Skip to main content
Top

2021 | OriginalPaper | Chapter

17. Synthesis Strategies for Si-Based Advanced Materials and Their Applications

Authors : S. P. Koiry, A. K. Chauhan

Published in: Handbook on Synthesis Strategies for Advanced Materials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Silicon compounds are very important owing to their stability, non-toxicity, and high natural abundance of silica in earth crust. These materials have been studied for more than a century, and a vast literature on their synthesis and application is available. These are utilized in various forms in organometallics, polymers, material science, and microelectronics, and have immense potential for their application in organic and hybrid electronic devices. Thus, a comprehensive review on synthesis, processing, and potential applications of silicon-based materials was a need of the time. In this chapter, the synthesis of silane, methods of extracting elemental silicon, and their use in the growth of single crystals are discussed. In addition, synthesis strategies of various silicon compounds which include organosilane, silicone, polysilane, and silicene are described and their applications are discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Petrov BFMAD, Ponomarenko VA, Chernyshev EA (1964) Synthesis of organosilicon monomers. Consultants Bureau, New York Petrov BFMAD, Ponomarenko VA, Chernyshev EA (1964) Synthesis of organosilicon monomers. Consultants Bureau, New York
2.
go back to reference Semenov VV (2011) Preparation, properties and applications of oligomeric and polymeric organosilanes. Russ Chem Rev 80(4):313–339CrossRef Semenov VV (2011) Preparation, properties and applications of oligomeric and polymeric organosilanes. Russ Chem Rev 80(4):313–339CrossRef
3.
go back to reference Brook MA (1999) Silicon in organic, organometallic, and polymer chemistry. Wiley Brook MA (1999) Silicon in organic, organometallic, and polymer chemistry. Wiley
4.
go back to reference O'Mara WC, Herring RB, Hunt LP (1990) Handbook of semiconductor silicon technology. Noyes Publications O'Mara WC, Herring RB, Hunt LP (1990) Handbook of semiconductor silicon technology. Noyes Publications
5.
go back to reference Plueddemann EP (2013) Silane coupling agents. Springer, US Plueddemann EP (2013) Silane coupling agents. Springer, US
6.
go back to reference Moriguchi K, Utagawa S (2012) Silane: chemistry, applications and performance. Nova Publishers Moriguchi K, Utagawa S (2012) Silane: chemistry, applications and performance. Nova Publishers
7.
go back to reference Muzafarov AM (2010) Silicon polymers. Springer, Berlin Heidelberg Muzafarov AM (2010) Silicon polymers. Springer, Berlin Heidelberg
8.
go back to reference Robeyns C, Picard L, Ganachaud F (2018) Synthesis, characterization and modification of silicone resins: an “Augmented Review.” Prog Org Coat 125:287–315CrossRef Robeyns C, Picard L, Ganachaud F (2018) Synthesis, characterization and modification of silicone resins: an “Augmented Review.” Prog Org Coat 125:287–315CrossRef
9.
go back to reference Su TA, Li H, Klausen RS, Kim NT, Neupane M, Leighton JL, Steigerwald ML, Venkataraman L, Nuckolls C (2017) Silane and Germane Molecular Electronics. Acc Chem Res 50(4):1088–1095CrossRef Su TA, Li H, Klausen RS, Kim NT, Neupane M, Leighton JL, Steigerwald ML, Venkataraman L, Nuckolls C (2017) Silane and Germane Molecular Electronics. Acc Chem Res 50(4):1088–1095CrossRef
10.
go back to reference Lee B, Chen Y, Duerr F, Mastrogiovanni D, Garfunkel E, Andrei EY, Podzorov V (2010) Modification of electronic properties of graphene with self-assembled monolayers. Nano Lett 10(7):2427–2432CrossRef Lee B, Chen Y, Duerr F, Mastrogiovanni D, Garfunkel E, Andrei EY, Podzorov V (2010) Modification of electronic properties of graphene with self-assembled monolayers. Nano Lett 10(7):2427–2432CrossRef
11.
go back to reference Puniredd SR, Jayaraman S, Yeong SH, Troadec C, Srinivasan MP (2013) Stable organic monolayers on oxide-free silicon/germanium in a supercritical medium: a new route to molecular electronics. J Phys Chem Lett 4(9):1397–1403CrossRef Puniredd SR, Jayaraman S, Yeong SH, Troadec C, Srinivasan MP (2013) Stable organic monolayers on oxide-free silicon/germanium in a supercritical medium: a new route to molecular electronics. J Phys Chem Lett 4(9):1397–1403CrossRef
12.
go back to reference Aswal DK, Lenfant S, Guerin D, Yakhmi JV, Vuillaume D (2006) Self assembled monolayers on silicon for molecular electronics. Anal Chim Acta 568(1):84–108CrossRef Aswal DK, Lenfant S, Guerin D, Yakhmi JV, Vuillaume D (2006) Self assembled monolayers on silicon for molecular electronics. Anal Chim Acta 568(1):84–108CrossRef
13.
go back to reference Rakshit T, Liang G-C, Ghosh AW, Datta S (2004) Silicon-based molecular electronics. Nano Lett 4(10):1803–1807CrossRef Rakshit T, Liang G-C, Ghosh AW, Datta S (2004) Silicon-based molecular electronics. Nano Lett 4(10):1803–1807CrossRef
14.
go back to reference Guisinger NP, Greene ME, Basu R, Baluch AS, Hersam MC (2004) Room temperature negative differential resistance through individual organic molecules on silicon surfaces. Nano Lett 4(1):55–59CrossRef Guisinger NP, Greene ME, Basu R, Baluch AS, Hersam MC (2004) Room temperature negative differential resistance through individual organic molecules on silicon surfaces. Nano Lett 4(1):55–59CrossRef
15.
go back to reference Okumoto H, Yatabe T, Richter A, Peng J, Shimomura M, Kaito A, Minami N (2003) A strong correlation between the hole mobility and silicon chain length in oligosilane self-organized thin films. Adv Mater 15(9):716–720CrossRef Okumoto H, Yatabe T, Richter A, Peng J, Shimomura M, Kaito A, Minami N (2003) A strong correlation between the hole mobility and silicon chain length in oligosilane self-organized thin films. Adv Mater 15(9):716–720CrossRef
16.
