Skip to main content
Top

2018 | OriginalPaper | Chapter

13. Systembiologie in der Bioverfahrenstechnik

Author : Ralf Takors

Published in: Bioprozesstechnik

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Zusammenfassung

Die Systembiologie ist eine Wissenschaft, die sich nach wie vor rasant entwickelt. Sie verfolgt den Ansatz, ein biologisches System holistisch, d. h. ganzheitlich zu betrachten und quantitativ zu beschreiben. Dabei steht die Interaktion der einzelnen Module (Moleküle, Zellen, Regulationsmechanismen oder Populationen) im Vordergrund der Untersuchungen. Folgerichtig setzen sich systembiologische Studien aus unterschiedlichsten Facetten der Forschungsthemen zusammen und adressieren vielfältige Themenfelder der Biologie und Medizin. Das nachfolgende Kapitel stellt nur einen kleinen Teilaspekt in den Vordergrund: nämlich die systembiologischen Aspekte in der Bioverfahrens- bzw. Bioprozesstechnik. Weitere Themenfelder werden in den Übersichten vorgestellt.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Zu beachten ist, dass 13C mit einer natürlichen Verbreitung von 1,13 % auch in „nicht“-markierten Substraten vorkommt.
 
Literature
[1]
go back to reference Aiba S, Matsuoka M (1979) Identification of metabolic model: Citrate production from glucose by Candida lipolytica. Biotechnol Bioeng 21:1373‒1386 Aiba S, Matsuoka M (1979) Identification of metabolic model: Citrate production from glucose by Candida lipolytica. Biotechnol Bioeng 21:1373‒1386
[2]
go back to reference Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Elementary metabolite units (EMU): A novel framework for modeling isotopic distributions. Metab Eng 9:68‒86PubMed Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Elementary metabolite units (EMU): A novel framework for modeling isotopic distributions. Metab Eng 9:68‒86PubMed
[3]
go back to reference Antoniewicz MR, Kraynie DF, Laffend LA, Gonzalez-Lergier J, Kelleher JK, Stephanopoulos G (2007) Metabolic flux analysis in a nonstationary system: Fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol. Metab Eng 9:277‒292PubMedPubMedCentral Antoniewicz MR, Kraynie DF, Laffend LA, Gonzalez-Lergier J, Kelleher JK, Stephanopoulos G (2007) Metabolic flux analysis in a nonstationary system: Fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol. Metab Eng 9:277‒292PubMedPubMedCentral
[4]
go back to reference Avery SV (2006) Microbial cell individuality and the underlying sources of heterogeneity. Nature Rev 4:577–587 Avery SV (2006) Microbial cell individuality and the underlying sources of heterogeneity. Nature Rev 4:577–587
[5]
go back to reference Bailey JE (1991) Towards a science of metabolic engineering. Science 252:1668‒1674PubMed Bailey JE (1991) Towards a science of metabolic engineering. Science 252:1668‒1674PubMed
[6]
go back to reference Bailey JE (1999) Lessons from metabolic engineering for functional genomics and drug discovery. Nat Biotechnol 17:616–618PubMed Bailey JE (1999) Lessons from metabolic engineering for functional genomics and drug discovery. Nat Biotechnol 17:616–618PubMed
[7]
go back to reference Beckwith JR (1967) Regulation of the lac operon. Recent studies on the regulation of lactose metabolism in Escherichia coli support the operon model. Science 156:597‒604PubMed Beckwith JR (1967) Regulation of the lac operon. Recent studies on the regulation of lactose metabolism in Escherichia coli support the operon model. Science 156:597‒604PubMed
[8]
go back to reference Blank LM, Kuepfer L, Sauer U (2005) Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biol 6:R49PubMedPubMedCentral Blank LM, Kuepfer L, Sauer U (2005) Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biol 6:R49PubMedPubMedCentral
[9]
go back to reference Blum JJ, Stein RB. (1982) On the analysis of metabolic networks. In: Goldberger RF (Hrsg) Biological regulation and development, Plenum Press, New York, S 99‒124 Blum JJ, Stein RB. (1982) On the analysis of metabolic networks. In: Goldberger RF (Hrsg) Biological regulation and development, Plenum Press, New York, S 99‒124
[10]
go back to reference Bonarius HPJ, Schmidt G, Tramper J (1997) Flux analysis of underdetermined metabolic systems: The quest of missing constraints. Trends Biotechnol 15:308‒314 Bonarius HPJ, Schmidt G, Tramper J (1997) Flux analysis of underdetermined metabolic systems: The quest of missing constraints. Trends Biotechnol 15:308‒314
[11]
go back to reference Bordel S, Nielsen J (2010) Identification of flux control in metabolic networks using non-equilibrium thermodynamics. MetabEng 12:369–377 Bordel S, Nielsen J (2010) Identification of flux control in metabolic networks using non-equilibrium thermodynamics. MetabEng 12:369–377
