Skip to main content
Top

2018 | OriginalPaper | Chapter

12. Targeting Protein-Protein Interactions in Small GTPases

Authors : Jiahui Liu, Ning Kang, Yaxue Zhao, Mingyan Zhu

Published in: Targeting Protein-Protein Interactions by Small Molecules

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Small GTPase is GDP-/GTP-binding proteins that serve as molecular switches to control a variety of essential processes inside cells. Misfunction of small GTPase is frequently discovered in diseases such as cancer, neurodegenerative disease, and other diseases. Controlling the activity of normal and mutated small GTPase are of great meaning in drug discovery. As small GTPases recruit large network of PPIs for signal transduction, rich PPIs are contained in small GTPase signaling pathways, such as small GTPase-GEF, small GTPase-effector interactions, and other PPIs. Targeting PPIs in small GTPase will serve as an effective way to modulate small GTPase activities and signal transduction. In this chapter, we will discuss a variety of approaches and novel strategies to target PPIs in small GTPases and recent advances with selected examples from last five years.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Jones S, Thornton JM (1996) Principles of protein-protein interactions. Proc Natl Acad Sci 93(1):13–20CrossRefPubMed Jones S, Thornton JM (1996) Principles of protein-protein interactions. Proc Natl Acad Sci 93(1):13–20CrossRefPubMed
2.
go back to reference Smith MC, Gestwicki JE (2012) Features of protein-protein interactions that translate into potent inhibitors: topology, surface area and affinity. Expert Rev Mol Med 14:e16CrossRefPubMedPubMedCentral Smith MC, Gestwicki JE (2012) Features of protein-protein interactions that translate into potent inhibitors: topology, surface area and affinity. Expert Rev Mol Med 14:e16CrossRefPubMedPubMedCentral
3.
go back to reference Arkin MR, Tang Y, Wells JA (2014) Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem Biol 21(9):1102–1114CrossRefPubMedPubMedCentral Arkin MR, Tang Y, Wells JA (2014) Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem Biol 21(9):1102–1114CrossRefPubMedPubMedCentral
4.
go back to reference (a) Bogan AA, Thorn KS (1998) Anatomy of hot spots in protein interfaces. J Mol Biol 280(1):1–9; (b) Guo W, Wisniewski JA, Ji H (2014) Hot spot-based design of small-molecule inhibitors for protein-protein interactions. Bioorg Med Chem Lett 24(11):2546–2554 (a) Bogan AA, Thorn KS (1998) Anatomy of hot spots in protein interfaces. J Mol Biol 280(1):1–9; (b) Guo W, Wisniewski JA, Ji H (2014) Hot spot-based design of small-molecule inhibitors for protein-protein interactions. Bioorg Med Chem Lett 24(11):2546–2554
6.
go back to reference Clackson T, Wells JA (1995) A hot spot of binding energy in a hormone-receptor interface. Science 267(5196):383–386CrossRefPubMed Clackson T, Wells JA (1995) A hot spot of binding energy in a hormone-receptor interface. Science 267(5196):383–386CrossRefPubMed
7.
go back to reference (a) Gohlke H, Kiel C, Case DA (2003) Insights into protein–protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J Mol Biol 330(4):891–913; (b) Zhao Y, Li W, Zeng J, Liu G, Tang Y (2008) Insights into the interactions between HIV‐1 integrase and human LEDGF/p 75 by molecular dynamics simulation and free energy calculation. Proteins: Struct Funct Bioinform 72(2):635–645 (a) Gohlke H, Kiel C, Case DA (2003) Insights into protein–protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J Mol Biol 330(4):891–913; (b) Zhao Y, Li W, Zeng J, Liu G, Tang Y (2008) Insights into the interactions between HIV‐1 integrase and human LEDGF/p 75 by molecular dynamics simulation and free energy calculation. Proteins: Struct Funct Bioinform 72(2):635–645
