Skip to main content
Top

2018 | OriginalPaper | Chapter

5. System Modeling and Analysis

Authors : Ibrahim Dincer, Mehmet Akif Ezan

Published in: Heat Storage: A Unique Solution For Energy Systems

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter we deal with the analysis and modeling of thermal energy storage systems and applications and present the step-by-step illustrative examples for sensible and latent heat storage systems in particular from both energetic and exergetic points of view. In addition, this chapter covers the fundamentals of heat transfer analysis of latent heat storage tanks and fundamentals of CFD approach.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abdelhak, O., Mhiri, H., & Bournot, P. (2015). CFD analysis of thermal stratification in domestic hot water storage tank during dynamic mode. Building Simulation, 8(4), 421–429 Tsinghua University Press.CrossRef Abdelhak, O., Mhiri, H., & Bournot, P. (2015). CFD analysis of thermal stratification in domestic hot water storage tank during dynamic mode. Building Simulation, 8(4), 421–429 Tsinghua University Press.CrossRef
go back to reference Allouche, Y., Varga, S., Bouden, C., & Oliveira, A. C. (2016). Validation of a CFD model for the simulation of heat transfer in a tubes-in-tank PCM storage unit. Renewable Energy, 89, 371–379.CrossRef Allouche, Y., Varga, S., Bouden, C., & Oliveira, A. C. (2016). Validation of a CFD model for the simulation of heat transfer in a tubes-in-tank PCM storage unit. Renewable Energy, 89, 371–379.CrossRef
go back to reference Altuntop, N., Arslan, M., Ozceyhan, V., & Kanoglu, M. (2005). Effect of obstacles on thermal stratification in hot water storage tanks. Applied Thermal Engineering, 25(14–15), 2285–2298.CrossRef Altuntop, N., Arslan, M., Ozceyhan, V., & Kanoglu, M. (2005). Effect of obstacles on thermal stratification in hot water storage tanks. Applied Thermal Engineering, 25(14–15), 2285–2298.CrossRef
go back to reference ANSYS Inc. (2009). ANSYS FLUENT user’s guide, version 12. ANSYS Inc. ANSYS Inc. (2009). ANSYS FLUENT user’s guide, version 12. ANSYS Inc.
go back to reference Bouhal, T., Fertahi, S., Agrouaz, Y., El Rhafiki, T., Kousksou, T., & Jamil, A. (2017). Numerical modeling and optimization of thermal stratification in solar hot water storage tanks for domestic applications: CFD study. Solar Energy, 157, 441–455.CrossRef Bouhal, T., Fertahi, S., Agrouaz, Y., El Rhafiki, T., Kousksou, T., & Jamil, A. (2017). Numerical modeling and optimization of thermal stratification in solar hot water storage tanks for domestic applications: CFD study. Solar Energy, 157, 441–455.CrossRef
go back to reference Cao, Y., & Faghri, A. (1990). A numerical−analysis of phase−change problems including natural convection. ASME Journal of Heat Transfer, 112, 812–816.CrossRef Cao, Y., & Faghri, A. (1990). A numerical−analysis of phase−change problems including natural convection. ASME Journal of Heat Transfer, 112, 812–816.CrossRef
go back to reference Cascetta, M., Cau, G., Puddu, P., & Serra, F. (2016). A comparison between CFD simulation and experimental investigation of a packed-bed thermal energy storage system. Applied Thermal Engineering, 98, 1263–1272.CrossRef Cascetta, M., Cau, G., Puddu, P., & Serra, F. (2016). A comparison between CFD simulation and experimental investigation of a packed-bed thermal energy storage system. Applied Thermal Engineering, 98, 1263–1272.CrossRef
go back to reference Dincer, I. (2002). On thermal energy storage systems and applications in buildings. Energy and Buildings, 34(4), 377–388.CrossRef Dincer, I. (2002). On thermal energy storage systems and applications in buildings. Energy and Buildings, 34(4), 377–388.CrossRef
go back to reference Dincer, I., Dost, S., & Li, X. (1997). Performance analyses of sensible heat storage systems for thermal applications. International Journal of Energy Research, 21(12), 1157–1171.CrossRef Dincer, I., Dost, S., & Li, X. (1997). Performance analyses of sensible heat storage systems for thermal applications. International Journal of Energy Research, 21(12), 1157–1171.CrossRef
go back to reference Dincer, I., & Rosen, M. (2011). Thermal energy storage: Systems and applications (2nd ed.). Hoboken: Wiley. Dincer, I., & Rosen, M. (2011). Thermal energy storage: Systems and applications (2nd ed.). Hoboken: Wiley.
