.M. and Lizotte, T.E., eds., Laser Beam Shaping Applications, 2nd ed., Boca Raton, USA: CRC Press Taylor & Francis, 2017. Dickey, F.M. and Lizotte, T.E., eds., Laser Beam Shaping Applications, 2nd ed., Boca Raton, USA: CRC Press Taylor & Francis, 2017.
9.
go back to reference Lawrence, J.R., Advances in Laser Materials Processing: Technology, Research and Applications, 2nd ed., Oxford, UK: Woodhead Publ., 2017. Lawrence, J.R., Advances in Laser Materials Processing: Technology, Research and Applications, 2nd ed., Oxford, UK: Woodhead Publ., 2017.
18.
go back to reference Kazanskiy, N.L., Murzin, S.P., and Tregub, V.I., Optical system for realization selective laser sublimation of metal alloys components, Comput. Opt., 2010, vol. 34, no. 4, pp. 481–486. Kazanskiy, N.L., Murzin, S.P., and Tregub, V.I., Optical system for realization selective laser sublimation of metal alloys components, Comput. Opt., 2010, vol. 34, no. 4, pp. 481–486.
19.
go back to reference Murzin, S.P., Local laser annealing for aluminium alloy parts, Laser Eng., 2016, vol. 33, no. 1–3, pp. 67–76. Murzin, S.P., Local laser annealing for aluminium alloy parts, Laser Eng., 2016, vol. 33, no. 1–3, pp. 67–76.
21.
go back to reference Golub, M.A., Karpeev, S.B., Prokhorov, A.M., Sisakyan, I.N., and Soifer, V.A., Focusing light into a specified volume by computer-synthesized holograms, Sov. Tech. Phys. Lett., 1981, vol. 7, no. 5, pp. 264–266. Golub, M.A., Karpeev, S.B., Prokhorov, A.M., Sisakyan, I.N., and Soifer, V.A., Focusing light into a specified volume by computer-synthesized holograms, Sov. Tech. Phys. Lett., 1981, vol. 7, no. 5, pp. 264–266.
22.
go back to reference Golub, M.A., Sisakian, I.N., and Soifer, V.A., Infra-red radiation focusators, Opt. Lasers Eng., 1991, vol. 15, pp. 297–309.CrossRef Golub, M.A., Sisakian, I.N., and Soifer, V.A., Infra-red radiation focusators, Opt. Lasers Eng., 1991, vol. 15, pp. 297–309.CrossRef
24.
go back to reference Golub, M.A., Degtyareva, V.P., Klimov, A.N., Popov, V.V., Prokhorov, A.M., Sisakyan, E.V., Sisakyan, I.N., and Soifer, V.A., Computer synthesis of focusing elements for a CO2 laser, Sov. Tech. Phys. Lett., 1982, vol. 8, no. 4, pp. 195–196. Golub, M.A., Degtyareva, V.P., Klimov, A.N., Popov, V.V., Prokhorov, A.M., Sisakyan, E.V., Sisakyan, I.N., and Soifer, V.A., Computer synthesis of focusing elements for a CO2 laser, Sov. Tech. Phys. Lett., 1982, vol. 8, no. 4, pp. 195–196.
25.
go back to reference Danilov, V.A., Popov, V.V., Prokhorov, A.M., Sagatelyan, D.M., Sisakyan I.N., and Soifer, V.A., Synthesis of optical elements giving a focal line of arbitrary shape, Sov. Tech. Phys. Lett., 1982, vol. 8, no. 7, pp. 351–356. Danilov, V.A., Popov, V.V., Prokhorov, A.M., Sagatelyan, D.M., Sisakyan I.N., and Soifer, V.A., Synthesis of optical elements giving a focal line of arbitrary shape, Sov. Tech. Phys. Lett., 1982, vol. 8, no. 7, pp. 351–356.
