Skip to main content
Top
Published in:
Cover of the book

2022 | OriginalPaper | Chapter

1. Synthetic Muscle™ for Deep Space Travel and Other Applications on Earth and in Space

Authors : Lenore Rasmussen, Peter N. Vicars, Calum R. Briggs, Tianyu Cheng, Margot Meredith, Leila N. Albers, Simone Rodriguez, M. Damaris Smith, Matthew Bowers, Edward A. Clancy, Charles Gentile, Lewis Meixler, George Ascione, Nicole Allen, Robert Hitchner, James Taylor, Laurie Bagley, Daniel Hoffman, Ramona Gaza, Leon Moy, Patrick Mark, Dan Prillaman, Robert Nodarse, Michael Menegus, Jo Ann Ross-Ratto, Christopher Thellen, Danielle Froio, Matthew Maltese, Thomas Seacrist, Cosme Furlong, Payam Razavi, Greig Martino, Alex Zhong, Shannon Carey, Ben Secino, Logan Valenza, Catherine Poirier, Charles Sinkler, Dylan Corl, Surbhi Hablani, Tyler Fuerst, Sergio Gallucci, Whitney Blocher, Stephanie Liffland

Published in: Smart Materials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

For deep space travel, new materials are being explored to assist humans in dangerous environments, such as high radiation, extreme temperature, and extreme pressure. Synthetic Muscle™ is a class of electroactive polymer (EAP)-based materials and actuators that shape-morph at low voltage (1.5 V to 50 V), sense pressure (gentle touch to high impact), and attenuate force. These EAPs can survive and work in environments where humans cannot safely enter due to extreme environments or due to contagions that have no cure. From the Ras Labs-CASIS-ISS Experiment, the flown Synthetic Muscle™ samples compared well to the ground control samples, even after over a year on the International Space Station. Replicating human grasp has implications in robotics and prosthetics. EAP linkages can be actuated and EAP pressure sensors placed at the fingertip regions of robotic grippers for tactile feedback. With autonomy, artificial intelligence, machine learning, and EAP and other smart material technologies all coming together, there is an incredible fusion of mechanical and biological concepts to make truly innovative biomimetic motion. Smart materials will allow humanity to advance and survive on Earth and in space: on the ISS National Laboratory, the planned Moon base, the anticipated Mars settlements, and beyond.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference P. Brochu, Q. Pei, Dielectric elastomers for actuators and artificial muscles, in Electroactivity in Polymeric Materials, Chapter 1, ed. by L. Rasmussen, (Springer-Verlag, GmbH & Co. KG, © 2012), p. 40 P. Brochu, Q. Pei, Dielectric elastomers for actuators and artificial muscles, in Electroactivity in Polymeric Materials, Chapter 1, ed. by L. Rasmussen, (Springer-Verlag, GmbH & Co. KG, © 2012), p. 40
4.
go back to reference E.F. Hebling, R.J. Wood, A review of propulsion, power, and control architectures for insect-scale flapping-wing vehicles. ASME App. Mech. Revs. 70, 010801–010801 (2018)CrossRef E.F. Hebling, R.J. Wood, A review of propulsion, power, and control architectures for insect-scale flapping-wing vehicles. ASME App. Mech. Revs. 70, 010801–010801 (2018)CrossRef
9.
go back to reference D.A. Wells, The Science of Common Things (Palala Press, © 2015), p. 290 D.A. Wells, The Science of Common Things (Palala Press, © 2015), p. 290
10.
go back to reference L. Rasmussen (ed.), Electroactivity in Polymeric Materials (Springer-Verlag, GmbH & Co. KG, © 2012) L. Rasmussen (ed.), Electroactivity in Polymeric Materials (Springer-Verlag, GmbH & Co. KG, © 2012)
11.