[12]
go back to reference Buchholz J, Graf M, Freund A, Busche J, Kalinowski J, Blombach B, Takors R (2014) CO2/HCO3− perturbations of simulated large scale gradients in a scale-down device cause fast transcriptional responses in Corynebacterium glutamicum. Appl Microbiol Biotechnol 98(29):8563–8572PubMed Buchholz J, Graf M, Freund A, Busche J, Kalinowski J, Blombach B, Takors R (2014) CO2/HCO3 perturbations of simulated large scale gradients in a scale-down device cause fast transcriptional responses in Corynebacterium glutamicum. Appl Microbiol Biotechnol 98(29):8563–8572PubMed
[13]
go back to reference Burgard AP, Phakya P, Maranas CD (2003) OptKnock, a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84:647‒657PubMed Burgard AP, Phakya P, Maranas CD (2003) OptKnock, a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84:647‒657PubMed
[14]
go back to reference Burns JA, Cornish-Bowden A, Groen AK, Heinrich R, Kacser H, Porteous JW, Rapoport SM, Rapoport TA, Stucki JW, Tager JM, Wanders RJA, Westerhoff HV (1985) Control analysis of metabolic systems. Trends Biochem Sci 10:16 Burns JA, Cornish-Bowden A, Groen AK, Heinrich R, Kacser H, Porteous JW, Rapoport SM, Rapoport TA, Stucki JW, Tager JM, Wanders RJA, Westerhoff HV (1985) Control analysis of metabolic systems. Trends Biochem Sci 10:16
[15]
go back to reference Bylund F, Collet E, Enfors SO, Larsson G (1998) Substrate gradient formation in the large-scale bioreactor lowers cell yield and increases by-product formation, Bioproc Eng 18:171–180 Bylund F, Collet E, Enfors SO, Larsson G (1998) Substrate gradient formation in the large-scale bioreactor lowers cell yield and increases by-product formation, Bioproc Eng 18:171–180
[16]
go back to reference Cameron DC, Tong T-T (1993) Cellular and metabolic engineering. Appl Biochem Biotechnol 38:105‒140PubMed Cameron DC, Tong T-T (1993) Cellular and metabolic engineering. Appl Biochem Biotechnol 38:105‒140PubMed
[17]
go back to reference Caspeta L, Nielsen J (2013) Towards systems metabolic engineering of Aspergillus and Pichia species for the production of chemicals and biofuels. Biotechnol J 8:534–544.PubMed Caspeta L, Nielsen J (2013) Towards systems metabolic engineering of Aspergillus and Pichia species for the production of chemicals and biofuels. Biotechnol J 8:534–544.PubMed
[18]
go back to reference Chance B, Garfinkel D, Higgins J, Hess B (1960) Metabolic control mechanisms. J Biol Chem 235:2426‒2439PubMed Chance B, Garfinkel D, Higgins J, Hess B (1960) Metabolic control mechanisms. J Biol Chem 235:2426‒2439PubMed
[19]
go back to reference Christensen B, Nielsen J (1999) Metabolic network analysis – a powerful tool in metabolic engineering. Adv Biochem Eng Biotechnol 66:209‒231 Christensen B, Nielsen J (1999) Metabolic network analysis – a powerful tool in metabolic engineering. Adv Biochem Eng Biotechnol 66:209‒231
[20]
go back to reference Christensen B, Nielsen J (1999) Isotopomer analysis using CG-MS. Metab Eng 1:282‒290PubMed Christensen B, Nielsen J (1999) Isotopomer analysis using CG-MS. Metab Eng 1:282‒290PubMed
[21]
go back to reference de Graaf AA (2000) Metabolic analysis of Zymomonas mobilis. In: Schügerl K, Belgardt KH (Hrsg) Bioreaction Engineering, Modelling and Control, Springer Verlag, New York de Graaf AA (2000) Metabolic analysis of Zymomonas mobilis. In: Schügerl K, Belgardt KH (Hrsg) Bioreaction Engineering, Modelling and Control, Springer Verlag, New York
[22]
go back to reference Delvigne F, Brognaux A, Gorret N, Neubauer P, Delafosse A, Collignon ML, Toye D, Crine M, Boxus M, Thonart P (2011) Characterization of the response of GFP microbial biosensors sensitive to substrate limitation in scale-down bioreactors. Biochem Eng J 55:131–139 Delvigne F, Brognaux A, Gorret N, Neubauer P, Delafosse A, Collignon ML, Toye D, Crine M, Boxus M, Thonart P (2011) Characterization of the response of GFP microbial biosensors sensitive to substrate limitation in scale-down bioreactors. Biochem Eng J 55:131–139
[23]
go back to reference Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp P-D, Broadbelt LJ, Hatzimanikatis V, Palsson BO (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121PubMedPubMedCentral Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp P-D, Broadbelt LJ, Hatzimanikatis V, Palsson BO (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121PubMedPubMedCentral
[24]
go back to reference Fell DA (1997) Metabolic control analysis: A survey of its theoretical and experimental development. Biochem J 286:313‒330 Fell DA (1997) Metabolic control analysis: A survey of its theoretical and experimental development. Biochem J 286:313‒330
[25]