26.
go back to reference Goncharskii, A.V., Danilov, V.A., Popov, V.V., Prokhorov, A.M., Sisakyan, I.N., Soifer, V.A., and Stepanov, V.V., Solution of the inverse problem of focusing of laser radiation into an arbitrary curve, Sov. Phys. Dokl., 1983, vol. 28, no. 11, pp. 955–957. Goncharskii, A.V., Danilov, V.A., Popov, V.V., Prokhorov, A.M., Sisakyan, I.N., Soifer, V.A., and Stepanov, V.V., Solution of the inverse problem of focusing of laser radiation into an arbitrary curve, Sov. Phys. Dokl., 1983, vol. 28, no. 11, pp. 955–957.
27.
go back to reference Goncharskii, A.V., Danilov, V.A., Popov, V.V., Prokhorov, A.M., Sisakian, I.N., Soifer, V.A., and Stepanov, V.V., Devices for focusing laser radiation incident at an angle, Sov. J. Quantum Electron., 1984, vol. 14, no. 1, pp. 108–109.CrossRef Goncharskii, A.V., Danilov, V.A., Popov, V.V., Prokhorov, A.M., Sisakian, I.N., Soifer, V.A., and Stepanov, V.V., Devices for focusing laser radiation incident at an angle, Sov. J. Quantum Electron., 1984, vol. 14, no. 1, pp. 108–109.CrossRef
28.
go back to reference Danilov, V.A., Kinber, B.E., and Shishlov, A.V., Theory of coherent focusers, Comput. Opt., 1989, vol. 1, no. 1, pp. 29–37. Danilov, V.A., Kinber, B.E., and Shishlov, A.V., Theory of coherent focusers, Comput. Opt., 1989, vol. 1, no. 1, pp. 29–37.
29.
go back to reference Sisakian, N., Shorin, V.P., Soifer, V.A., Mordasov, V.I., and Popov, V.V., Technological capabilities of focusators in laser-induced material processing, Comput. Opt., 1990, vol. 2, no. 1, pp. 85–88. Sisakian, N., Shorin, V.P., Soifer, V.A., Mordasov, V.I., and Popov, V.V., Technological capabilities of focusators in laser-induced material processing, Comput. Opt., 1990, vol. 2, no. 1, pp. 85–88.
31.
go back to reference Danilov, V.A., Popov, V.V., Prokhorov, A.M., Sisakian, I.N., Sagatelian, D.M., Soifer, V.A., Sisakian, E.V., Naumidi, L.P., Danileiko, Ju.K., Terekhin, Ju.D., Akopian, V.S., Murzin, S.P., Shorin, V.P., and Mordasov, V.I., Device for laser treatment of an object, US Patent 5103073, 1992. Danilov, V.A., Popov, V.V., Prokhorov, A.M., Sisakian, I.N., Sagatelian, D.M., Soifer, V.A., Sisakian, E.V., Naumidi, L.P., Danileiko, Ju.K., Terekhin, Ju.D., Akopian, V.S., Murzin, S.P., Shorin, V.P., and Mordasov, V.I., Device for laser treatment of an object, US Patent 5103073, 1992.
32.
go back to reference Dubovskii, P.E., Kovsh, I.B., Strekalova, M.S., and Sisakyan, I.N., Surface hardening of steels with a strip-shaped beam of a high-power CO2 laser, Quantum Electron., 1994, vol. 24, no. 12, pp. 1097–1099.CrossRef Dubovskii, P.E., Kovsh, I.B., Strekalova, M.S., and Sisakyan, I.N., Surface hardening of steels with a strip-shaped beam of a high-power CO2 laser, Quantum Electron., 1994, vol. 24, no. 12, pp. 1097–1099.CrossRef
33.
go back to reference Danilov, V.A. Kulkin, K.A. and Sisakyan, I.N., Focusators into segment constituting arbitrary angle with the optical axis, Comput. Opt., 1992, vol. 10–11, pp. 48–68. Danilov, V.A. Kulkin, K.A. and Sisakyan, I.N., Focusators into segment constituting arbitrary angle with the optical axis, Comput. Opt., 1992, vol. 10–11, pp. 48–68.