go back to reference L. Rasmussen, L.D. Meixler, D. Schramm, D. Pearlman, K. Mullally, P. Rasmussen, A. Kirk, Considerations for contractile electroactive polymer based materials and actuators. Proc. SPIE 7976, 2B1–2B13 (2011) L. Rasmussen, L.D. Meixler, D. Schramm, D. Pearlman, K. Mullally, P. Rasmussen, A. Kirk, Considerations for contractile electroactive polymer based materials and actuators. Proc. SPIE 7976, 2B1–2B13 (2011)
12.
go back to reference L. Rasmussen, C.J. Erickson, L.D. Meixler, G. Ascione, C.A. Gentile, C. Tilson, E. Abelev, Considerations for contractile electroactive polymeric materials and actuators. Polym. Int. 59, 290–299 (2010)CrossRef L. Rasmussen, C.J. Erickson, L.D. Meixler, G. Ascione, C.A. Gentile, C. Tilson, E. Abelev, Considerations for contractile electroactive polymeric materials and actuators. Polym. Int. 59, 290–299 (2010)CrossRef
13.
go back to reference L. Rasmussen, Electrically driven mechanochemical artificial muscle: For smooth 3-dimensional movement in robotics and prosthetics. Proc. SPIE 6524, 20 (2007) L. Rasmussen, Electrically driven mechanochemical artificial muscle: For smooth 3-dimensional movement in robotics and prosthetics. Proc. SPIE 6524, 20 (2007)
14.
go back to reference L. Rasmussen, L.N. Albers, S. Rodriguez, C.A. Gentile, L.D. Meixler, G. Ascione, R. Hitchner, J. Taylor, D. Hoffman, D. Cylinder, L. Moy, P.S. Mark, D.L. Prillaman, R. Nodarse, M.J. Menegus, J.A. Ratto, C.T. Thellen, D. Froio, L. Valenza, C. Poirier, C. Sinkler, D. Corl, S. Hablani, T. Fuerst, S. Gallucci, W. Blocher, S. Liffland, Ras Labs-CASIS-ISS NL experiment for synthetic muscle returned to Earth: Resistance to ionizing radiation. Proc. SPIE 10163, 1016310 (2017). https://doi.org/10.1117/12.2267716 L. Rasmussen, L.N. Albers, S. Rodriguez, C.A. Gentile, L.D. Meixler, G. Ascione, R. Hitchner, J. Taylor, D. Hoffman, D. Cylinder, L. Moy, P.S. Mark, D.L. Prillaman, R. Nodarse, M.J. Menegus, J.A. Ratto, C.T. Thellen, D. Froio, L. Valenza, C. Poirier, C. Sinkler, D. Corl, S. Hablani, T. Fuerst, S. Gallucci, W. Blocher, S. Liffland, Ras Labs-CASIS-ISS NL experiment for synthetic muscle returned to Earth: Resistance to ionizing radiation. Proc. SPIE 10163, 1016310 (2017). https://​doi.​org/​10.​1117/​12.​2267716
15.
go back to reference L. Rasmussen, E. Sandberg, L.N. Albers, S. Rodriguez, C.A. Gentile, L.D. Meixler, G. Ascione, R. Hitchner, J. Taylor, D. Hoffman, D. Cylinder, L. Moy, P.S. Mark, D.L. Prillaman, R. Nodarse, M.J. Menegus, J.A. Ratto, C.T. Thellen, D. Froio, C. Furlong, P. Razavi, L. Valenza, S. Hablani, T. Fuerst, S. Gallucci, W. Blocher, S. Liffland, Ras Labs-CASIS-ISS NL experiment for synthetic muscle: Resistance to ionizing radiation. Proc. SPIE 9798, OP1–O10 (2016). https://doi.org/10.1117/12.2219473 L. Rasmussen, E. Sandberg, L.N. Albers, S. Rodriguez, C.A. Gentile, L.D. Meixler, G. Ascione, R. Hitchner, J. Taylor, D. Hoffman, D. Cylinder, L. Moy, P.S. Mark, D.L. Prillaman, R. Nodarse, M.J. Menegus, J.A. Ratto, C.T. Thellen, D. Froio, C. Furlong, P. Razavi, L. Valenza, S. Hablani, T. Fuerst, S. Gallucci, W. Blocher, S. Liffland, Ras Labs-CASIS-ISS NL experiment for synthetic muscle: Resistance to ionizing radiation. Proc. SPIE 9798, OP1–O10 (2016). https://​doi.​org/​10.​1117/​12.​2219473
16.