go back to reference Surampudi S, Yeh ML, Siegler MA, Hardigree JFM, Kasl TA, Katz HE, Klausen RS (2015) Increased carrier mobility in end-functionalized oligosilanes. Chem Sci 6(3):1905–1909CrossRef Surampudi S, Yeh ML, Siegler MA, Hardigree JFM, Kasl TA, Katz HE, Klausen RS (2015) Increased carrier mobility in end-functionalized oligosilanes. Chem Sci 6(3):1905–1909CrossRef
17.
go back to reference Suzuki H, Meyer H, Simmerer J, Yang J, Haarer D (1993) Electroluminescent devices based on poly (methylphenylsilane). Adv Mater 5(10):743–746CrossRef Suzuki H, Meyer H, Simmerer J, Yang J, Haarer D (1993) Electroluminescent devices based on poly (methylphenylsilane). Adv Mater 5(10):743–746CrossRef
18.
go back to reference Yan Voon LCL, Guzmán-Verri GG (2014) Is silicene the next graphene?. MRS Bull 39(4):366–373 Yan Voon LCL, Guzmán-Verri GG (2014) Is silicene the next graphene?. MRS Bull 39(4):366–373
19.
go back to reference Molle A, Grazianetti C, Tao L, Taneja D, Alam MH, Akinwande D (2018) Silicene, silicene derivatives, and their device applications. Chem Soc Rev 47(16):6370–6387CrossRef Molle A, Grazianetti C, Tao L, Taneja D, Alam MH, Akinwande D (2018) Silicene, silicene derivatives, and their device applications. Chem Soc Rev 47(16):6370–6387CrossRef
20.
go back to reference Li X-G, Xiao W-D (2016) Silane pyrolysis to silicon rod in a bell-jar reactor at high temperature and pressure: modeling and simulation. Ind Eng Chem Res 55(17):4887–4896CrossRef Li X-G, Xiao W-D (2016) Silane pyrolysis to silicon rod in a bell-jar reactor at high temperature and pressure: modeling and simulation. Ind Eng Chem Res 55(17):4887–4896CrossRef
21.
go back to reference Zhang P, Duan J, Chen G, Li J, Wang W (2018) Production of polycrystalline silicon from silane pyrolysis: a review of fines formation. Sol Energy 175:44–53CrossRef Zhang P, Duan J, Chen G, Li J, Wang W (2018) Production of polycrystalline silicon from silane pyrolysis: a review of fines formation. Sol Energy 175:44–53CrossRef
22.
go back to reference Shimura F (2017) Single-crystal silicon: growth and properties. In: Kasap S, Capper P (eds) Springer handbook of electronic and photonic materials. Springer International Publishing, Cham, pp 1–1 Shimura F (2017) Single-crystal silicon: growth and properties. In: Kasap S, Capper P (eds) Springer handbook of electronic and photonic materials. Springer International Publishing, Cham, pp 1–1
23.
go back to reference Hoshikawa K, Huang X, Taishi T, Kajigaya T, Iino T (1999) Jpn J Appl Phys 38(Part 2, No. 12A):L1369–L1371CrossRef Hoshikawa K, Huang X, Taishi T, Kajigaya T, Iino T (1999) Jpn J Appl Phys 38(Part 2, No. 12A):L1369–L1371CrossRef
24.
go back to reference Barker Jr TH (1986) Process for preparing chlorosilanes from silicon and hydrogen chloride using an oxygen promoter. Google Patents Barker Jr TH (1986) Process for preparing chlorosilanes from silicon and hydrogen chloride using an oxygen promoter. Google Patents
25.
go back to reference Ingle WM, Darnell RD (1985) Oxidative purification of chlorosilane silicon source materials. J Electrochem Soc 132(5):1240–1243 Ingle WM, Darnell RD (1985) Oxidative purification of chlorosilane silicon source materials. J Electrochem Soc 132(5):1240–1243
26.
go back to reference Ingle WM, Peffley MS (1985) Kinetics of the hydrogenation of silicon tetrachloride. J Electrochem Soc 132(5):1236–1240 Ingle WM, Peffley MS (1985) Kinetics of the hydrogenation of silicon tetrachloride. J Electrochem Soc 132(5):1236–1240
27.
go back to reference Alcántara-Avila JR, Sillas-Delgado HA, Segovia-Hernández JG, Gómez-Castro FI, Cervantes-Jauregui JA (2015) Optimization of a reactive distillation process with intermediate condensers for silane production. Comput Chem Eng 78:85–93CrossRef Alcántara-Avila JR, Sillas-Delgado HA, Segovia-Hernández JG, Gómez-Castro FI, Cervantes-Jauregui JA (2015) Optimization of a reactive distillation process with intermediate condensers for silane production. Comput Chem Eng 78:85–93CrossRef
28.
go back to reference Filtvedt WO, Holt A, Ramachandran PA, Melaaen MC (2012) Chemical vapor deposition of silicon from silane: review of growth mechanisms and modeling/scaleup of fluidized bed reactors. Sol Energy Mater Sol Cells 107:188–200CrossRef Filtvedt WO, Holt A, Ramachandran PA, Melaaen MC (2012) Chemical vapor deposition of silicon from silane: review of growth mechanisms and modeling/scaleup of fluidized bed reactors. Sol Energy Mater Sol Cells 107:188–200CrossRef
29.
go back to reference Friedrich J, von Ammon W, Müller G (2015) 2 - Czochralski growth of silicon crystals. In: Rudolph P (ed) Handbook of crystal growth (Second Edition). Elsevier, Boston, pp 45–104CrossRef Friedrich J, von Ammon W, Müller G (2015) 2 - Czochralski growth of silicon crystals. In: Rudolph P (ed) Handbook of crystal growth (Second Edition). Elsevier, Boston, pp 45–104CrossRef
30.
go back to reference Uecker R (2014) The historical development of the Czochralski method. J Cryst Growth 401:7–24CrossRef Uecker R (2014) The historical development of the Czochralski method. J Cryst Growth 401:7–24CrossRef
31.