34.
go back to reference Danilov, V.A., Kulkin, K.A., and Sisakyan, I.N., Focusator into figures composed of spatial curves, Comput. Opt., 1993, vol. 13, pp. 3–11. Danilov, V.A., Kulkin, K.A., and Sisakyan, I.N., Focusator into figures composed of spatial curves, Comput. Opt., 1993, vol. 13, pp. 3–11.
37.
go back to reference Doskolovich, L.L., Golub, M.A., Kazanskiy, N.L., Khramov, A.G., Pavelyev, V.S., Seraphimovich, P.G., Soifer, V.A., and Volotovskiy, S.G. Software on diffractive optics and computer-generated holograms, Proc. SPIE, 1995, vol. 2363, pp. 278–284. https://doi.org/10.1117/12.199645CrossRef Doskolovich, L.L., Golub, M.A., Kazanskiy, N.L., Khramov, A.G., Pavelyev, V.S., Seraphimovich, P.G., Soifer, V.A., and Volotovskiy, S.G. Software on diffractive optics and computer-generated holograms, Proc. SPIE, 1995, vol. 2363, pp. 278–284. https://​doi.​org/​10.​1117/​12.​199645CrossRef
52.
go back to reference Doskolovich, L.L., Bezus, E.A., Moiseev, M.A., Bykov, D.A., and Kazanskiy, N.L., Analytical source-target mapping method for the design of freeform mirrors generating prescribed 2D intensity distributions, Opt. Express, 2016, vol. 24, no. 10, pp. 10962–10971. https://doi.org/10.1364/OE.24.010962CrossRef Doskolovich, L.L., Bezus, E.A., Moiseev, M.A., Bykov, D.A., and Kazanskiy, N.L., Analytical source-target mapping method for the design of freeform mirrors generating prescribed 2D intensity distributions, Opt. Express, 2016, vol. 24, no. 10, pp. 10962–10971. https://​doi.​org/​10.​1364/​OE.​24.​010962CrossRef
55.
go back to reference Bykov, D.A., Doskolovich, L.L., Mingazov, A.A., Andreev, E.S., and Kazanskiy, N.L., Linear assignment problem in the design of freeform refractive optical elements generating prescribed irradiance distributions, Opt. Express, 2018, vol. 26, no. 21, pp. 27812–27825. https://doi.org/10.1364/OE.26.027812CrossRef Bykov, D.A., Doskolovich, L.L., Mingazov, A.A., Andreev, E.S., and Kazanskiy, N.L., Linear assignment problem in the design of freeform refractive optical elements generating prescribed irradiance distributions, Opt. Express, 2018, vol. 26, no. 21, pp. 27812–27825. https://​doi.​org/​10.​1364/​OE.​26.​027812CrossRef
56.
58.
go back to reference Doskolovich, L.L., Bykov, D.A., Andreev, E.S., Byzov, E.V., Moiseev, M.A., Bezus, E.A., and Kazanskiy, N.L., Design and fabrication of freeform mirrors generating prescribed far-field irradiance distributions, Appl. Opt., 2020, vol. 59, no. 16, pp. 5006–5012. https://doi.org/10.1364/AO.393896CrossRef Doskolovich, L.L., Bykov, D.A., Andreev, E.S., Byzov, E.V., Moiseev, M.A., Bezus, E.A., and Kazanskiy, N.L., Design and fabrication of freeform mirrors generating prescribed far-field irradiance distributions, Appl. Opt., 2020, vol. 59, no. 16, pp. 5006–5012. https://​doi.​org/​10.​1364/​AO.​393896CrossRef
59.
go back to reference Bykov, D.A., Doskolovich, L.L., Byzov, E.V., Bezus, E.A., and Kazanskiy, N.L., Supporting quadric method for designing refractive optical elements generating prescribed irradiance distribution and wavefront, Opt. Express, 2021, vol. 29, no. 17, pp. 26304–26318. https://doi.org/10.1364/OE.432770CrossRef Bykov, D.A., Doskolovich, L.L., Byzov, E.V., Bezus, E.A., and Kazanskiy, N.L., Supporting quadric method for designing refractive optical elements generating prescribed irradiance distribution and wavefront, Opt. Express, 2021, vol. 29, no. 17, pp. 26304–26318. https://​doi.​org/​10.​1364/​OE.​432770CrossRef
60.