go back to reference Drees, K. H., & Braun, J. E. (1995). Modeling of area–constrained ice storage tanks. HVAC&R Research, 1, 143–158.CrossRef Drees, K. H., & Braun, J. E. (1995). Modeling of area–constrained ice storage tanks. HVAC&R Research, 1, 143–158.CrossRef
go back to reference Ezan, M. A. (2011). Experimental and numerical investigation of cold thermal energy storage systems. PhD thesis, Graduate School of Natural and Applied Sciences of Dokuz Eylul University, Izmir. Ezan, M. A. (2011). Experimental and numerical investigation of cold thermal energy storage systems. PhD thesis, Graduate School of Natural and Applied Sciences of Dokuz Eylul University, Izmir.
go back to reference Fornarelli, F., Camporeale, S. M., Fortunato, B., Torresi, M., Oresta, P., Magliocchetti, L., et al. (2016). CFD analysis of melting process in a shell-and-tube latent heat storage for concentrated solar power plants. Applied Energy, 164, 711–722.CrossRef Fornarelli, F., Camporeale, S. M., Fortunato, B., Torresi, M., Oresta, P., Magliocchetti, L., et al. (2016). CFD analysis of melting process in a shell-and-tube latent heat storage for concentrated solar power plants. Applied Energy, 164, 711–722.CrossRef
go back to reference Guo, C., & Zhang, W. (2008). Numerical simulation and parametric study on new type of high temperature latent heat thermal energy storage system. Energy Conversion and Management, 49(5), 919–927.CrossRef Guo, C., & Zhang, W. (2008). Numerical simulation and parametric study on new type of high temperature latent heat thermal energy storage system. Energy Conversion and Management, 49(5), 919–927.CrossRef
go back to reference Incropera, F. P., & DeWitt, P. D. (2002). Fundamentals of heat and mass transfer. New York: Wiley. Incropera, F. P., & DeWitt, P. D. (2002). Fundamentals of heat and mass transfer. New York: Wiley.
go back to reference Jegadheeswaran, S., Pohekar, S. D., & Kousksou, T. (2010). Exergy based performance evaluation of latent heat thermal storage system: A review. Renewable and Sustainable Energy Reviews, 14(9), 2580–2595.CrossRef Jegadheeswaran, S., Pohekar, S. D., & Kousksou, T. (2010). Exergy based performance evaluation of latent heat thermal storage system: A review. Renewable and Sustainable Energy Reviews, 14(9), 2580–2595.CrossRef
go back to reference Jekel, T. B., Mitchell, J. W., & Klein, S. A. (1993). Modeling of ice–storage tanks. ASHRAE Transactions, 99, 1016–1024. Jekel, T. B., Mitchell, J. W., & Klein, S. A. (1993). Modeling of ice–storage tanks. ASHRAE Transactions, 99, 1016–1024.
go back to reference Kestin, J. (1980). Availability: The concept and associated terminology. Energy, 5(8-9), 679–692.CrossRef Kestin, J. (1980). Availability: The concept and associated terminology. Energy, 5(8-9), 679–692.CrossRef
go back to reference MacPhee, D., & Dincer, I. (2009). Thermodynamic analysis of freezing and melting processes in a bed of spherical PCM capsules. Journal of Solar Energy Engineering, 131(3), 031017.CrossRef MacPhee, D., & Dincer, I. (2009). Thermodynamic analysis of freezing and melting processes in a bed of spherical PCM capsules. Journal of Solar Energy Engineering, 131(3), 031017.CrossRef
go back to reference Morgan, K. (1981). A numerical analysis of freezing and melting with convection. Computer Methods in Applied Mechanics and Engineering, 28, 275–284.CrossRef Morgan, K. (1981). A numerical analysis of freezing and melting with convection. Computer Methods in Applied Mechanics and Engineering, 28, 275–284.CrossRef
go back to reference Neto, J. H. M., & Krarti, M. (1997). Deterministic model for an internal melt ice-on-coil thermal energy storage tank. ASHRAE Transactions, 103, 113–124. Neto, J. H. M., & Krarti, M. (1997). Deterministic model for an internal melt ice-on-coil thermal energy storage tank. ASHRAE Transactions, 103, 113–124.
go back to reference Patankar, S. V. (1980). Numerical heat transfer and fluid flow. New York: Hemisphere.CrossRef Patankar, S. V. (1980). Numerical heat transfer and fluid flow. New York: Hemisphere.CrossRef