go back to reference Ferenci T (2001) Hungry bacteria ‒ definition and properties of a nutritional state. Environ Microbiol 3(10):605‒611PubMed Ferenci T (2001) Hungry bacteria ‒ definition and properties of a nutritional state. Environ Microbiol 3(10):605‒611PubMed
[26]
go back to reference Griffith JS (1968) Mathematics of cellular control processes. I. Negative feedback to one gene. J Theor Biol 20:202‒208PubMed Griffith JS (1968) Mathematics of cellular control processes. I. Negative feedback to one gene. J Theor Biol 20:202‒208PubMed
[27]
go back to reference Griffith JS (1968) Mathematics of cellular control processes. II. Positive feedback to one gene. J Theor Biol 20:209‒216PubMed Griffith JS (1968) Mathematics of cellular control processes. II. Positive feedback to one gene. J Theor Biol 20:209‒216PubMed
[28]
go back to reference Hatzimanikatis V, Bailey JE (1997) Effects of spatiotemporal variations on metabolic control: Approximate analysis using (log) linear kinetic models. Biotechnol Bioeng 1:75–87 Hatzimanikatis V, Bailey JE (1997) Effects of spatiotemporal variations on metabolic control: Approximate analysis using (log) linear kinetic models. Biotechnol Bioeng 1:75–87
[29]
go back to reference Hatzimanikatis V, Emmerling M, Sauer U, Bailey JE (1998) Application of mathematical tools for metabolic design of microbial ethanol production. Biotechnol Bioeng 58:154–161PubMed Hatzimanikatis V, Emmerling M, Sauer U, Bailey JE (1998) Application of mathematical tools for metabolic design of microbial ethanol production. Biotechnol Bioeng 58:154–161PubMed
[30]
go back to reference Hatzimanikatis V, Floudas CA, Bailey JE (1996) Analysis and design of metabolic reaction networks via mixed-integer linear optimization. AICHE J 42:1277–1292 Hatzimanikatis V, Floudas CA, Bailey JE (1996) Analysis and design of metabolic reaction networks via mixed-integer linear optimization. AICHE J 42:1277–1292
[31]
go back to reference Heinrich R, Rapoport TA (1974) A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur J Biochem 42:89‒95PubMed Heinrich R, Rapoport TA (1974) A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur J Biochem 42:89‒95PubMed
[32]
go back to reference Henry CS, Broadbelt LJ, Hatzimanikatis V (2007) Thermodynamics-based metabolic flux analysis. Biophys J 92(5):1792‒1805PubMed Henry CS, Broadbelt LJ, Hatzimanikatis V (2007) Thermodynamics-based metabolic flux analysis. Biophys J 92(5):1792‒1805PubMed
[33]
go back to reference Henson MA (2003) Dynamic modeling of microbial populations. Curr Opin Biotechnol 14:460–467PubMed Henson MA (2003) Dynamic modeling of microbial populations. Curr Opin Biotechnol 14:460–467PubMed
[34]
go back to reference Hess B, Boiteux A (1968) Mechanism of glycolytic oscillation in yeast. I. Aerobic and anaerobic growth conditions for obtaining glycolytic oscillation. Hoppe-Seylers Z physiol Chem 349(11):1567‒1574PubMed Hess B, Boiteux A (1968) Mechanism of glycolytic oscillation in yeast. I. Aerobic and anaerobic growth conditions for obtaining glycolytic oscillation. Hoppe-Seylers Z physiol Chem 349(11):1567‒1574PubMed
[35]
go back to reference Hewitt C, Nebe-von Caron G, Axelsson B, McFarlane CM, Nienow AW (2003) Studies related to the scale-up of high-cell-density E.coli fed-batch fermentations using multiparameter flow cytometry: Effect of a changing microenvironment with respect to glucose and dissolved oxygen concentration. Biotechnol Bioeng 70(4):381–390 Hewitt C, Nebe-von Caron G, Axelsson B, McFarlane CM, Nienow AW (2003) Studies related to the scale-up of high-cell-density E.coli fed-batch fermentations using multiparameter flow cytometry: Effect of a changing microenvironment with respect to glucose and dissolved oxygen concentration. Biotechnol Bioeng 70(4):381–390
[36]
go back to reference Ibarra RU, Edwards JS, Palsson BO (2002) Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420: 186‒189PubMed Ibarra RU, Edwards JS, Palsson BO (2002) Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420: 186‒189PubMed
[37]
go back to reference Jandt U, Platas Barradas O, Pörtner R, Zeng AP (2014) Mammalian cell culture synchronization under physiological conditions and population dynamic simulation. Appl Microbiol Biotechnol 98:4311–4319PubMed Jandt U, Platas Barradas O, Pörtner R, Zeng AP (2014) Mammalian cell culture synchronization under physiological conditions and population dynamic simulation. Appl Microbiol Biotechnol 98:4311–4319PubMed
[38]
go back to reference Junker BH (2004) Scale-up Methodologies for Escherichia coli and Yeast Fermentation Process. J BiosciBioeng 97(6):347–364 Junker BH (2004) Scale-up Methodologies for Escherichia coli and Yeast Fermentation Process. J BiosciBioeng 97(6):347–364
[39]