62.
go back to reference Kazanskii, N.L., Correction of focuser phase function by computer-experimental methods, Comput. Opt., 1989, vol. 1, no. 1, pp. 69–73. Kazanskii, N.L., Correction of focuser phase function by computer-experimental methods, Comput. Opt., 1989, vol. 1, no. 1, pp. 69–73.
63.
go back to reference Kotlyar, V.V., Nikolsky, I.V., and Soifer, V.A. Adaptive iterative algorithm for focusators synthesis, Optik, 1991, vol. 88, no. 1, pp. 17–19. Kotlyar, V.V., Nikolsky, I.V., and Soifer, V.A. Adaptive iterative algorithm for focusators synthesis, Optik, 1991, vol. 88, no. 1, pp. 17–19.
65.
go back to reference Golub, M.A., Kazanskii, N.L., Sisakyan, I.N., Soifer, V.A., and Kharitonov, S.I., Diffraction calculation for an optical element which focuses into a ring, Optoelectronics, Instrumentation and Data Processing, 1987, no. 6, pp. 7–14. Golub, M.A., Kazanskii, N.L., Sisakyan, I.N., Soifer, V.A., and Kharitonov, S.I., Diffraction calculation for an optical element which focuses into a ring, Optoelectronics, Instrumentation and Data Processing, 1987, no. 6, pp. 7–14.
67.
go back to reference Kazanskiy, N.L. and Kharitonov, S.I., Transmission of the space-limited broadband symmetrical radial pulses focused through a thin film, Comput. Opt., 2012, vol. 36, no. 1, pp. 4–13. Kazanskiy, N.L. and Kharitonov, S.I., Transmission of the space-limited broadband symmetrical radial pulses focused through a thin film, Comput. Opt., 2012, vol. 36, no. 1, pp. 4–13.
71.
go back to reference Golub, M.A., Kazanskii, N.L., Sisakyan, I.N., and Soifer, V.A. Computational experiment with plane optical elements, Optoelectronics, Instrumentation and Data Processing, 1988, no. 1, pp. 70–82. Golub, M.A., Kazanskii, N.L., Sisakyan, I.N., and Soifer, V.A. Computational experiment with plane optical elements, Optoelectronics, Instrumentation and Data Processing, 1988, no. 1, pp. 70–82.
72.
go back to reference Kazanskiy, N.L. and Soifer, V.A., Diffraction investigation of geometric-optical focusators into a segment, Optik, 1994, vol. 96, no. 4, pp. 158–162. Kazanskiy, N.L. and Soifer, V.A., Diffraction investigation of geometric-optical focusators into a segment, Optik, 1994, vol. 96, no. 4, pp. 158–162.
73.
go back to reference Doskolovich, L.L., Kazanskiy, N.L., Soifer, V.A., and Tzaregorodtzev, A.Ye., Analysis of quasiperiodic and geometric optical solutions of the problem of focusing into an axial segment, Optik, 1995, vol. 101, no. 2, pp. 37–41. Doskolovich, L.L., Kazanskiy, N.L., Soifer, V.A., and Tzaregorodtzev, A.Ye., Analysis of quasiperiodic and geometric optical solutions of the problem of focusing into an axial segment, Optik, 1995, vol. 101, no. 2, pp. 37–41.