go back to reference L. Rasmussen, C.J. Erickson, L.D. Meixler, The development of electrically driven mechanochemical actuators that act as artificial muscle. Proc. SPIE 7287, E1–E13 (2009) L. Rasmussen, C.J. Erickson, L.D. Meixler, The development of electrically driven mechanochemical actuators that act as artificial muscle. Proc. SPIE 7287, E1–E13 (2009)
17.
go back to reference L. Rasmussen, S. Rodriguez, M. Bowers, G. Franzini, C.A. Gentile, L.D. Meixler, G. Ascione, R. Hitchner, J. Taylor, D. Hoffman, D. Cylinder, L. Moy, P.S. Mark, D.L. Prillaman, R. Nodarse, M.J. Menegus, R. Carpenter, D. Martin, M. Maltese, C. Furlong, P. Razavi, G. Martino, Synthetic muscle electroactive polymer (EAP) based actuation and sensing for prosthetic and robotic applications. Proc. SPIE 10594, 105942C (2018). https://doi.org/10.1117/12.2297660 L. Rasmussen, S. Rodriguez, M. Bowers, G. Franzini, C.A. Gentile, L.D. Meixler, G. Ascione, R. Hitchner, J. Taylor, D. Hoffman, D. Cylinder, L. Moy, P.S. Mark, D.L. Prillaman, R. Nodarse, M.J. Menegus, R. Carpenter, D. Martin, M. Maltese, C. Furlong, P. Razavi, G. Martino, Synthetic muscle electroactive polymer (EAP) based actuation and sensing for prosthetic and robotic applications. Proc. SPIE 10594, 105942C (2018). https://​doi.​org/​10.​1117/​12.​2297660
21.
go back to reference F. Carpi, D. De Rossi, R. Kornbluh, R. Pelrine, P. Sommer-Larsen, Dielectric elastomers as electro-mechanical transducers: Fundamentals, materials, devices, models & applications of an emerging electroactive polymer technology (Elsevier, © 2008) F. Carpi, D. De Rossi, R. Kornbluh, R. Pelrine, P. Sommer-Larsen, Dielectric elastomers as electro-mechanical transducers: Fundamentals, materials, devices, models & applications of an emerging electroactive polymer technology (Elsevier, © 2008)
22.
go back to reference R. Pelrine, R. Kornbluh, Q. Pei, J. Joseph, High-Speed Electrically Actuated Elastomers with Strain Greater Than 100%, in Electroactivity in Polymeric Materials, Appendix B, ed. by L. Rasmussen, (Springer-Verlag, GmbH & Co. KG, © 2012), pp. 151–159 R. Pelrine, R. Kornbluh, Q. Pei, J. Joseph, High-Speed Electrically Actuated Elastomers with Strain Greater Than 100%, in Electroactivity in Polymeric Materials, Appendix B, ed. by L. Rasmussen, (Springer-Verlag, GmbH & Co. KG, © 2012), pp. 151–159
23.
go back to reference C. Bonomo, L. Fortuna, P. Giannone, S. Graziani, S. Strazzeri, Motion Sensors and Actuators Based on Ionic Polymer-Metal Composites, in Device Applications of Nonlinear Dynamics. Understanding Complex Systems, ed. by S. Baglio, A. Bulsara, (Springer, Berlin/Heidelberg, © 2006), pp. 83–99. doi.org/10.1007/3-540-33878-0_7 C. Bonomo, L. Fortuna, P. Giannone, S. Graziani, S. Strazzeri, Motion Sensors and Actuators Based on Ionic Polymer-Metal Composites, in Device Applications of Nonlinear Dynamics. Understanding Complex Systems, ed. by S. Baglio, A. Bulsara, (Springer, Berlin/Heidelberg, © 2006), pp. 83–99. doi.​org/​10.​1007/​3-540-33878-0_​7
27.