go back to reference Kacser H, Burns, JA (1973) The control of flux. Symp Soc Exp Biol 27:37‒63 Kacser H, Burns, JA (1973) The control of flux. Symp Soc Exp Biol 27:37‒63
[40]
go back to reference Käß F, Hariskos I, Michel A, Brandt H-J, Spann R, Junne S, Wiechert W, Neubauer P, Oldiges M (2013) Assessment of robustness against dissolved oxygen/substrate oscillations for C. glutamicum DM1933 in two-compartment bioreactor. Bioprocess Biosystems Eng 37(6):1–12. https://doi.org/10.1007/s00449-013-1086-0 PubMed Käß F, Hariskos I, Michel A, Brandt H-J, Spann R, Junne S, Wiechert W, Neubauer P, Oldiges M (2013) Assessment of robustness against dissolved oxygen/substrate oscillations for C. glutamicum DM1933 in two-compartment bioreactor. Bioprocess Biosystems Eng 37(6):1–12. https://​doi.​org/​10.​1007/​s00449-013-1086-0 PubMed
[42]
go back to reference Klipp E, Herwig R, Kowald A, Wierling C, Lehrach H (2005) Systems Biology in Practice. Wiley-VCH, Weinheim Klipp E, Herwig R, Kowald A, Wierling C, Lehrach H (2005) Systems Biology in Practice. Wiley-VCH, Weinheim
[44]
go back to reference Lapin A, Müller D, Reuss M (2004) Dynamic behavior of microbial populations in stirred bioreactors simulated with euler-lagrange methods: Travelling along the Lifeline of Single Cells. Ind Eng Chem Res 43:4647–4657 Lapin A, Müller D, Reuss M (2004) Dynamic behavior of microbial populations in stirred bioreactors simulated with euler-lagrange methods: Travelling along the Lifeline of Single Cells. Ind Eng Chem Res 43:4647–4657
[45]
go back to reference Lapin A, Schmid J, Reuss M (2006) Modeling the dynamics of E. coli populations in the three-dimensional turbulent field of a stirred-tank bioreactor – A structured – segregated approach. Chem Eng Sci 61:4783–4797 Lapin A, Schmid J, Reuss M (2006) Modeling the dynamics of E. coli populations in the three-dimensional turbulent field of a stirred-tank bioreactor – A structured – segregated approach. Chem Eng Sci 61:4783–4797
[46]
go back to reference Lara AR, Galindo E, Ramirez OT, Palomares LA (2006) Living with heterogeneities in bioreactors. Mol Biotechnol 34:355‒381PubMed Lara AR, Galindo E, Ramirez OT, Palomares LA (2006) Living with heterogeneities in bioreactors. Mol Biotechnol 34:355‒381PubMed
[47]
go back to reference Lee SY (2009) Systems Biology and Biotechnology of Escherichia coli. Springer Science+Business Media B.V., Berlin Lee SY (2009) Systems Biology and Biotechnology of Escherichia coli. Springer Science+Business Media B.V., Berlin
[48]
go back to reference Lee SY, Mattanovich D, Villaverde A (2013) Systems metabolic engineering, industrial biotechnology and microbial cell factories. Microb Cell Fact 11:156. Lee SY, Mattanovich D, Villaverde A (2013) Systems metabolic engineering, industrial biotechnology and microbial cell factories. Microb Cell Fact 11:156.
[49]
go back to reference Leighty RW Antoniewicz MR (2011) Dynamic metabolic flux analysis (DMFA): a framework for determining fluxes at metabolic non-steady-state. Metab Eng 13(6):745–55PubMed Leighty RW Antoniewicz MR (2011) Dynamic metabolic flux analysis (DMFA): a framework for determining fluxes at metabolic non-steady-state. Metab Eng 13(6):745–55PubMed
[50]
go back to reference Lencastre Fernandes R, Nierychlo M, Pedersen AE, Puentes Tellez PE, Dutta A, Calquist M, Bolic A, Schäpper D, Brunetti AC, Helmark S, Heins A-L, Jensen AD, Nopens I, Rottwit K, Szita N, van Alsas JD, Nielsen PH, Martinussen J, Sorensen SJ, Lantz AE, Gernaey KV (2011) Experimental methods and modeling techniques for description of cell population heterogeneity. Biotechnol Adv 29:575–599PubMed Lencastre Fernandes R, Nierychlo M, Pedersen AE, Puentes Tellez PE, Dutta A, Calquist M, Bolic A, Schäpper D, Brunetti AC, Helmark S, Heins A-L, Jensen AD, Nopens I, Rottwit K, Szita N, van Alsas JD, Nielsen PH, Martinussen J, Sorensen SJ, Lantz AE, Gernaey KV (2011) Experimental methods and modeling techniques for description of cell population heterogeneity. Biotechnol Adv 29:575–599PubMed
[51]
go back to reference Liebermeister W, Klipp E (2006) Bringing metabolic networks to life: convenience rate law and thermodynamic constraints. Theor Biol Med Model 3:41PubMedPubMedCentral Liebermeister W, Klipp E (2006) Bringing metabolic networks to life: convenience rate law and thermodynamic constraints. Theor Biol Med Model 3:41PubMedPubMedCentral
[52]
go back to reference Lieder S, Nikel PI, de Lorenzo V, Takors R (2015) Genome reduction boosts heterologous gene expression in Pseudomonas putida. Microb Cell Fac 14:23. Lieder S, Nikel PI, de Lorenzo V, Takors R (2015) Genome reduction boosts heterologous gene expression in Pseudomonas putida. Microb Cell Fac 14:23.