82.
go back to reference Babin, S.V. and Danilov, V.A., Data preparation and fabrication of DOE using electron-beam lithography, Opt. Lasers Eng., 1998, vol. 29, no. 4–5, pp. 307–324.CrossRef Babin, S.V. and Danilov, V.A., Data preparation and fabrication of DOE using electron-beam lithography, Opt. Lasers Eng., 1998, vol. 29, no. 4–5, pp. 307–324.CrossRef
84.
go back to reference Kononeko, V.V., Konov, V.I., Pavelyev, V.S., Pimenov, S.M., Prokhorov, A.M., and Soifer, V.A., Diamond diffraction optics for CO2 lasers, Quantum Electron., 1999, vol. 29, no. 1, pp. 9–10.CrossRef Kononeko, V.V., Konov, V.I., Pavelyev, V.S., Pimenov, S.M., Prokhorov, A.M., and Soifer, V.A., Diamond diffraction optics for CO2 lasers, Quantum Electron., 1999, vol. 29, no. 1, pp. 9–10.CrossRef
87.
go back to reference Bezus, E.A., Doskolovich, L.L., and Kazanskiy, N.L., Interference pattern formation in evanescent electromagnetic waves using waveguide diffraction gratings, Quantum Electron., 2011, vol. 41, no. 8, pp. 759–764.https://doi.org/10.1070/QE2011v041n08ABEH014500 Bezus, E.A., Doskolovich, L.L., and Kazanskiy, N.L., Interference pattern formation in evanescent electromagnetic waves using waveguide diffraction gratings, Quantum Electron., 2011, vol. 41, no. 8, pp. 759–764.https://​doi.​org/​10.​1070/​QE2011v041n08ABEH014500
92.
go back to reference Kazanskiy, N.L. and Kolpakov, V.A., Optical Materials: Microstructuring Surfaces with Off-Electrode Plasma, Boca Raton: CRC Press, 2017. ISBN: 978-0-367-88626-4.CrossRef Kazanskiy, N.L. and Kolpakov, V.A., Optical Materials: Microstructuring Surfaces with Off-Electrode Plasma, Boca Raton: CRC Press, 2017. ISBN: 978-0-367-88626-4.CrossRef
93.
go back to reference Veiko, V.P., Korolkov, V.P., Poleshchuk, A.G., Sinev, D.A., and Shakhno, E.A., Laser technologies in micro-optics. Part 1. Fabrication of diffractive optical elements and photomasks with amplitude transmission, Optoelectronics, Instrumentation and Data Processing, 2017, vol. 53, no. 5, pp. 474–483. https://doi.org/10.3103/S8756699017050077CrossRef Veiko, V.P., Korolkov, V.P., Poleshchuk, A.G., Sinev, D.A., and Shakhno, E.A., Laser technologies in micro-optics. Part 1. Fabrication of diffractive optical elements and photomasks with amplitude transmission, Optoelectronics, Instrumentation and Data Processing, 2017, vol. 53, no. 5, pp. 474–483. https://​doi.​org/​10.​3103/​S875669901705007​7CrossRef
94.
go back to reference Poleshchuk, A.G., Korolkov, V.P., Veiko, V.P., Zakoldaev, R.A., and Sergeev, M.M., Laser technologies in micro-optics. Part 2. Fabrication of elements with a three-dimensional profile, Optoelectronics, Instrumentation and Data Processing, 2018, vol. 54, no. 2, pp. 113–126. https://doi.org/10.3103/S8756699018020012CrossRef Poleshchuk, A.G., Korolkov, V.P., Veiko, V.P., Zakoldaev, R.A., and Sergeev, M.M., Laser technologies in micro-optics. Part 2. Fabrication of elements with a three-dimensional profile, Optoelectronics, Instrumentation and Data Processing, 2018, vol. 54, no. 2, pp. 113–126. https://​doi.​org/​10.​3103/​S875669901802001​2CrossRef
98.