go back to reference V.L. Nickel, J. Perry, A.L. Garrett, Development of useful function in the severely paralyzed hand. J. Bone Joint Surg. 45A(5), 933–952 (1963)CrossRef V.L. Nickel, J. Perry, A.L. Garrett, Development of useful function in the severely paralyzed hand. J. Bone Joint Surg. 45A(5), 933–952 (1963)CrossRef
30.
go back to reference Y. Osada, Conversion of chemical onto mechanical energy by synthetic polymers (chemomechanical systems), in Advances in Polymer Science, ed. by S. Olivé, G. Henrici-Olivé, vol. 82, (Springer, © 1987), pp. 1–46. doi.org/10.1007/BFb0024041 Y. Osada, Conversion of chemical onto mechanical energy by synthetic polymers (chemomechanical systems), in Advances in Polymer Science, ed. by S. Olivé, G. Henrici-Olivé, vol. 82, (Springer, © 1987), pp. 1–46. doi.​org/​10.​1007/​BFb0024041
31.
go back to reference Y. Osada, D.E. De Rossi, Polymer Sensors and Actuators (Springer, © 2010) Y. Osada, D.E. De Rossi, Polymer Sensors and Actuators (Springer, © 2010)
32.
go back to reference Y. Osada, A. Khokhlov, Polymer Gels and Networks (Marcel Dekker, © 2002) Y. Osada, A. Khokhlov, Polymer Gels and Networks (Marcel Dekker, © 2002)
33.
go back to reference Y. Osada, Polymer Sensors and Actuators (Springer, © 2000) Y. Osada, Polymer Sensors and Actuators (Springer, © 2000)
34.
go back to reference Y. Osada, K. Kajiwara, Gels Handbook (Academic Press/Elsevier, © 2000) Y. Osada, K. Kajiwara, Gels Handbook (Academic Press/Elsevier, © 2000)
36.
go back to reference M. Uchida, M. Kurosawa, Y. Osada, Swelling process and order-disorder transition of hydrogel containing hydrophobic ionizable groups. Macromolecules 28, 4583–4586 (1995). doi:0024.9297/95/2228-4583CrossRef M. Uchida, M. Kurosawa, Y. Osada, Swelling process and order-disorder transition of hydrogel containing hydrophobic ionizable groups. Macromolecules 28, 4583–4586 (1995). doi:0024.9297/95/2228-4583CrossRef
38.
go back to reference H. Okuzaki, Y. Osada, Electro-driven chemomechanical behaviors of polymer gel based on reversible complex formation with surfactant molecules, and polymer gels: Intelligent soft materials as new energy transducers, in Proceeding of the First Conference on Intelligent Materials, ICIM 92, ed. by T. Takagi, K. Takahashi, M. Aizawa, S. Miyata, (Kanagawa, © 1992) H. Okuzaki, Y. Osada, Electro-driven chemomechanical behaviors of polymer gel based on reversible complex formation with surfactant molecules, and polymer gels: Intelligent soft materials as new energy transducers, in Proceeding of the First Conference on Intelligent Materials, ICIM 92, ed. by T. Takagi, K. Takahashi, M. Aizawa, S. Miyata, (Kanagawa, © 1992)
40.
go back to reference D. De Rossi, K. Kaliwara, Y. Osada, A. Yamauchi, Polymer Gels (Plenum Press, New York, © 1991) D. De Rossi, K. Kaliwara, Y. Osada, A. Yamauchi, Polymer Gels (Plenum Press, New York, © 1991)
41.