go back to reference West R, Barton TJ (1980) Organosilicon chemistry: part I. J Chem Educ 57(3):165CrossRef West R, Barton TJ (1980) Organosilicon chemistry: part I. J Chem Educ 57(3):165CrossRef
32.
go back to reference Deschler U, Kleinschmit P, Panster P (1986) 3-chloropropyltrialkoxysilanes—key intermediates for the commercial production of organofunctionalized silanes and polysiloxanes. Angew Chem Int Ed Engl 25(3):236–252CrossRef Deschler U, Kleinschmit P, Panster P (1986) 3-chloropropyltrialkoxysilanes—key intermediates for the commercial production of organofunctionalized silanes and polysiloxanes. Angew Chem Int Ed Engl 25(3):236–252CrossRef
33.
go back to reference Sterman S, Marsden JG (1966) Silane coupling agents. Ind Eng Chem 58(3):33–37CrossRef Sterman S, Marsden JG (1966) Silane coupling agents. Ind Eng Chem 58(3):33–37CrossRef
34.
go back to reference Shorr LM (1955) Method of preparing alkoxysilicon compounds. Google Patents Shorr LM (1955) Method of preparing alkoxysilicon compounds. Google Patents
35.
go back to reference Speier JJL (1950) Chlorination of organosilicon compositions. Google Patents Speier JJL (1950) Chlorination of organosilicon compositions. Google Patents
36.
go back to reference Speier JL, Roth CA, Ryan JW (1971) Syntheses of (3-aminoalkyl) silicon compounds. J Org Chem 36(21):3120–3126CrossRef Speier JL, Roth CA, Ryan JW (1971) Syntheses of (3-aminoalkyl) silicon compounds. J Org Chem 36(21):3120–3126CrossRef
37.
go back to reference Reichel S (1972) Process for preparing gamma-aminopropylalkoxy-silanes and gamma-aminopropylalkylalkoxysilanes. Google Patents Reichel S (1972) Process for preparing gamma-aminopropylalkoxy-silanes and gamma-aminopropylalkylalkoxysilanes. Google Patents
38.
go back to reference Sommer LH, Rockett J (1951) The polar effects of organosilicon substituents in aliphatic amines 1,2. J Am Chem Soc 73(11):5130–5134CrossRef Sommer LH, Rockett J (1951) The polar effects of organosilicon substituents in aliphatic amines 1,2. J Am Chem Soc 73(11):5130–5134CrossRef
39.
go back to reference Plueddemann EP (1969) Alkoxyalkarylsilanes and condensates thereof. Google Patents Plueddemann EP (1969) Alkoxyalkarylsilanes and condensates thereof. Google Patents
40.
go back to reference Kricheldorf HR (1996) Chemical modification of polymers and surfaces. In: Kricheldorf HR (ed) Silicon in polymer synthesis. Springer, Berlin Heidelberg, pp 404–457CrossRef Kricheldorf HR (1996) Chemical modification of polymers and surfaces. In: Kricheldorf HR (ed) Silicon in polymer synthesis. Springer, Berlin Heidelberg, pp 404–457CrossRef
41.
go back to reference Zeng X, Xu G, Gao Y, An Y (2011) Surface wettability of (3-aminopropyl) triethoxysilane self-assembled monolayers. J Phys Chem B 115(3):450–454CrossRef Zeng X, Xu G, Gao Y, An Y (2011) Surface wettability of (3-aminopropyl) triethoxysilane self-assembled monolayers. J Phys Chem B 115(3):450–454CrossRef
42.
go back to reference Siqueira Petri DF, Wenz G, Schunk P, Schimmel T (1999) An improved method for the assembly of amino-terminated monolayers on sio2 and the vapor deposition of gold layers. Langmuir 15(13):4520–4523 Siqueira Petri DF, Wenz G, Schunk P, Schimmel T (1999) An improved method for the assembly of amino-terminated monolayers on sio2 and the vapor deposition of gold layers. Langmuir 15(13):4520–4523
43.
go back to reference Omietanski G, Petty H (1974) Process for reacting weak acids with chloroalkyl substituted silicon compounds. Google Patents Omietanski G, Petty H (1974) Process for reacting weak acids with chloroalkyl substituted silicon compounds. Google Patents
44.
go back to reference Le Grow GE (1971) Method of preparing mercaptoalkyl alkoxy silanes. Google Patents Le Grow GE (1971) Method of preparing mercaptoalkyl alkoxy silanes. Google Patents
45.
go back to reference Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos A Appl Sci Manuf 41(7):806–819CrossRef Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos A Appl Sci Manuf 41(7):806–819CrossRef
46.
go back to reference Plueddemann EP (1983) Silane adhesion promoters in coatings. Prog Org Coat 11(3):297–308CrossRef Plueddemann EP (1983) Silane adhesion promoters in coatings. Prog Org Coat 11(3):297–308CrossRef
47.
go back to reference Plueddemann EP (1983) Silane adhesion promoters for polymeric coatings. In: Mittal KL (ed) Adhesion aspects of polymeric coatings. Springer, US, Boston, MA, pp 363–377CrossRef Plueddemann EP (1983) Silane adhesion promoters for polymeric coatings. In: Mittal KL (ed) Adhesion aspects of polymeric coatings. Springer, US, Boston, MA, pp 363–377CrossRef
48.
go back to reference Child TF, van Ooij WJ (1999) Application of silane technology to prevent corrosion of metals and improve paint adhesion. Transactions of the IMF 77(2):64–70CrossRef Child TF, van Ooij WJ (1999) Application of silane technology to prevent corrosion of metals and improve paint adhesion. Transactions of the IMF 77(2):64–70CrossRef
49.
go back to reference Klauk H (2006) Organic electronics: materials, manufacturing, and applications. Wiley Klauk H (2006) Organic electronics: materials, manufacturing, and applications. Wiley
50.
go back to reference Wöll C (2009) Physical and chemical aspects of organic electronics: from fundamentals to functioning devices. Wiley Wöll C (2009) Physical and chemical aspects of organic electronics: from fundamentals to functioning devices. Wiley
51.