[54]
go back to reference Magnus JB, Hollwedel D Oldiges M, Takors R (2006) Monitoring and modelling of the reaction dynamics in the valine/leucine synthesis pathway in Corynebacterium glutamicum. Biotechnol Prog 22(4):1071‒1083PubMed Magnus JB, Hollwedel D Oldiges M, Takors R (2006) Monitoring and modelling of the reaction dynamics in the valine/leucine synthesis pathway in Corynebacterium glutamicum. Biotechnol Prog 22(4):1071‒1083PubMed
[55]
go back to reference Makinoshima H, Nishimura A, Ishihama A (2002) Fractionation of Escherichia coli cell populations at different stages during growth transition to stationary phase. Mol Micro 43:269–279 Makinoshima H, Nishimura A, Ishihama A (2002) Fractionation of Escherichia coli cell populations at different stages during growth transition to stationary phase. Mol Micro 43:269–279
[56]
go back to reference Malloy CR, Sherry AD, Jeffrey FMH (1988) Evaluation of carbon flux and substrate selection through alternate pathways involving the citric asset cycle of the heart by 13C MMR spectroscopy. J Biol Chem 263:6964‒6971PubMed Malloy CR, Sherry AD, Jeffrey FMH (1988) Evaluation of carbon flux and substrate selection through alternate pathways involving the citric asset cycle of the heart by 13C MMR spectroscopy. J Biol Chem 263:6964‒6971PubMed
[57]
go back to reference Marx A, de Graaf AA, Wiechert W, Eggeling L, Sahm H (1996) Determination of the fluxes in central metabolism of Corynebacterium by NMR spectroscopy combined with metabolite balancing. Biotechnol Bioeng 49:111‒129PubMed Marx A, de Graaf AA, Wiechert W, Eggeling L, Sahm H (1996) Determination of the fluxes in central metabolism of Corynebacterium by NMR spectroscopy combined with metabolite balancing. Biotechnol Bioeng 49:111‒129PubMed
[58]
go back to reference Müller S, Harms H, Bley T (2010) Origin and analysis of microbial population heterogeneity in bioprocesses. Curr Opin Biotechnol 21(1):100–113PubMed Müller S, Harms H, Bley T (2010) Origin and analysis of microbial population heterogeneity in bioprocesses. Curr Opin Biotechnol 21(1):100–113PubMed
[59]
go back to reference Mustafi N, Gruenberger A, Mahr R, Helfrich S, Nöh K, Blombach B, Kohlheyer D, Frunzke J (2014) Application of a genetically encoded biosensor for live cell imaging of L-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains. PlosOne 9(1):e85731PubMedPubMedCentral Mustafi N, Gruenberger A, Mahr R, Helfrich S, Nöh K, Blombach B, Kohlheyer D, Frunzke J (2014) Application of a genetically encoded biosensor for live cell imaging of L-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains. PlosOne 9(1):e85731PubMedPubMedCentral
[60]
go back to reference Neubauer P, Junne S (2010) Scale-down simulators for metabolic analysis of large-scale bioprocesses. Cur Opin Biotechnol 21:114–121 Neubauer P, Junne S (2010) Scale-down simulators for metabolic analysis of large-scale bioprocesses. Cur Opin Biotechnol 21:114–121
[61]
go back to reference Neubauer P, Cruz N, Glauche F, Junne S, Knepper A, Raven M (2013) Consistent development of bioprocesses from microliter cultures to the industrial scale. Eng Life Sci 13:224–238 Neubauer P, Cruz N, Glauche F, Junne S, Knepper A, Raven M (2013) Consistent development of bioprocesses from microliter cultures to the industrial scale. Eng Life Sci 13:224–238
[62]
go back to reference Nielsen J (1997) Metabolic control analysis of biochemical pathways based on a thermokinetic description of reaction rates. Biochem J 321:133‒138PubMedPubMedCentral Nielsen J (1997) Metabolic control analysis of biochemical pathways based on a thermokinetic description of reaction rates. Biochem J 321:133‒138PubMedPubMedCentral
[63]
go back to reference Nielsen J, Villadsen J, Liden G (2003) Bioreaction Engineering Principles. Kluwer Academic/Plenum Publishers, New York Nielsen J, Villadsen J, Liden G (2003) Bioreaction Engineering Principles. Kluwer Academic/Plenum Publishers, New York
[64]
go back to reference Nöh K, Grönke K, Luo B, Takors R, Oldiges M, Wiechert W (2007) Metabolic flux analysis at ultra short time scale: isotopically non-stationary 13C labeling experiments. J Biotechnol 129(2):249‒267PubMed Nöh K, Grönke K, Luo B, Takors R, Oldiges M, Wiechert W (2007) Metabolic flux analysis at ultra short time scale: isotopically non-stationary 13C labeling experiments. J Biotechnol 129(2):249‒267PubMed
[65]
go back to reference Onsager L (1931) Reciprocal relations in irreversible processes I. Physical Rev 37:405‒426 Onsager L (1931) Reciprocal relations in irreversible processes I. Physical Rev 37:405‒426
[66]
go back to reference Palsson BO (2006) Systems Biology – Properties of reconstructed networks. University Press, Cambridge Palsson BO (2006) Systems Biology – Properties of reconstructed networks. University Press, Cambridge