go back to reference Poleshchuk, A.G., Churin, E.G., Koronkevich, V.P., Korolkov, V.P., Kharissov, A.A., Cherkashin, V.V., Kiryanov, V.P., Kiryanov, A.V., Kokarev, S.A., and Verhoglyad, A.G., Polar coordinate laser pattern generator for fabrication of diffractive optical elements with arbitrary structure, Appl. Opt., 1999, vol. 38, no. 8, pp. 1295–1301. https://doi.org/10.1364/AO.38.001295CrossRef Poleshchuk, A.G., Churin, E.G., Koronkevich, V.P., Korolkov, V.P., Kharissov, A.A., Cherkashin, V.V., Kiryanov, V.P., Kiryanov, A.V., Kokarev, S.A., and Verhoglyad, A.G., Polar coordinate laser pattern generator for fabrication of diffractive optical elements with arbitrary structure, Appl. Opt., 1999, vol. 38, no. 8, pp. 1295–1301. https://​doi.​org/​10.​1364/​AO.​38.​001295CrossRef
102.
go back to reference Bufetova, G.A., Kashin, V.V., Nikolaev, D.A., Rusanov, S.Ya., Seregin, V.F., Tsvetkov, V.B., Shcherbakov, I.A., and Yakovlev, A.A., Neodymium-doped graded-index single-crystal fibre lasers, Quantum Electron., 2006, vol. 36, no. 7, pp. 616–619.CrossRef Bufetova, G.A., Kashin, V.V., Nikolaev, D.A., Rusanov, S.Ya., Seregin, V.F., Tsvetkov, V.B., Shcherbakov, I.A., and Yakovlev, A.A., Neodymium-doped graded-index single-crystal fibre lasers, Quantum Electron., 2006, vol. 36, no. 7, pp. 616–619.CrossRef
103.
go back to reference Finogenov, L.V., Lemeshko, Yu.A., Zav’yalov, P.S., and Chugui, Yu.V., 3D laser inspection of fuel assembly grid spacers for nuclear reactors based on diffractive optical elements, Meas. Sci. Technol., 2007, vol. 18, no. 6, pp. 1779–1785.CrossRef Finogenov, L.V., Lemeshko, Yu.A., Zav’yalov, P.S., and Chugui, Yu.V., 3D laser inspection of fuel assembly grid spacers for nuclear reactors based on diffractive optical elements, Meas. Sci. Technol., 2007, vol. 18, no. 6, pp. 1779–1785.CrossRef
105.
go back to reference Baum, O.I., Omelchenko, A.I., Kasyanenko, E.M., Skidanov, R.V., Kazanskij, N.L., Sobol, E.N., Bolshu-nov, A.V., Siplivy, V.I., Osipyan, G.A., Gamidov, A.A., and Avetisov, S.E., New biophotonics methods for improving efficiency and safety of laser modification of the fibrous tunic of the eye, Vestn. Oftalmol., 2018, vol. 134, no. 5, pp. 4–14. https://doi.org/10.17116/oftalma20181340514CrossRef Baum, O.I., Omelchenko, A.I., Kasyanenko, E.M., Skidanov, R.V., Kazanskij, N.L., Sobol, E.N., Bolshu-nov, A.V., Siplivy, V.I., Osipyan, G.A., Gamidov, A.A., and Avetisov, S.E., New biophotonics methods for improving efficiency and safety of laser modification of the fibrous tunic of the eye, Vestn. Oftalmol., 2018, vol. 134, no. 5, pp. 4–14. https://​doi.​org/​10.​17116/​oftalma201813405​14CrossRef
106.
go back to reference Baum, O.I., Omel’chenko, A.I., Kasianenko, E.M., Skidanov, R.V., Kazanskiy, N.L., Sobol’, E.N., Bolshu-nov, A.V., Avetisov, S.E., and Panchenko, V.Ya., Control of laser-beam spatial distribution for correcting the shape and refraction of eye cornea, Quantum Electron., 2020, vol. 50, no. 1, pp. 87–93. https://doi.org/10.1070/QEL17216CrossRef Baum, O.I., Omel’chenko, A.I., Kasianenko, E.M., Skidanov, R.V., Kazanskiy, N.L., Sobol’, E.N., Bolshu-nov, A.V., Avetisov, S.E., and Panchenko, V.Ya., Control of laser-beam spatial distribution for correcting the shape and refraction of eye cornea, Quantum Electron., 2020, vol. 50, no. 1, pp. 87–93. https://​doi.​org/​10.​1070/​QEL17216CrossRef
107.
go back to reference Mordasov, V.I., Murzin, S.P., Sazonnikova, N.A., and Shuvaev, A.A., On the formation of plasma-laser coatings, Russ. Metall., 2001, vol. 3, pp. 291–293. Mordasov, V.I., Murzin, S.P., Sazonnikova, N.A., and Shuvaev, A.A., On the formation of plasma-laser coatings, Russ. Metall., 2001, vol. 3, pp. 291–293.