go back to reference Lyshevski SE (2018) Nano and molecular electronics handbook, CRC Press Lyshevski SE (2018) Nano and molecular electronics handbook, CRC Press
52.
go back to reference Aswal DK, Koiry SP, Jousselme B, Gupta SK, Palacin S, Yakhmi JV (2009) Hybrid molecule-on-silicon nanoelectronics: electrochemical processes for grafting and printing of monolayers. Phys E 41(3):325–344CrossRef Aswal DK, Koiry SP, Jousselme B, Gupta SK, Palacin S, Yakhmi JV (2009) Hybrid molecule-on-silicon nanoelectronics: electrochemical processes for grafting and printing of monolayers. Phys E 41(3):325–344CrossRef
53.
go back to reference Chauhan AK, Aswal DK, Koiry SP, Gupta SK, Yakhmi JV, Sürgers C, Guerin D, Lenfant S, Vuillaume D (2008) Self-assembly of the 3-aminopropyltrimethoxysilane multilayers on Si and hysteretic current–voltage characteristics. Appl Phys A 90(3):581–589CrossRef Chauhan AK, Aswal DK, Koiry SP, Gupta SK, Yakhmi JV, Sürgers C, Guerin D, Lenfant S, Vuillaume D (2008) Self-assembly of the 3-aminopropyltrimethoxysilane multilayers on Si and hysteretic current–voltage characteristics. Appl Phys A 90(3):581–589CrossRef
54.
go back to reference Koiry SP, Aswal DK, Saxena V, Padma N, Chauhan AK, Joshi N, Gupta SK, Yakhmi JV, Guerin D, Vuillaume D (2007) Electrochemical grafting of octyltrichlorosilane monolayer on Si. Appl Phys Lett 90(11):113118 Koiry SP, Aswal DK, Saxena V, Padma N, Chauhan AK, Joshi N, Gupta SK, Yakhmi JV, Guerin D, Vuillaume D (2007) Electrochemical grafting of octyltrichlorosilane monolayer on Si. Appl Phys Lett 90(11):113118
55.
go back to reference Zheng K, Sun F, Zhu J, Ma Y, Li X, Tang D, Wang F, Wang X (2016) Enhancing the thermal conductance of polymer and sapphire interface via self-assembled monolayer. ACS Nano 10(8):7792–7798CrossRef Zheng K, Sun F, Zhu J, Ma Y, Li X, Tang D, Wang F, Wang X (2016) Enhancing the thermal conductance of polymer and sapphire interface via self-assembled monolayer. ACS Nano 10(8):7792–7798CrossRef
56.
go back to reference Kim J (2011) Formation, structure, and reactivity of amino-terminated organic films on silicon substrates. In: Interfaces and Interphases in Analytical Chemistry. American Chemical Society, pp 141–165 Kim J (2011) Formation, structure, and reactivity of amino-terminated organic films on silicon substrates. In: Interfaces and Interphases in Analytical Chemistry. American Chemical Society, pp 141–165
57.
go back to reference Chauhan AK, Aswal DK, Koiry SP, Padma N, Saxena V, Gupta SK, Yakhmi JV (2008) Resistive memory effect in self‐assembled 3‐aminopropyltrimethoxysilane molecular multilayers. Phys Status Solidi A 205(2):373–377CrossRef Chauhan AK, Aswal DK, Koiry SP, Padma N, Saxena V, Gupta SK, Yakhmi JV (2008) Resistive memory effect in self‐assembled 3‐aminopropyltrimethoxysilane molecular multilayers. Phys Status Solidi A 205(2):373–377CrossRef
58.
go back to reference Aswal DK, Lenfant S, Guerin D, Yakhmi JV, Vuillaume D (2005) A tunnel current in self-assembled monolayers of 3-Mercaptopropyltrimethoxysilane. Small 1(7):725–729CrossRef Aswal DK, Lenfant S, Guerin D, Yakhmi JV, Vuillaume D (2005) A tunnel current in self-assembled monolayers of 3-Mercaptopropyltrimethoxysilane. Small 1(7):725–729CrossRef
59.
go back to reference Zhao J, Uosaki K (2003) Dielectric properties of organic monolayers directly bonded on silicon probed by current sensing atomic force microscope. Appl Phys Lett 83(10):2034–2036CrossRef Zhao J, Uosaki K (2003) Dielectric properties of organic monolayers directly bonded on silicon probed by current sensing atomic force microscope. Appl Phys Lett 83(10):2034–2036CrossRef
60.
go back to reference Diebold RM, Gordon MJ, Clarke DR (2014) Effect of silane coupling agent chemistry on electrical breakdown across hybrid organic–inorganic insulating films. ACS Appl Mater Interfaces 6(15):11932–11939CrossRef Diebold RM, Gordon MJ, Clarke DR (2014) Effect of silane coupling agent chemistry on electrical breakdown across hybrid organic–inorganic insulating films. ACS Appl Mater Interfaces 6(15):11932–11939CrossRef
61.
go back to reference Sirringhaus H (2014) 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv Mater 26(9):1319–1335CrossRef Sirringhaus H (2014) 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv Mater 26(9):1319–1335CrossRef
62.
go back to reference Lei Y, Wu B, Chan W-KE, Zhu F, Ong BS (2015) Engineering gate dielectric surface properties for enhanced polymer field-effect transistor performance. J Mater Chem C 3(47):12267–12272CrossRef Lei Y, Wu B, Chan W-KE, Zhu F, Ong BS (2015) Engineering gate dielectric surface properties for enhanced polymer field-effect transistor performance. J Mater Chem C 3(47):12267–12272CrossRef
63.
go back to reference Liu D, Miao Q (2018) Recent progress in interface engineering of organic thin film transistors with self-assembled monolayers. Mater Chem Front 2(1):11–21CrossRef Liu D, Miao Q (2018) Recent progress in interface engineering of organic thin film transistors with self-assembled monolayers. Mater Chem Front 2(1):11–21CrossRef
64.