[67]
go back to reference Patil KR, Rocha I, Förster J, Nielsen J (2005) Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinformatics 6:308PubMedPubMedCentral Patil KR, Rocha I, Förster J, Nielsen J (2005) Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinformatics 6:308PubMedPubMedCentral
[68]
go back to reference Petersen S, de Graaf AA, Eggeling L, Möllmay M, Wiechert W, Sahm H (2000) In vivo quantification of parallel and bidirectional fluxes in the anaplerosis of Corynebacterium glutamicum. J Biol Chem 275: 35932‒35941PubMed Petersen S, de Graaf AA, Eggeling L, Möllmay M, Wiechert W, Sahm H (2000) In vivo quantification of parallel and bidirectional fluxes in the anaplerosis of Corynebacterium glutamicum. J Biol Chem 275: 35932‒35941PubMed
[69]
go back to reference Pharkya P, Burgard AP, Maranas CD (2004) OptStrain: A computational framework for redesign of microbial production systems. Genome Res 14:2367–2376PubMedPubMedCentral Pharkya P, Burgard AP, Maranas CD (2004) OptStrain: A computational framework for redesign of microbial production systems. Genome Res 14:2367–2376PubMedPubMedCentral
[70]
go back to reference Pharkya P, Maranas CD (2006) An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metab Eng 8:1–13PubMed Pharkya P, Maranas CD (2006) An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metab Eng 8:1–13PubMed
[71]
go back to reference Reder C (1988) Metabolic control theory: a structural approach. J Theor Biol 135:175‒201PubMed Reder C (1988) Metabolic control theory: a structural approach. J Theor Biol 135:175‒201PubMed
[72]
go back to reference Reuss M (2007) Marrying diverse partners – a mixed complementary approach for integrating bottom-up and top-down methods in Systems Biology. In: Systems biology: A grand challenge for europe, European Science Foundation. www.esf.org Reuss M (2007) Marrying diverse partners – a mixed complementary approach for integrating bottom-up and top-down methods in Systems Biology. In: Systems biology: A grand challenge for europe, European Science Foundation. www.​esf.​org
[73]
[74]
go back to reference Savageau MA (1976) Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology. Addison-Wesley, Reading, MA Savageau MA (1976) Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology. Addison-Wesley, Reading, MA
[77]
go back to reference Schaub J, Mauch K, Reuss M (2008) Metabolic flux analysis in Escherichia coli by integrating isotopic dynamic and isotopic stationary C-13 labeling data. Biotechnol Bioeng 99:1170‒1185PubMed Schaub J, Mauch K, Reuss M (2008) Metabolic flux analysis in Escherichia coli by integrating isotopic dynamic and isotopic stationary C-13 labeling data. Biotechnol Bioeng 99:1170‒1185PubMed
[78]
go back to reference Schmalzriedt S, Jenne M, Mauch K, Reuss M (2003) Integration of Physiology and Fluid Dynamics. Adv Biochem Eng 80:19–68 Schmalzriedt S, Jenne M, Mauch K, Reuss M (2003) Integration of Physiology and Fluid Dynamics. Adv Biochem Eng 80:19–68
[79]
go back to reference Schmidt K, Carlsen M, Nielsen J, Villadsen J (1997) Modeling isotopomer distribution in biochemical networks using isotopomer maping matrices. Biotechnol Bioeng 55:831‒840PubMed Schmidt K, Carlsen M, Nielsen J, Villadsen J (1997) Modeling isotopomer distribution in biochemical networks using isotopomer maping matrices. Biotechnol Bioeng 55:831‒840PubMed
[80]
go back to reference Schmidt K, Nielsen J, Villadsen J (1999) Quantitative analysis of metabolic fluxes in E. coli using 2-dimensional NMR spectroscopy and complete isotopomer models. J Biotechnol 71:175‒189PubMed Schmidt K, Nielsen J, Villadsen J (1999) Quantitative analysis of metabolic fluxes in E. coli using 2-dimensional NMR spectroscopy and complete isotopomer models. J Biotechnol 71:175‒189PubMed
[82]
go back to reference Schuster S, Fell D, Dandekar T (1999) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nature Biotechnol 18:326‒332 Schuster S, Fell D, Dandekar T (1999) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nature Biotechnol 18:326‒332
[83]
go back to reference Schweder T, Krüger E, Xu B, Jürgen B, Blomsten G, Enfor S-O, Hecker M (1999) Monitoring of genes that respond to process-related stress in large-scale bioprocesses. Biotechnol Bioeng 65:151‒159PubMed Schweder T, Krüger E, Xu B, Jürgen B, Blomsten G, Enfor S-O, Hecker M (1999) Monitoring of genes that respond to process-related stress in large-scale bioprocesses. Biotechnol Bioeng 65:151‒159PubMed
[84]
go back to reference Segre D, Vitkup D, Church GM (2002) Analysis of optimality in natural perturbed metabolic networks. Proc Natl Acad Sci USA 99:15112‒15117PubMed Segre D, Vitkup D, Church GM (2002) Analysis of optimality in natural perturbed metabolic networks. Proc Natl Acad Sci USA 99:15112‒15117PubMed