108.
go back to reference Mordasov, V.I., Murzin, S.P., Sazonnikova, N.A., and Shuvaev, A.A., Formation of plasma-laser coatings, Metally, 2001, vol. 3, pp. 79–82. Mordasov, V.I., Murzin, S.P., Sazonnikova, N.A., and Shuvaev, A.A., Formation of plasma-laser coatings, Metally, 2001, vol. 3, pp. 79–82.
110.
go back to reference Murzin, S.P., Tisarev, A.Yu., and Blokhin, M.V., Calculation of thermal processes during laser treatment of dual phase steel using computer-generated diffractive optical element, Proc. ITNT 2020 – 6th IEEE Int. Conf. on Information Technology and Nanotechnology, 2020, 9253363. https://doi.org/10.1109/ITNT49337.2020.9253363 Murzin, S.P., Tisarev, A.Yu., and Blokhin, M.V., Calculation of thermal processes during laser treatment of dual phase steel using computer-generated diffractive optical element, Proc. ITNT 2020 – 6th IEEE Int. Conf. on Information Technology and Nanotechnology, 2020, 9253363. https://​doi.​org/​10.​1109/​ITNT49337.​2020.​9253363
114.
go back to reference Murzin, S.P., Kazanskiy, N.L., Liedl, G., Bielak, R., Melnikov, A.A., and Osipov, S., Study of structure of dual phase steel after laser heat treatment using moving distributed surface heat sources, Proc. ITNT 2020 – 6th IEEE Int. Conf. on Information Technology and Nanotechnology, 2020, 9253361. https://doi.org/10.1109/ITNT49337.2020.9253361 Murzin, S.P., Kazanskiy, N.L., Liedl, G., Bielak, R., Melnikov, A.A., and Osipov, S., Study of structure of dual phase steel after laser heat treatment using moving distributed surface heat sources, Proc. ITNT 2020 – 6th IEEE Int. Conf. on Information Technology and Nanotechnology, 2020, 9253361. https://​doi.​org/​10.​1109/​ITNT49337.​2020.​9253361
115.
go back to reference Murzin, S.P., Melnikov, A.A., Blokhin, M.V., Reshetov, V.M., and Dyagovtsov, I.A., Use of diffractive optics for structures formation in dual-phase steel with reduced microhardness, Proc. ITNT 2021 – 7th IEEE Int. Conf. on Information Technology and Nanotechnology, 2021, 9649397. https://doi.org/10.1109/ITNT52450.2021.9649397 Murzin, S.P., Melnikov, A.A., Blokhin, M.V., Reshetov, V.M., and Dyagovtsov, I.A., Use of diffractive optics for structures formation in dual-phase steel with reduced microhardness, Proc. ITNT 2021 – 7th IEEE Int. Conf. on Information Technology and Nanotechnology, 2021, 9649397. https://​doi.​org/​10.​1109/​ITNT52450.​2021.​9649397
136.
go back to reference Murzin, S.P., Balyakin, V.B., Gachot, C., Fomchenkov, S.A., Blokhin, M.V., and Kazanskiy, N.L., Reduction of the friction coefficient of silicon carbide ceramics by ultraviolet nanosecond laser treatment, Proc. ITNT 2021—7th IEEE Int. Conf. on Information Technology and Nanotechnology, 2021, 9649435. https://doi.org/10.1109/ITNT52450.2021.9649435 Murzin, S.P., Balyakin, V.B., Gachot, C., Fomchenkov, S.A., Blokhin, M.V., and Kazanskiy, N.L., Reduction of the friction coefficient of silicon carbide ceramics by ultraviolet nanosecond laser treatment, Proc. ITNT 2021—7th IEEE Int. Conf. on Information Technology and Nanotechnology, 2021, 9649435. https://​doi.​org/​10.​1109/​ITNT52450.​2021.​9649435
137.