go back to reference Lei Y, Deng P, Lin M, Zheng X, Zhu F, Ong BS (2016) Enhancing crystalline structural orders of polymer semiconductors for efficient charge transport via polymer-matrix-mediated molecular self-assembly. Adv Mater 28(31):6687–6694CrossRef Lei Y, Deng P, Lin M, Zheng X, Zhu F, Ong BS (2016) Enhancing crystalline structural orders of polymer semiconductors for efficient charge transport via polymer-matrix-mediated molecular self-assembly. Adv Mater 28(31):6687–6694CrossRef
65.
go back to reference Colas A (2005) Silicones: preparation, properties and performance. Dow corning, life sciences Colas A (2005) Silicones: preparation, properties and performance. Dow corning, life sciences
66.
go back to reference Modjarrad K, Ebnesajjad S (2013) Handbook of polymer applications in medicine and medical devices. Elsevier Science Modjarrad K, Ebnesajjad S (2013) Handbook of polymer applications in medicine and medical devices. Elsevier Science
67.
go back to reference Kipping FS, Lloyd LL (1901) XLVII.—Organic derivatives of silicon. Triphenylsilicol and alkyloxysilicon chlorides. J Chem Soc Trans 79:449–459 Kipping FS, Lloyd LL (1901) XLVII.—Organic derivatives of silicon. Triphenylsilicol and alkyloxysilicon chlorides. J Chem Soc Trans 79:449–459
68.
go back to reference Rochow EG, Gilliam WF (1941) Polymeric methyl silicon oxides1. J Am Chem Soc 63(3):798–800CrossRef Rochow EG, Gilliam WF (1941) Polymeric methyl silicon oxides1. J Am Chem Soc 63(3):798–800CrossRef
69.
go back to reference Rochow EG (1941) Methyl silicones and related products. US Rochow EG (1941) Methyl silicones and related products. US
70.
go back to reference Noll W (2012) Chemistry and technology of silicones. Elsevier Science Noll W (2012) Chemistry and technology of silicones. Elsevier Science
71.
go back to reference Jones RG, Ando W, Chojnowski J (2013) Silicon-containing polymers: the science and technology of their synthesis and applications. Springer, Netherlands Jones RG, Ando W, Chojnowski J (2013) Silicon-containing polymers: the science and technology of their synthesis and applications. Springer, Netherlands
72.
go back to reference Patnode W, Wilcock DF (1946) Methylpolysiloxanes1. J Am Chem Soc 68(3):358–363CrossRef Patnode W, Wilcock DF (1946) Methylpolysiloxanes1. J Am Chem Soc 68(3):358–363CrossRef
73.
go back to reference Lane TH, Burns SA (1996) Silica, silicon and silicones...Unraveling the mystery. Springer, Berlin, Heidelberg Lane TH, Burns SA (1996) Silica, silicon and silicones...Unraveling the mystery. Springer, Berlin, Heidelberg
74.
go back to reference Bokerman GN, Freeburne SK, Schuelke LM, VanKoevering DG (1991) Anhydrous hydrogen chloride evolving one-step process for producing siloxanes. US Bokerman GN, Freeburne SK, Schuelke LM, VanKoevering DG (1991) Anhydrous hydrogen chloride evolving one-step process for producing siloxanes. US
75.
go back to reference Burger C, Kreuzer F-H (1996) Polysiloxanes and polymers containing siloxane groups. In: Kricheldorf HR (ed) Silicon in polymer synthesis. Springer, Berlin, Heidelberg, pp 113–222CrossRef Burger C, Kreuzer F-H (1996) Polysiloxanes and polymers containing siloxane groups. In: Kricheldorf HR (ed) Silicon in polymer synthesis. Springer, Berlin, Heidelberg, pp 113–222CrossRef
76.
go back to reference Panchenko BI, Gruber VN, Klebanskii AL (1969) Study of the hydrolytic polycondensation of dimethyldichlorosilane in concentrated hydrochloric acid. Polym Sci U.S.S.R. 11(2):496–501 Panchenko BI, Gruber VN, Klebanskii AL (1969) Study of the hydrolytic polycondensation of dimethyldichlorosilane in concentrated hydrochloric acid. Polym Sci U.S.S.R. 11(2):496–501
77.
go back to reference Lambert JB, Kania L, Schulz Jr WJ (1993) Redistribution of cyclosiloxanes to favor formation of decamethylcyclopentasiloxane. J Polym Sci Part A: Polym Chem 31(7):1697–1700 Lambert JB, Kania L, Schulz Jr WJ (1993) Redistribution of cyclosiloxanes to favor formation of decamethylcyclopentasiloxane. J Polym Sci Part A: Polym Chem 31(7):1697–1700
78.
go back to reference Sandler SR, Karo W (eds) (1977) Chapter 4 - Silicone Resins (Polyorganosiloxanes or Silicones). In: Organic chemistry, Elsevier, pp 114–139 Sandler SR, Karo W (eds) (1977) Chapter 4 - Silicone Resins (Polyorganosiloxanes or Silicones). In: Organic chemistry, Elsevier, pp 114–139
79.
go back to reference Cypryk M, Apeloig Y (2002) Mechanism of the acid-catalyzed Si−O bond cleavage in siloxanes and siloxanols. A theoretical study. Organometallics 21(11):2165–2175CrossRef Cypryk M, Apeloig Y (2002) Mechanism of the acid-catalyzed Si−O bond cleavage in siloxanes and siloxanols. A theoretical study. Organometallics 21(11):2165–2175CrossRef
80.
go back to reference Wicht MBJCCDWGGRKJLLLSRSRFSJSJWD (2003) Silicones. In: Encyclopedia of polymer science and technology, vol. 11, pp. 765–776 Wicht MBJCCDWGGRKJLLLSRSRFSJSJWD (2003) Silicones. In: Encyclopedia of polymer science and technology, vol. 11, pp. 765–776
81.
go back to reference Andriot M, Chao S, Colas A, Cray S, DeBuyl F, DeGroot J, Dupont A, Easton T, Garaud J, Gerlach E (2007) Silicones in industrial applications. Inorg Polym 61–161 Andriot M, Chao S, Colas A, Cray S, DeBuyl F, DeGroot J, Dupont A, Easton T, Garaud J, Gerlach E (2007) Silicones in industrial applications. Inorg Polym 61–161
82.