go back to reference Patankar, S. V., & Spalding, D. B. (1972). A calculation procedure for heat, mass and momentum transfer in three–dimensional parabolic flows. International Journal of Heat Mass Transfer, 15, 1787–1806.CrossRef Patankar, S. V., & Spalding, D. B. (1972). A calculation procedure for heat, mass and momentum transfer in three–dimensional parabolic flows. International Journal of Heat Mass Transfer, 15, 1787–1806.CrossRef
go back to reference Promoppatum, P., Yao, S. C., Hultz, T., & Agee, D. (2017). Experimental and numerical investigation of the cross-flow PCM heat exchanger for the energy saving of building HVAC. Energy and Buildings, 138, 468–478.CrossRef Promoppatum, P., Yao, S. C., Hultz, T., & Agee, D. (2017). Experimental and numerical investigation of the cross-flow PCM heat exchanger for the energy saving of building HVAC. Energy and Buildings, 138, 468–478.CrossRef
go back to reference Rosen, M. A., & Hooper, F. C. (1991). A general method for evaluating the energy and exergy contents of stratified thermal energy storages for linear-based storage fluid temperature distributions. Proceedings of the 17th Annual Conference of Solar Energy Society of Canada, Toronto, pp. 182–187. Rosen, M. A., & Hooper, F. C. (1991). A general method for evaluating the energy and exergy contents of stratified thermal energy storages for linear-based storage fluid temperature distributions. Proceedings of the 17th Annual Conference of Solar Energy Society of Canada, Toronto, pp. 182–187.
go back to reference Seban, R. A., & McLaughlin, E. F. (1963). Heat transfer in tube coils with laminar and turbulent flow. International Journal of Heat and Mass Transfer, 6, 387–395.CrossRef Seban, R. A., & McLaughlin, E. F. (1963). Heat transfer in tube coils with laminar and turbulent flow. International Journal of Heat and Mass Transfer, 6, 387–395.CrossRef
go back to reference Shah, L. J., & Furbo, S. (2003). Entrance effects in solar storage tanks. Solar Energy, 75(4), 337–348.CrossRef Shah, L. J., & Furbo, S. (2003). Entrance effects in solar storage tanks. Solar Energy, 75(4), 337–348.CrossRef
go back to reference Tay, N. H. S., Bruno, F., & Belusko, M. (2013). Comparison of pinned and finned tubes in a phase change thermal energy storage system using CFD. Applied Energy, 104, 79–86.CrossRef Tay, N. H. S., Bruno, F., & Belusko, M. (2013). Comparison of pinned and finned tubes in a phase change thermal energy storage system using CFD. Applied Energy, 104, 79–86.CrossRef
go back to reference Tu, J., Yeoh, G. H., & Liu, C. (2008). Computational fluid dynamics: A practical approach. Butterworth: Heinemann.MATH Tu, J., Yeoh, G. H., & Liu, C. (2008). Computational fluid dynamics: A practical approach. Butterworth: Heinemann.MATH
go back to reference Versteeg, H., & Malalasekera, W. (2007). An introduction to computational fluid dynamics: The finite volume method (2nd ed.). Harlow: Prentice Hall. Versteeg, H., & Malalasekera, W. (2007). An introduction to computational fluid dynamics: The finite volume method (2nd ed.). Harlow: Prentice Hall.
go back to reference Wang, S. M., Faghri, A., & Bergman, T. L. (2010). A comprehensive numerical model for melting with natural convection. International Journal of Heat and Mass Transfer, 53, 1986–2000.CrossRef Wang, S. M., Faghri, A., & Bergman, T. L. (2010). A comprehensive numerical model for melting with natural convection. International Journal of Heat and Mass Transfer, 53, 1986–2000.CrossRef
go back to reference Xia, L., Zhang, P., & Wang, R. Z. (2010). Numerical heat transfer analysis of the packed bed latent heat storage system based on an effective packed bed model. Energy, 35(5), 2022–2032.CrossRef Xia, L., Zhang, P., & Wang, R. Z. (2010). Numerical heat transfer analysis of the packed bed latent heat storage system based on an effective packed bed model. Energy, 35(5), 2022–2032.CrossRef
go back to reference Yee, C. K., & Lai, F. C. (2001). Effects of a porous manifold on thermal stratification in a liquid storage tank. Solar Energy, 71(4), 241–254.CrossRef Yee, C. K., & Lai, F. C. (2001). Effects of a porous manifold on thermal stratification in a liquid storage tank. Solar Energy, 71(4), 241–254.CrossRef
Metadata
Title
System Modeling and Analysis
Authors
Ibrahim Dincer
Mehmet Akif Ezan
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-91893-8_5