go back to reference M. Miyano, Y. Osada, Electroconductive organogel 2. Appearance and nature of current oscillation under electric field. Macromolecules 24, 4755–4761 (1991). doi:0024.9297/91/2224.4755CrossRef M. Miyano, Y. Osada, Electroconductive organogel 2. Appearance and nature of current oscillation under electric field. Macromolecules 24, 4755–4761 (1991). doi:0024.9297/91/2224.4755CrossRef
42.
go back to reference Y. Osada, Chemical valves and gel actuators. Adv. Mater. 3(2), 107–108 (1991). doi:0935-9648/91/0202-0107CrossRef Y. Osada, Chemical valves and gel actuators. Adv. Mater. 3(2), 107–108 (1991). doi:0935-9648/91/0202-0107CrossRef
43.
go back to reference J. Gong, I. Kawakami, Y. Osada, Electroconductive organogel. 4. Electrodriven chemomechanical behaviors of charge-transfer complex gel in organic solvent. Macromolecules 24, 6582–6587 (1991). doi:0024.0207/91/2224.6582CrossRef J. Gong, I. Kawakami, Y. Osada, Electroconductive organogel. 4. Electrodriven chemomechanical behaviors of charge-transfer complex gel in organic solvent. Macromolecules 24, 6582–6587 (1991). doi:0024.0207/91/2224.6582CrossRef
45.
go back to reference Y. Osada, K. Umezawa, A. Yamauchi, Oscillation of electrical current in waterswollen polyelectrolyte gels. Makromol. Chem. 189, 597–605 (1988). doi:0025-116X/88CrossRef Y. Osada, K. Umezawa, A. Yamauchi, Oscillation of electrical current in waterswollen polyelectrolyte gels. Makromol. Chem. 189, 597–605 (1988). doi:0025-116X/88CrossRef
46.
go back to reference Y. Osada, M. Hasebe, Electrically activated mechanochemical devices using polyelectrolyte gels. Chem. Lett. 14(9), 1285–1288 (1985)CrossRef Y. Osada, M. Hasebe, Electrically activated mechanochemical devices using polyelectrolyte gels. Chem. Lett. 14(9), 1285–1288 (1985)CrossRef
47.
go back to reference Y. Osada, M. Sato, Conversion of chemical into mechanical energy by contractile polymers performed by polymer complexation. Polymer 21, 1057–1061 (1980). doi:0032-3861/80/091057-05CrossRef Y. Osada, M. Sato, Conversion of chemical into mechanical energy by contractile polymers performed by polymer complexation. Polymer 21, 1057–1061 (1980). doi:0032-3861/80/091057-05CrossRef
48.
go back to reference T. Shiga, Y. Hirose, A. Okada, T. Kurauchi, Bending of a high strength gel in an electric field. Polym. Preprt. 30(1), 310–314 (1998) T. Shiga, Y. Hirose, A. Okada, T. Kurauchi, Bending of a high strength gel in an electric field. Polym. Preprt. 30(1), 310–314 (1998)
49.
go back to reference T. Shiga, Deformation and viscoelastic behavior of polymer gels in electric fields. Adv. Polym. Sci. 134, 131–162 (1997)CrossRef T. Shiga, Deformation and viscoelastic behavior of polymer gels in electric fields. Adv. Polym. Sci. 134, 131–162 (1997)CrossRef
50.
go back to reference T. Tanaka, I. Nishio, S.T. Sun, Collapse of gels in an electric field. Science 218, 467–469 (1980). doi:0036-8075/82/1029-0467CrossRef T. Tanaka, I. Nishio, S.T. Sun, Collapse of gels in an electric field. Science 218, 467–469 (1980). doi:0036-8075/82/1029-0467CrossRef
54.
go back to reference S. Hirotsu, Y. Hirowaka, T. Tananka, Volume-phase transitions of ionized n-isopropylacrylamide gels. J. Chem. Phys. 87(2), 1392–1395 (1987). doi:0021-9606/87/141392-04CrossRef S. Hirotsu, Y. Hirowaka, T. Tananka, Volume-phase transitions of ionized n-isopropylacrylamide gels. J. Chem. Phys. 87(2), 1392–1395 (1987). doi:0021-9606/87/141392-04CrossRef
55.