[85]
go back to reference Shimizu K (2009) Towards systematic metabolic engineering based on the analysis of metabolic regulation by integration of different levels of information. Biochem Eng J 46:235‒251 Shimizu K (2009) Towards systematic metabolic engineering based on the analysis of metabolic regulation by integration of different levels of information. Biochem Eng J 46:235‒251
[86]
go back to reference Shlomi T, Berkman O, Ruppin E (2005) Regulatory on/off minimization of metabolic flux changes after genetic perturbations. PNAS 102(21):7695–7700PubMed Shlomi T, Berkman O, Ruppin E (2005) Regulatory on/off minimization of metabolic flux changes after genetic perturbations. PNAS 102(21):7695–7700PubMed
[87]
go back to reference Sonntag K, Eggeling L, de Graaf AA, Sahm H (1993) Flux partitioning in the split pathway of lysine synthesis in Corynebacterium glutamicum – quantification by 13H- and 1H-NMR spectroscopy. Eur J Biochem 213:1325‒1331PubMed Sonntag K, Eggeling L, de Graaf AA, Sahm H (1993) Flux partitioning in the split pathway of lysine synthesis in Corynebacterium glutamicum – quantification by 13H- and 1H-NMR spectroscopy. Eur J Biochem 213:1325‒1331PubMed
[88]
go back to reference Stephanopoulos GN, Aristidou AA, Nielsen J (1998) Metabolic Engineering. Academic Press, San Diego Stephanopoulos GN, Aristidou AA, Nielsen J (1998) Metabolic Engineering. Academic Press, San Diego
[89]
go back to reference Szyperski T (1995) Biosynthetically directed fractional 13 C labelling of proteinogenic amino acids – an efficient analytical tool to investigate intermediary metabolism. Eur J Biochem 232:433‒448PubMed Szyperski T (1995) Biosynthetically directed fractional 13 C labelling of proteinogenic amino acids – an efficient analytical tool to investigate intermediary metabolism. Eur J Biochem 232:433‒448PubMed
[90]
go back to reference Szyperski T (1998) 13C-NMR, MS and metabolic flux balancing in biotechnological research. Q Rev Biophys 31:41‒106PubMed Szyperski T (1998) 13C-NMR, MS and metabolic flux balancing in biotechnological research. Q Rev Biophys 31:41‒106PubMed
[91]
go back to reference Takors R (2012) Scale-up of microbial processes: Impacts, tools and open questions. J Biotechnol 160:3–9PubMed Takors R (2012) Scale-up of microbial processes: Impacts, tools and open questions. J Biotechnol 160:3–9PubMed
[92]
go back to reference Tang YJ, Martin HG, Myers S, Rodriguez S, Baidoo EE, Keasling JD (2009) Advances in analysis of microbial metabolic fluxes cia 13c isotopic labeling. Mass Spectrom Rev 28:362‒375PubMed Tang YJ, Martin HG, Myers S, Rodriguez S, Baidoo EE, Keasling JD (2009) Advances in analysis of microbial metabolic fluxes cia 13c isotopic labeling. Mass Spectrom Rev 28:362‒375PubMed
[93]
go back to reference Umbarger HE, Brown B (1957) Threonine deamination in Escherichia coli. II. Evidence for two L-threonine deaminases. J Bacteriol 73:105‒112PubMedPubMedCentral Umbarger HE, Brown B (1957) Threonine deamination in Escherichia coli. II. Evidence for two L-threonine deaminases. J Bacteriol 73:105‒112PubMedPubMedCentral
[94]
go back to reference Vallino JJ, Stephanopoulos G (1993) Metabolic flux distribution in Corynbacterium glutamicum during growth and lysine overproduction. Biotechnol Bioeng 41:633‒646PubMed Vallino JJ, Stephanopoulos G (1993) Metabolic flux distribution in Corynbacterium glutamicum during growth and lysine overproduction. Biotechnol Bioeng 41:633‒646PubMed
[95]
go back to reference Van Berlo RJ, de Ridder D, Daran JM, Daran-Lapujade PA, Teusink B, Reinders MJ (2011) Predicting metabolic fluxes using gene expression differences as constraints. IEEE/ACM Transactions on Computational Biology and Bioinformatics 8(1):206–216PubMed Van Berlo RJ, de Ridder D, Daran JM, Daran-Lapujade PA, Teusink B, Reinders MJ (2011) Predicting metabolic fluxes using gene expression differences as constraints. IEEE/ACM Transactions on Computational Biology and Bioinformatics 8(1):206–216PubMed
[96]
go back to reference van der Meer R, Westerhoff HV, van Dam K (1980) Linear relation between rate and thermodynamic force in enzyme-catalyzed reactions. Biochim Biophys Acta 591:488‒493PubMed van der Meer R, Westerhoff HV, van Dam K (1980) Linear relation between rate and thermodynamic force in enzyme-catalyzed reactions. Biochim Biophys Acta 591:488‒493PubMed
[97]
go back to reference Varma A, Boesch BW, Palsson BO (1993) Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Appl Environ Microbiol 59:2465‒2473PubMedPubMedCentral Varma A, Boesch BW, Palsson BO (1993) Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Appl Environ Microbiol 59:2465‒2473PubMedPubMedCentral
[98]