go back to reference Cornwell PA (2018) A review of shampoo surfactant technology: consumer benefits, raw materials and recent developments. Int J Cosmet Sci 40(1):16–30CrossRef Cornwell PA (2018) A review of shampoo surfactant technology: consumer benefits, raw materials and recent developments. Int J Cosmet Sci 40(1):16–30CrossRef
83.
go back to reference L'hostis J, Renauld F, Sawicki G (2003) Silicone foam control agent. US Patent L'hostis J, Renauld F, Sawicki G (2003) Silicone foam control agent. US Patent
84.
go back to reference Sawicki GC (1988) Silicone polymers as foam control agents. J Am Oil Chem’ Soc 65(6):1013–1016CrossRef Sawicki GC (1988) Silicone polymers as foam control agents. J Am Oil Chem’ Soc 65(6):1013–1016CrossRef
85.
go back to reference Waser R, Dittmann R, Staikov G, Szot K (2009) Redox-based resistive switching memories – nanoionic mechanisms, prospects, and challenges. Adv Mater 21(25–26):2632–2663CrossRef Waser R, Dittmann R, Staikov G, Szot K (2009) Redox-based resistive switching memories – nanoionic mechanisms, prospects, and challenges. Adv Mater 21(25–26):2632–2663CrossRef
86.
go back to reference Sugiyama I, Shimizu R, Suzuki T, Yamamoto K, Kawasoko H, Shiraki S, Hitosugi T (2017) A nonvolatile memory device with very low power consumption based on the switching of a standard electrode potential. APL Mater. 5(4):046105 Sugiyama I, Shimizu R, Suzuki T, Yamamoto K, Kawasoko H, Shiraki S, Hitosugi T (2017) A nonvolatile memory device with very low power consumption based on the switching of a standard electrode potential. APL Mater. 5(4):046105
87.
go back to reference Valov I, Waser R, Jameson JR, Kozicki MN (2011) Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnology 22(25):254003 Valov I, Waser R, Jameson JR, Kozicki MN (2011) Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnology 22(25):254003
88.
go back to reference Valov I, Linn E, Tappertzhofen S, Schmelzer S, van den Hurk J, Lentz F, Waser R (2013) Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat Commun 4:1771CrossRef Valov I, Linn E, Tappertzhofen S, Schmelzer S, van den Hurk J, Lentz F, Waser R (2013) Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat Commun 4:1771CrossRef
89.
go back to reference Koiry SP, Jha P, Putta V, Saxena V, Chauhan AK, Aswal DK, Gupta SK (2015) Memory and ferroelectric photovoltaic effects arising from quasi-reversible oxidation and reduction in porphyrin entrapped aminopropyl-silicate films. Org Electron 25:143–150CrossRef Koiry SP, Jha P, Putta V, Saxena V, Chauhan AK, Aswal DK, Gupta SK (2015) Memory and ferroelectric photovoltaic effects arising from quasi-reversible oxidation and reduction in porphyrin entrapped aminopropyl-silicate films. Org Electron 25:143–150CrossRef
90.
go back to reference Chandra S, Sekhon SS, Srivastava R, Arora N (2002) Proton-conducting gel electrolyte. Solid State Ion 154–155:609–619CrossRef Chandra S, Sekhon SS, Srivastava R, Arora N (2002) Proton-conducting gel electrolyte. Solid State Ion 154–155:609–619CrossRef
91.
go back to reference Valov I (2014) Redox-Based Resistive Switching Memories (ReRAMs): electrochemical systems at the atomic scale. Chem Electro Chem 1(1):26–36 Valov I (2014) Redox-Based Resistive Switching Memories (ReRAMs): electrochemical systems at the atomic scale. Chem Electro Chem 1(1):26–36
92.
go back to reference Kamino BA, Bender TP (2013) The use of siloxanes, silsesquioxanes, and silicones in organic semiconducting materials. Chem Soc Rev 42(12):5119–5130CrossRef Kamino BA, Bender TP (2013) The use of siloxanes, silsesquioxanes, and silicones in organic semiconducting materials. Chem Soc Rev 42(12):5119–5130CrossRef
93.
go back to reference Mehwish N, Dou X, Zhao Y, Feng C-L (2019) Supramolecular fluorescent hydrogelators as bio-imaging probes. Mater Horizons 6(1):14–44CrossRef Mehwish N, Dou X, Zhao Y, Feng C-L (2019) Supramolecular fluorescent hydrogelators as bio-imaging probes. Mater Horizons 6(1):14–44CrossRef
94.
go back to reference Kasprzyk W, Krzywda P, Bednarz S, Bogdał D (2015) Fluorescent citric acid-modified silicone materials. RSC Adv 5(110):90473–90477CrossRef Kasprzyk W, Krzywda P, Bednarz S, Bogdał D (2015) Fluorescent citric acid-modified silicone materials. RSC Adv 5(110):90473–90477CrossRef
95.
96.
go back to reference Kipping FS, Sands JE (1921) XCIII.—Organic derivatives of silicon. Part XXV. Saturated and unsaturated silicohydrocarbons, Si4Ph8. J Chem Soc Trans 119(0):830–847 Kipping FS, Sands JE (1921) XCIII.—Organic derivatives of silicon. Part XXV. Saturated and unsaturated silicohydrocarbons, Si4Ph8. J Chem Soc Trans 119(0):830–847
97.
go back to reference Kipping FS (1924) CCCVIII.—Organic derivatives of silicon. Part XXX. Complex silicohydrocarbons [SiPh2]n. J Chem Soc Trans 125(0):2291–2297 Kipping FS (1924) CCCVIII.—Organic derivatives of silicon. Part XXX. Complex silicohydrocarbons [SiPh2]n. J Chem Soc Trans 125(0):2291–2297
98.