go back to reference T. Tanaka, Gels, in Structure and Dynamics of Biopolymers, NATO ASI Series E, ed. by C. Nicolini, (Martinus Nijhoff Publishers, Boston, © 1987) T. Tanaka, Gels, in Structure and Dynamics of Biopolymers, NATO ASI Series E, ed. by C. Nicolini, (Martinus Nijhoff Publishers, Boston, © 1987)
57.
go back to reference T. Tanaka, Critical dynamics, kinetics and phase transitions of polymer gels. Polym. Preprt. 27(1), 235 (1985) T. Tanaka, Critical dynamics, kinetics and phase transitions of polymer gels. Polym. Preprt. 27(1), 235 (1985)
61.
go back to reference R.A. Haslam, M. Boocock, P. Lemon, S. Thorpe, Safety Sci. 40, 625–637 (© 2002) R.A. Haslam, M. Boocock, P. Lemon, S. Thorpe, Safety Sci. 40, 625–637 (© 2002)
65.
go back to reference R.L. Fleischer, P.B. Price, R.M. Walker, Nuclear Tracks in Solids: Principles and Applications, Chapter 2. (University of California Press, © 1975), p. 54 R.L. Fleischer, P.B. Price, R.M. Walker, Nuclear Tracks in Solids: Principles and Applications, Chapter 2. (University of California Press, © 1975), p. 54
67.
go back to reference G.M. Comstock, R.L. Fleischer, W.L. Giard, H.R. Hart, G.E. Nichols, P.B. Price, Cosmic-ray tracks in plastics: The Apollo helmet dosimetry experiment. Science 172, 154–156 (1971)CrossRef G.M. Comstock, R.L. Fleischer, W.L. Giard, H.R. Hart, G.E. Nichols, P.B. Price, Cosmic-ray tracks in plastics: The Apollo helmet dosimetry experiment. Science 172, 154–156 (1971)CrossRef
68.
go back to reference R.L. Fleischer, Tracks to Innovation (Springer, © 1998), p. 121 R.L. Fleischer, Tracks to Innovation (Springer, © 1998), p. 121
69.
go back to reference S. Kelly, Endurance: My Year in Space, a Lifetime of Discovery (Knopf Penguin Random House, © 2017) S. Kelly, Endurance: My Year in Space, a Lifetime of Discovery (Knopf Penguin Random House, © 2017)
71.
go back to reference L. Rasmussen, L.D. Meixler, C.A. Gentile, Contractile electroactive materials and actuators. Proc. SPIE 8340(10), 1–14 (2012) L. Rasmussen, L.D. Meixler, C.A. Gentile, Contractile electroactive materials and actuators. Proc. SPIE 8340(10), 1–14 (2012)
73.
go back to reference K. Tomanova, M. Precek, V. Mucka, V. Vysin, L. Jiha, V. Cuba, At the crossroad of photochemistry and radiation chemistry: Formation of hydroxyl radicals in diluted aqueous solutions exposed to ultraviolet radiation. Phys. Chem. Chem. Phys. 19, 29402–29408 (2017). https://doi.org/10.1039/C7CP05125ECrossRef K. Tomanova, M. Precek, V. Mucka, V. Vysin, L. Jiha, V. Cuba, At the crossroad of photochemistry and radiation chemistry: Formation of hydroxyl radicals in diluted aqueous solutions exposed to ultraviolet radiation. Phys. Chem. Chem. Phys. 19, 29402–29408 (2017). https://​doi.​org/​10.​1039/​C7CP05125ECrossRef
76.