go back to reference Varma A. Palsson BO (1994) Metabolic flux balancing: basic concepts, scientific and practical use. Bio/Technology 12:994‒998 Varma A. Palsson BO (1994) Metabolic flux balancing: basic concepts, scientific and practical use. Bio/Technology 12:994‒998
[99]
go back to reference Vaseghi S, Baumeister A, Rizzi M, Reuss M (1999) In vivo dynamics of the pentose phosphate pathway in Saccharomyces cerevisiae. Metab Eng 1:128‒140PubMed Vaseghi S, Baumeister A, Rizzi M, Reuss M (1999) In vivo dynamics of the pentose phosphate pathway in Saccharomyces cerevisiae. Metab Eng 1:128‒140PubMed
[100]
go back to reference Visser D, Heijnen JJ (2002) The mathematics of metabolic control analysis revisited. Metab Eng 4:114‒123PubMed Visser D, Heijnen JJ (2002) The mathematics of metabolic control analysis revisited. Metab Eng 4:114‒123PubMed
[101]
go back to reference Visser D, Heijnen JJ (2003) Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics. Metab Eng 5:164‒176PubMed Visser D, Heijnen JJ (2003) Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics. Metab Eng 5:164‒176PubMed
[102]
go back to reference Vrabel P, van der Lans RGJM, van der Schot FN, Luyben KChAM, Xu B, Enfor S-O (2001) CMA: integration o fluid dynamics and microbial kinetics in modeling of large-scale fermentations, Chem Eng J 84:463–474 Vrabel P, van der Lans RGJM, van der Schot FN, Luyben KChAM, Xu B, Enfor S-O (2001) CMA: integration o fluid dynamics and microbial kinetics in modeling of large-scale fermentations, Chem Eng J 84:463–474
[103]
go back to reference Westerhoff HV, Palsson BO (2004) The evolution of molecular biology into systems biology. Nature Biotechnol 22(10):1249‒1252 Westerhoff HV, Palsson BO (2004) The evolution of molecular biology into systems biology. Nature Biotechnol 22(10):1249‒1252
[104]
go back to reference Westerhoff HV, van Dam K (1987) Thermodynamics and control of biological free-energy transduction. Elsevier, Amsterdam Westerhoff HV, van Dam K (1987) Thermodynamics and control of biological free-energy transduction. Elsevier, Amsterdam
[105]
go back to reference Wiechert W (2001) 13C Metabolic Flux Analysis. Metab Eng 3:195–206PubMed Wiechert W (2001) 13C Metabolic Flux Analysis. Metab Eng 3:195–206PubMed
[106]
go back to reference Wiechert W. (2002) Modeling and simulation: tools for metabolic engineering. J Biotechnol 94:37‒63PubMed Wiechert W. (2002) Modeling and simulation: tools for metabolic engineering. J Biotechnol 94:37‒63PubMed
[107]
go back to reference Wiechert W, Möllney M, Isermann N, Wurzel M, de Graaf AA (1999) Bidirectional reaction steps in metabolic networks part III: Explicit solution and analysis of isotopomer labelling systems. Biotechnol Bioeng 66:69‒85PubMed Wiechert W, Möllney M, Isermann N, Wurzel M, de Graaf AA (1999) Bidirectional reaction steps in metabolic networks part III: Explicit solution and analysis of isotopomer labelling systems. Biotechnol Bioeng 66:69‒85PubMed
[108]
go back to reference Wittmann C, Heinzle E. (2001) Application of MALDI-TOF MS to lysine-producing Corynebacterium clutamicum ‒ a novel approach for metabolic flux analysis. Eur J Biochem 268:2441‒2455PubMed Wittmann C, Heinzle E. (2001) Application of MALDI-TOF MS to lysine-producing Corynebacterium clutamicum ‒ a novel approach for metabolic flux analysis. Eur J Biochem 268:2441‒2455PubMed
[109]
go back to reference Woolston BM, Edgar S, Stephanolpoulos G (2013) Metabolic Engineering: Past and Future. Ann Rev Chem Biomol Eng 4:259–288 Woolston BM, Edgar S, Stephanolpoulos G (2013) Metabolic Engineering: Past and Future. Ann Rev Chem Biomol Eng 4:259–288
[110]
go back to reference Wright BE, Kelly PJ (1981) Kinetic models of metabolism in intact cells, tissues and organisms. Curr Top Cell Regul 19:103‒158PubMed Wright BE, Kelly PJ (1981) Kinetic models of metabolism in intact cells, tissues and organisms. Curr Top Cell Regul 19:103‒158PubMed
[111]
go back to reference Wu L, Wang W, van Winden WA, van Gulik WM, Heijnen JJ (2004) A new framework for the estimation of control parameters in metabolic pathways using lin-log kinetics. Eur J Biochem 271:3348‒3359PubMed Wu L, Wang W, van Winden WA, van Gulik WM, Heijnen JJ (2004) A new framework for the estimation of control parameters in metabolic pathways using lin-log kinetics. Eur J Biochem 271:3348‒3359PubMed
[112]
go back to reference Zupke G, Stephanopoulos G (1994) Modeling of isotope distributions and intracellular fluxes in metabolic networks using atom mapping matrices. Biotechnol Prog 10:489–498 Zupke G, Stephanopoulos G (1994) Modeling of isotope distributions and intracellular fluxes in metabolic networks using atom mapping matrices. Biotechnol Prog 10:489–498
Metadata
Title
Systembiologie in der Bioverfahrenstechnik
Author
Ralf Takors
Copyright Year
2018
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-54042-8_13

Premium Partner