138.
go back to reference Murzin, S.P., The research of intensification’s expedients for nanoporous structures formation in metal materials by the selective laser sublimation of alloy’s components, Comput. Opt., 2011, vol. 35, no. 2, pp. 175–179. Murzin, S.P., The research of intensification’s expedients for nanoporous structures formation in metal materials by the selective laser sublimation of alloy’s components, Comput. Opt., 2011, vol. 35, no. 2, pp. 175–179.
139.
go back to reference Murzin, S.P., Tregub, V.I., Mezhenin, A.V., and Osetrov, E.L., Laser nanostructurizing of metal materials by application of moveable radiation focusator, Comput. Opt., 2008, vol. 32, no. 4, pp. 353–357. Murzin, S.P., Tregub, V.I., Mezhenin, A.V., and Osetrov, E.L., Laser nanostructurizing of metal materials by application of moveable radiation focusator, Comput. Opt., 2008, vol. 32, no. 4, pp. 353–357.
140.
go back to reference Kazanskiy, N.L., Murzin, S.P., Mezhenin, A.V., and Osetrov, E.L., Formation of the laser radiation to create nanoscale porous materials structures, Comput. Opt., 2008, vol. 32, no. 3, pp. 246–248. Kazanskiy, N.L., Murzin, S.P., Mezhenin, A.V., and Osetrov, E.L., Formation of the laser radiation to create nanoscale porous materials structures, Comput. Opt., 2008, vol. 32, no. 3, pp. 246–248.
154.
go back to reference Murzin, S.P. and Kazanskiy, N.L., Study of the formation of zinc oxide nanowires on brass surface after pulse-periodic laser treatment, in book: Durakbasa, N.M., and Gençyılmaz, M.G, eds., Digitizing Production Systems. Selected Papers from ISPR2021, October 07-09, 2021 Online, Turkey, Cham, Switzerland: Springer Nature Switzerland AG, 2022, pp. 335–343. https://doi.org/10.1007/978-3-030-90421-0_28 Murzin, S.P. and Kazanskiy, N.L., Study of the formation of zinc oxide nanowires on brass surface after pulse-periodic laser treatment, in book: Durakbasa, N.M., and Gençyılmaz, M.G, eds., Digitizing Production Systems. Selected Papers from ISPR2021, October 07-09, 2021 Online, Turkey, Cham, Switzerland: Springer Nature Switzerland AG, 2022, pp. 335–343. https://​doi.​org/​10.​1007/​978-3-030-90421-0_​28
157.
go back to reference Murzin, S.P., Osetrov, E.L., Tregub, N.V., and Malov, S.A., The increasing of the uniformity of nanoporous structure creation zone depth by the laser action shaped by radiation focusator, Comput. Opt., 2010, vol. 34, no. 2, pp. 219–224. Murzin, S.P., Osetrov, E.L., Tregub, N.V., and Malov, S.A., The increasing of the uniformity of nanoporous structure creation zone depth by the laser action shaped by radiation focusator, Comput. Opt., 2010, vol. 34, no. 2, pp. 219–224.
Metadata
Title
Synthesis of Porous and Oxide Nanostructures by the Method of Laser Irradiation Using Computer Optics Elements
Author
V. A. Danilov
Publication date
01-11-2023
Publisher
Pleiades Publishing
Published in
Optical Memory and Neural Networks / Issue Special Issue 1/2023
Print ISSN: 1060-992X
Electronic ISSN: 1934-7898
DOI
https://doi.org/10.3103/S1060992X23050065

Other articles of this Special Issue 1/2023

Optical Memory and Neural Networks 1/2023 Go to the issue

Premium Partner