99.
go back to reference West R, David LD, Djurovich PI, Stearley KL, Srinivasan KSV, Yu H (1981) Phenylmethylpolysilanes: formable silane copolymers with potential semiconducting properties. J Am Chem Soc 103(24):7352–7354CrossRef West R, David LD, Djurovich PI, Stearley KL, Srinivasan KSV, Yu H (1981) Phenylmethylpolysilanes: formable silane copolymers with potential semiconducting properties. J Am Chem Soc 103(24):7352–7354CrossRef
100.
go back to reference Yajima SH, Hayashi Y, Iimura MM (1978) J Mater Sci 13 Yajima SH, Hayashi Y, Iimura MM (1978) J Mater Sci 13
101.
go back to reference West R (1986) The polysilane high polymers. J Organomet Chem 300(1):327–346CrossRef West R (1986) The polysilane high polymers. J Organomet Chem 300(1):327–346CrossRef
102.
go back to reference Naito M, Fujiki M (2008) Polysilanes on surfaces. Soft Matter 4(2):211–223CrossRef Naito M, Fujiki M (2008) Polysilanes on surfaces. Soft Matter 4(2):211–223CrossRef
103.
go back to reference Semenov VV (2011) Preparation, properties and applications of oligomeric and polymeric organosilanes. Russ Chem Rev 80 Semenov VV (2011) Preparation, properties and applications of oligomeric and polymeric organosilanes. Russ Chem Rev 80
104.
go back to reference Miller RD, Michl J (1989) Polysilane high polymers. Chem Rev 89(6):1359–1410CrossRef Miller RD, Michl J (1989) Polysilane high polymers. Chem Rev 89(6):1359–1410CrossRef
105.
go back to reference Jovanovic M, Michl J (2018) Understanding the Effect of Conformation on Hole Delocalization in Poly(dimethylsilane). J Am Chem Soc 140(36):11158–11160CrossRef Jovanovic M, Michl J (2018) Understanding the Effect of Conformation on Hole Delocalization in Poly(dimethylsilane). J Am Chem Soc 140(36):11158–11160CrossRef
106.
go back to reference Jones RG, Holder SJ (2006) High-yield controlled syntheses of polysilanes by the Wurtz-type reductive coupling reaction. Polym Int 55(7):711–718CrossRef Jones RG, Holder SJ (2006) High-yield controlled syntheses of polysilanes by the Wurtz-type reductive coupling reaction. Polym Int 55(7):711–718CrossRef
107.
go back to reference Jones RG, Ando W, Chojnowski J (eds) (2013) Silicon-containing polymers: the science and technology of their synthesis and applications. Springer Netherlands, pp 365–375 Jones RG, Ando W, Chojnowski J (eds) (2013) Silicon-containing polymers: the science and technology of their synthesis and applications. Springer Netherlands, pp 365–375
108.
go back to reference Jones RG, Budnik U, Holder S, Wong WKC (1996) Reappraisal of the origins of the polymodal molecular mass distributions in the formation of poly(methylphenylsilylene) by the Wurtz reductive-coupling reaction, vol 29 Jones RG, Budnik U, Holder S, Wong WKC (1996) Reappraisal of the origins of the polymodal molecular mass distributions in the formation of poly(methylphenylsilylene) by the Wurtz reductive-coupling reaction, vol 29
109.
go back to reference Jones RG, Benfield RE, Cragg RH, Swain AC, Webb SJ (1993) Evaluation of the synthesis of polysilanes by the reductive-coupling of dihaloorganosilanes. Macromolecules 26(18):4878–4887CrossRef Jones RG, Benfield RE, Cragg RH, Swain AC, Webb SJ (1993) Evaluation of the synthesis of polysilanes by the reductive-coupling of dihaloorganosilanes. Macromolecules 26(18):4878–4887CrossRef
110.
go back to reference Robert RHC, Benfield E, Jones RG, Swain AC (1992) Alternative reducing agents for the Wurtz synthesis of polysilanes. J Chem Soc Chem Commun 1022–1024:1 Robert RHC, Benfield E, Jones RG, Swain AC (1992) Alternative reducing agents for the Wurtz synthesis of polysilanes. J Chem Soc Chem Commun 1022–1024:1
111.
go back to reference Gray GM, Corey JY (2013) Silicon-containing polymers: the science and technology of their synthesis and applications. In (eds) Jones RG, Ando W, Chojnowski J. Springer, Netherlands, pp 402–416 Gray GM, Corey JY (2013) Silicon-containing polymers: the science and technology of their synthesis and applications. In (eds) Jones RG, Ando W, Chojnowski J. Springer, Netherlands, pp 402–416
112.
go back to reference Sakurai H, Yoshida S (2013) Silicon-containing polymers: the science and technology of their synthesis and applications. In: Jones RG, Ando W, Chojnowski J (eds) Springer, Netherlands, pp 375–399 Sakurai H, Yoshida S (2013) Silicon-containing polymers: the science and technology of their synthesis and applications. In: Jones RG, Ando W, Chojnowski J (eds) Springer,  Netherlands, pp 375–399
113.
go back to reference Kabeta K, Wakamatsu S, Imai T (1996) Preparation of substituted network polysilanes by a disproportionation reaction of alkoxydisilanes in the presence of alkoxysilanes. J Polym Sci Part A: Polym Chem 34(14):2991–2998 Kabeta K, Wakamatsu S, Imai T (1996) Preparation of substituted network polysilanes by a disproportionation reaction of alkoxydisilanes in the presence of alkoxysilanes. J Polym Sci Part A: Polym Chem 34(14):2991–2998
114.
go back to reference Roark DN, Peddle GJD (1972) Reactions of 7,8-disilabicyclo[2.2.2]octa-2,5-dienes. Evidence for the transient existence of a disilene. J Am Chem Soc 94(16):5837–5841CrossRef Roark DN, Peddle GJD (1972) Reactions of 7,8-disilabicyclo[2.2.2]octa-2,5-dienes. Evidence for the transient existence of a disilene. J Am Chem Soc 94(16):5837–5841CrossRef
115.
go back to reference Kashimura S, Ishifune M, Yamashita N, Bu H-B, Takebayashi M, Kitajima S, Yoshiwara D, Kataoka Y, Nishida R, Kawasaki S-I, Murase H, Shono T (1999) Electroreductive synthesis of polysilanes, polygermanes, and related polymers with magnesium electrodes1. J Org Chem 64(18):6615–6621CrossRef Kashimura S, Ishifune M, Yamashita N, Bu H-B, Takebayashi M, Kitajima S, Yoshiwara D, Kataoka Y, Nishida R, Kawasaki S-I, Murase H, Shono T (1999) Electroreductive synthesis of polysilanes, polygermanes, and related polymers with magnesium electrodes1. J Org Chem 64(18):6615–6621CrossRef
116.