8.
go back to reference Cesa LC, Mapp AK, Gestwicki JE (2015) Direct and propagated effects of small molecules on protein–protein interaction networks. Front Bioeng Biotechnol 3 Cesa LC, Mapp AK, Gestwicki JE (2015) Direct and propagated effects of small molecules on protein–protein interaction networks. Front Bioeng Biotechnol 3
9.
go back to reference Cromm PM, Spiegel J, Grossmann TN, Waldmann H (2015) Direct modulation of small GTPase activity and function. Angew Chem Int Ed 54(46):13516–13537CrossRef Cromm PM, Spiegel J, Grossmann TN, Waldmann H (2015) Direct modulation of small GTPase activity and function. Angew Chem Int Ed 54(46):13516–13537CrossRef
10.
go back to reference Cherfils J, Chardin P (1999) GEFs: structural basis for their activation of small GTP-binding proteins. Trends Biochem Sci 24(8):306–311CrossRefPubMed Cherfils J, Chardin P (1999) GEFs: structural basis for their activation of small GTP-binding proteins. Trends Biochem Sci 24(8):306–311CrossRefPubMed
11.
go back to reference Tcherkezian J, Lamarche-Vane N (2007) Current knowledge of the large RhoGAP family of proteins. Biol Cell 99(2):67–86CrossRefPubMed Tcherkezian J, Lamarche-Vane N (2007) Current knowledge of the large RhoGAP family of proteins. Biol Cell 99(2):67–86CrossRefPubMed
12.
go back to reference DerMardirossian C, Bokoch GM (2005) GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol 15(7):356–363CrossRefPubMed DerMardirossian C, Bokoch GM (2005) GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol 15(7):356–363CrossRefPubMed
14.
16.
go back to reference Khan AR, Ménétrey J (2013) Structural biology of Arf and Rab GTPases’ effector recruitment and specificity. Structure 21(8):1284–1297CrossRefPubMed Khan AR, Ménétrey J (2013) Structural biology of Arf and Rab GTPases’ effector recruitment and specificity. Structure 21(8):1284–1297CrossRefPubMed
17.
go back to reference Avis JM, Clarke PR (1996) Ran, a GTPase involved in nuclear processes: its regulators and effectors. J Cell Sci 109(10):2423–2427PubMed Avis JM, Clarke PR (1996) Ran, a GTPase involved in nuclear processes: its regulators and effectors. J Cell Sci 109(10):2423–2427PubMed
18.
go back to reference Spoerner M, Hozsa C, Poetzl JA et al (2010) Conformational states of human rat sarcoma (Ras) protein complexed with its natural ligand GTP and their role for effector interaction and GTP hydrolysis. J Biol Chem 285(51):39768–39778CrossRefPubMedPubMedCentral Spoerner M, Hozsa C, Poetzl JA et al (2010) Conformational states of human rat sarcoma (Ras) protein complexed with its natural ligand GTP and their role for effector interaction and GTP hydrolysis. J Biol Chem 285(51):39768–39778CrossRefPubMedPubMedCentral
19.
go back to reference Rosnizeck IC, Spoerner M, Harsch T et al (2012) Metal-bis(2-picolyl)amine complexes as state 1(T) inhibitors of activated Ras protein. Angew Chem Int Ed 51(42):10647–10651CrossRef Rosnizeck IC, Spoerner M, Harsch T et al (2012) Metal-bis(2-picolyl)amine complexes as state 1(T) inhibitors of activated Ras protein. Angew Chem Int Ed 51(42):10647–10651CrossRef