go back to reference Y. Jiang, U. Mansfield, K. Kratz, A. Lendlein, Programmable microscale stiffness pattern of flat polymeric substrates by temperature-memory technology. MRS Commun. 9(01), 181–188 (2019)CrossRef Y. Jiang, U. Mansfield, K. Kratz, A. Lendlein, Programmable microscale stiffness pattern of flat polymeric substrates by temperature-memory technology. MRS Commun. 9(01), 181–188 (2019)CrossRef
78.
go back to reference L. Rasmussen, S. Rodriguez, M. Bowers, D. Smith, G. Martino, L. Rizzo, C. Scheiber, J. d’Almeida, C. Dillis, Adjustable liners and sockets for prosthetic devices. Can Prosth. & Ortho J. 1(2), 1–3 (2018) L. Rasmussen, S. Rodriguez, M. Bowers, D. Smith, G. Martino, L. Rizzo, C. Scheiber, J. d’Almeida, C. Dillis, Adjustable liners and sockets for prosthetic devices. Can Prosth. & Ortho J. 1(2), 1–3 (2018)
79.
go back to reference L. Rasmussen, S. Rodriguez, M. Bowers, D. Smith, G. Martino, L. Moy, P.D. Mark, D. Prillaman, R. Nodarse, R. Carpenter, D. Martin, C. Scheiber, J. d’Almeida, Synthetic muscle electroactive polymer based actuation and pressure sensing for prosthetic and robotic gripper applications. Proc. SPIE 10966, 1096626 (2019). https://doi.org/10.1117/12.2514429CrossRef L. Rasmussen, S. Rodriguez, M. Bowers, D. Smith, G. Martino, L. Moy, P.D. Mark, D. Prillaman, R. Nodarse, R. Carpenter, D. Martin, C. Scheiber, J. d’Almeida, Synthetic muscle electroactive polymer based actuation and pressure sensing for prosthetic and robotic gripper applications. Proc. SPIE 10966, 1096626 (2019). https://​doi.​org/​10.​1117/​12.​2514429CrossRef
80.
go back to reference Discussions with prosthetic experts: Mt Sterling, OH, 2016-present; Duderstadt, Germany, 2017; with Dr. Matthew Maltese, Children’s Hospital of Philadelphia, Philadelphia, PA, 2015-present; and with Dr. Todd Farrell, LTI, Holliston, MA 2015-present Discussions with prosthetic experts: Mt Sterling, OH, 2016-present; Duderstadt, Germany, 2017; with Dr. Matthew Maltese, Children’s Hospital of Philadelphia, Philadelphia, PA, 2015-present; and with Dr. Todd Farrell, LTI, Holliston, MA 2015-present
85.
go back to reference G. Roddenberry, Star Trek: Original Series and Star Trek: The Next Generation, 1966–1969 and 1987–1994 G. Roddenberry, Star Trek: Original Series and Star Trek: The Next Generation, 1966–1969 and 1987–1994
Metadata
Title
Synthetic Muscle™ for Deep Space Travel and Other Applications on Earth and in Space
Authors
Lenore Rasmussen
Peter N. Vicars
Calum R. Briggs
Tianyu Cheng
Margot Meredith
Leila N. Albers
Simone Rodriguez
M. Damaris Smith
Matthew Bowers
Edward A. Clancy
Charles Gentile
Lewis Meixler
George Ascione
Nicole Allen
Robert Hitchner
James Taylor
Laurie Bagley
Daniel Hoffman
Ramona Gaza
Leon Moy
Patrick Mark
Dan Prillaman
Robert Nodarse
Michael Menegus
Jo Ann Ross-Ratto
Christopher Thellen
Danielle Froio
Matthew Maltese
Thomas Seacrist
Cosme Furlong
Payam Razavi
Greig Martino
Alex Zhong
Shannon Carey
Ben Secino
Logan Valenza
Catherine Poirier
Charles Sinkler
Dylan Corl
Surbhi Hablani
Tyler Fuerst
Sergio Gallucci
Whitney Blocher
Stephanie Liffland
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-70514-5_1

Premium Partners