go back to reference Ishifune M, Kashimura S, Kogai Y, Fukuhara Y, Kato T, Bu H-B, Yamashita N, Murai Y, Murase H, Nishida R (2000) Electroreductive synthesis of oligosilanes and polysilanes with ordered sequences. J Organomet Chem 611(1):26–31CrossRef Ishifune M, Kashimura S, Kogai Y, Fukuhara Y, Kato T, Bu H-B, Yamashita N, Murai Y, Murase H, Nishida R (2000) Electroreductive synthesis of oligosilanes and polysilanes with ordered sequences. J Organomet Chem 611(1):26–31CrossRef
117.
go back to reference Nakagawa J, Oku T, Suzuki A, Akiyama T, Tokumitsu K, Yamada M, Nakamura M (2012) Fabrication and characterization of polysilane/C60thin film solar cells. J Phys Conf Ser 352:012019 Nakagawa J, Oku T, Suzuki A, Akiyama T, Tokumitsu K, Yamada M, Nakamura M (2012) Fabrication and characterization of polysilane/C60thin film solar cells. J Phys Conf Ser 352:012019
118.
go back to reference Iwase M, Oku T, Suzuki A, Akiyama T, Tokumitsu K, Yamada M, Nakamura M (2012) Fabrication and characterization of poly[diphenylsilane]-based solar cells. J Phys Conf Ser 352:012018 Iwase M, Oku T, Suzuki A, Akiyama T, Tokumitsu K, Yamada M, Nakamura M (2012) Fabrication and characterization of poly[diphenylsilane]-based solar cells. J Phys Conf Ser 352:012018
119.
go back to reference Oku T, Nakagawa J, Iwase M, Kawashima A, Yoshida K, Suzuki A, Akiyama T, Tokumitsu K, Yamada M, Nakamura, M (2013) Microstructures and photovoltaic properties of polysilane-based solar cells. Jpn J Appl Phys 52(4S):04CR07 Oku T, Nakagawa J, Iwase M, Kawashima A, Yoshida K, Suzuki A, Akiyama T, Tokumitsu K, Yamada M, Nakamura, M (2013) Microstructures and photovoltaic properties of polysilane-based solar cells. Jpn J Appl Phys 52(4S):04CR07
120.
go back to reference Acharya A, Seki S, Saeki A, Tagawa S (2006) Photoconductivity in fullerene-doped polysilane thin films. 156:293–297 Acharya A, Seki S, Saeki A, Tagawa S (2006) Photoconductivity in fullerene-doped polysilane thin films. 156:293–297
121.
go back to reference Lew Yan Voon L, Guzmán-Verri GG (2014) Is silicene the next graphene?. 39 Lew Yan Voon L, Guzmán-Verri GG (2014) Is silicene the next graphene?. 39
122.
go back to reference Kara A, Enriquez H, Seitsonen AP, Lew Yan Voon LC, Vizzini S, Aufray B, Oughaddou H (2012) A review on silicene — new candidate for electronics. Surf Sci Rep 67(1):1–18 Kara A, Enriquez H, Seitsonen AP, Lew Yan Voon LC, Vizzini S, Aufray B, Oughaddou H (2012) A review on silicene — new candidate for electronics. Surf Sci Rep 67(1):1–18
123.
go back to reference Aufray B, Kara A, Vizzini S, Oughaddou H, Léandri C, Ealet B, Lay GL (2010) Graphene-like silicon nanoribbons on Ag(110): a possible formation of silicene. Appl Phys Lett 96(18):183102 Aufray B, Kara A, Vizzini S, Oughaddou H, Léandri C, Ealet B, Lay GL (2010) Graphene-like silicon nanoribbons on Ag(110): a possible formation of silicene. Appl Phys Lett 96(18):183102
124.
go back to reference Bernard Aufray BE, Jamgotchian H, Hichem Maradj J-YHAJ-PB (2016) Silicene: structure, properties and applications. In: Spencer M, Morishita T (eds) Springer International Publishing, Switzerland, pp 183–185 Bernard Aufray BE, Jamgotchian H, Hichem Maradj J-YHAJ-PB (2016) Silicene: structure, properties and applications. In: Spencer M, Morishita T (eds) Springer International Publishing, Switzerland, pp 183–185
125.
go back to reference Paola De Padova BO, Quaresima C, Ottaviani AC. Silicene: structure, properties and applications. In: Spencer M, Morishita T, Springer International Publishing, pp 143–146 Paola De Padova BO, Quaresima C, Ottaviani AC. Silicene: structure, properties and applications. In: Spencer M, Morishita T, Springer International Publishing, pp 143–146
126.
go back to reference Houssa M, Dimoulas A, Molle A (2015) Silicene: a review of recent experimental and theoretical investigations. J Phys Condens Matter 27(25):253002 Houssa M, Dimoulas A, Molle A (2015) Silicene: a review of recent experimental and theoretical investigations. J Phys Condens Matter 27(25):253002
127.
go back to reference Nakano H, Ohashi M (2016) Silicene: structure, properties and applications. In: Spencer M, Morishita T (eds) Springer International Publishing, Switzerland Nakano H, Ohashi M (2016) Silicene: structure, properties and applications. In: Spencer M,  Morishita T (eds) Springer International Publishing, Switzerland
128.
go back to reference Hu P, Chen L, Lu J-E, Lee H-W, Chen S (2018) Silicene quantum dots: synthesis, spectroscopy, and electrochemical studies. Langmuir 34(8):2834–2840CrossRef Hu P, Chen L, Lu J-E, Lee H-W, Chen S (2018) Silicene quantum dots: synthesis, spectroscopy, and electrochemical studies. Langmuir 34(8):2834–2840CrossRef
Metadata
Title
Synthesis Strategies for Si-Based Advanced Materials and Their Applications
Authors
S. P. Koiry
A. K. Chauhan
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-1892-5_17

Premium Partners