20.
go back to reference Friesland A, Zhao Y, Chen YH, Wang L, Zhou H, Lu Q (2013) Small molecule targeting Cdc42-intersectin interaction disrupts Golgi organization and suppresses cell motility. Proc Natl Acad Sci 110(4):1261–1266CrossRefPubMed Friesland A, Zhao Y, Chen YH, Wang L, Zhou H, Lu Q (2013) Small molecule targeting Cdc42-intersectin interaction disrupts Golgi organization and suppresses cell motility. Proc Natl Acad Sci 110(4):1261–1266CrossRefPubMed
21.
go back to reference Dell’Angelica EC, Puertollano R, Mullins C, Hartnell LM et al (2000) GGas a family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. J Cell Biol 149(1):81–94CrossRefPubMedPubMedCentral Dell’Angelica EC, Puertollano R, Mullins C, Hartnell LM et al (2000) GGas a family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. J Cell Biol 149(1):81–94CrossRefPubMedPubMedCentral
22.
go back to reference Ohashi Y, Iijima H, Yamaotsu N, Yamazaki K, Sato S, Okamura M, Yamori T et al (2012) AMF-26, a novel inhibitor of the Golgi system, targeting ADP-ribosylation factor 1 (Arf1) with potential for cancer therapy. J Biol Chem 287(6):3885–3897CrossRefPubMed Ohashi Y, Iijima H, Yamaotsu N, Yamazaki K, Sato S, Okamura M, Yamori T et al (2012) AMF-26, a novel inhibitor of the Golgi system, targeting ADP-ribosylation factor 1 (Arf1) with potential for cancer therapy. J Biol Chem 287(6):3885–3897CrossRefPubMed
23.
go back to reference Athuluri-Divakar SK, Vasquez-Del Carpio R, Dutta K, Baker SJ, Cosenza SC, Basu I, Gupta YK, Reddy MVR, Ueno L, Hart JR, Vogt PK, Mulholland D, Guha C, Aggarwal AK, Reddy EP (2016) A small molecule RAS-mimetic disrupts RAS association with effector proteins to block signaling. Cell 165(3):643–655CrossRefPubMedPubMedCentral Athuluri-Divakar SK, Vasquez-Del Carpio R, Dutta K, Baker SJ, Cosenza SC, Basu I, Gupta YK, Reddy MVR, Ueno L, Hart JR, Vogt PK, Mulholland D, Guha C, Aggarwal AK, Reddy EP (2016) A small molecule RAS-mimetic disrupts RAS association with effector proteins to block signaling. Cell 165(3):643–655CrossRefPubMedPubMedCentral
24.
go back to reference Thomas JC, Cooper JM, Clayton NS, Wang C, White MA, Abell C, Owen D, Mott HR (2016) Inhibition of Ral GTPases using a stapled peptide approach. J Biol Chem 291(35):18310–18325CrossRefPubMedPubMedCentral Thomas JC, Cooper JM, Clayton NS, Wang C, White MA, Abell C, Owen D, Mott HR (2016) Inhibition of Ral GTPases using a stapled peptide approach. J Biol Chem 291(35):18310–18325CrossRefPubMedPubMedCentral
25.
go back to reference Welsch ME, Kaplan A, Chambers JM, Stokes ME, Bos PH, Zask A, Zhang Y, Martin MS, Badgley MA, Huang CS, Tran TH, Akkiraju H, Brown LM, Nandakumar Renu, Cremers S, Yang WS, Tong L, Olive KP, Ferrando A, Stockwell BR (2017) Multivalent small-molecule pan-RAS inhibitors. Cell 168(5):878–889CrossRefPubMedPubMedCentral Welsch ME, Kaplan A, Chambers JM, Stokes ME, Bos PH, Zask A, Zhang Y, Martin MS, Badgley MA, Huang CS, Tran TH, Akkiraju H, Brown LM, Nandakumar Renu, Cremers S, Yang WS, Tong L, Olive KP, Ferrando A, Stockwell BR (2017) Multivalent small-molecule pan-RAS inhibitors. Cell 168(5):878–889CrossRefPubMedPubMedCentral
Metadata
Title
Targeting Protein-Protein Interactions in Small GTPases
Authors
Jiahui Liu
Ning Kang
Yaxue Zhao
Mingyan Zhu
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-0773-7_12