Skip to main content
Top

2019 | OriginalPaper | Chapter

11. Techniques for MXene Delamination into Single-Layer Flakes

Authors : Armin VahidMohammadi, Emre Kayali, Jafar Orangi, Majid Beidaghi

Published in: 2D Metal Carbides and Nitrides (MXenes)

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Similar to other two-dimensional (2D) materials, single-layer and few-layer MXene flakes have significantly different physiochemical properties compared to their multilayered counterparts. 2D MXene flakes offer high surface area to volume ratio, tunable functional surfaces, high electrical conductivity, and excellent mechanical properties. These properties have rendered different MXene compositions as promising materials for a wide variety of applications, such as electrochemical energy storage devices, electromagnetic interference shielding, water purification, and sensors, to name a few. MXenes are usually produced through a selective etching and liquid exfoliation process in which “A” layer atoms of MAX phases, a large group of ternary carbides and nitrides, is selectively removed in fluoride containing acidic solutions. This process, in most cases, results in multilayered MXene particles (stacks of many single-layer MXene flakes) that need to be delaminated to produce single/few layer flakes. Delamination of multilayered MXenes usually involves chemical intercalation of MXenes with large organic molecules to increase their interlayer spacing, and therefore, significantly reducing the attraction between individual MXene layers. For some MXenes, intercalated particles can be readily delaminated to individual flakes by rigorous shaking or weak sonication of their water dispersions. For some MXenes, such as Ti3C2Tx, the synthesis process has evolved over the past few years and through modification of the etchants, the etching and delamination steps are combined into a single process, and the exfoliated MXenes can be directly delaminated into single-layer flakes. This chapter provides a comprehensive account of various MXene exfoliation and delamination techniques reported in the literature so far. At the end of this chapter, we have briefly discussed the current challenges and potential future directions in delamination of different MXenes into their single-layer flakes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., et al. (2004). Science: electric field effect in atomically thin carbon films.pdf. Science, 306, 666–669.CrossRef Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., et al. (2004). Science: electric field effect in atomically thin carbon films.pdf. Science, 306, 666–669.CrossRef
2.
go back to reference Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6, 183–191. Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6, 183–191.
3.
go back to reference Mas-Ballesté, R., Gómez-Navarro, C., Gómez-Herrero, J., & Zamora, F. (2011). 2D materials: to graphene and beyond. Nanoscale, 3, 20–30.CrossRef Mas-Ballesté, R., Gómez-Navarro, C., Gómez-Herrero, J., & Zamora, F. (2011). 2D materials: to graphene and beyond. Nanoscale, 3, 20–30.CrossRef
4.
go back to reference Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., et al. (2005). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 102, 10451–10453.CrossRef Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., et al. (2005). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 102, 10451–10453.CrossRef
5.
go back to reference Naguib, M., Mochalin, V. N., Barsoum, M. W., & Gogotsi, Y. (2014). 25th anniversary article: MXenes: a new family of two-dimensional materials. Advanced Materials, 26, 992–1005.CrossRef Naguib, M., Mochalin, V. N., Barsoum, M. W., & Gogotsi, Y. (2014). 25th anniversary article: MXenes: a new family of two-dimensional materials. Advanced Materials, 26, 992–1005.CrossRef
6.
go back to reference Coleman, J. N., Lotya, M., O’Neil, A., Bergin, S. D., & King, P. J. (2011). Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 331, 568–571.CrossRef Coleman, J. N., Lotya, M., O’Neil, A., Bergin, S. D., & King, P. J. (2011). Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 331, 568–571.CrossRef
7.
go back to reference Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S., & Coleman, J. N. (2013). Liquid exfoliation of layered materials. Science, 340, 1226419.CrossRef Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S., & Coleman, J. N. (2013). Liquid exfoliation of layered materials. Science, 340, 1226419.CrossRef
8.
go back to reference Butler, S. Z., Hollen, S. M., Cao, L., Cui, Y., Gupta, J. A., Gutiérrez, H. R., et al. (2013). Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 7, 2898–2926.CrossRef Butler, S. Z., Hollen, S. M., Cao, L., Cui, Y., Gupta, J. A., Gutiérrez, H. R., et al. (2013). Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 7, 2898–2926.CrossRef
11.
go back to reference Lukatskaya, M. R., Mashtalir, O., Ren, C. E., Dall’Agnese, Y., Rozier, P., Taberna, P.-L., et al. (2013). Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 341, 1502–1505.CrossRef Lukatskaya, M. R., Mashtalir, O., Ren, C. E., Dall’Agnese, Y., Rozier, P., Taberna, P.-L., et al. (2013). Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 341, 1502–1505.CrossRef
13.
go back to reference Byeon, A., Zhao, M.-Q., Ren, C. E., Halim, J., Kota, S., Urbankowski, P., et al. (2017). Two-dimensional titanium carbide MXene as a cathode material for hybrid magnesium/lithium-ion batteries. ACS Applied Materials & Interfaces, 9, 4296–4300.CrossRef Byeon, A., Zhao, M.-Q., Ren, C. E., Halim, J., Kota, S., Urbankowski, P., et al. (2017). Two-dimensional titanium carbide MXene as a cathode material for hybrid magnesium/lithium-ion batteries. ACS Applied Materials & Interfaces, 9, 4296–4300.CrossRef
14.
go back to reference Naguib, M., Halim, J., Lu, J., Cook, K. M., Hultman, L., Gogotsi, Y., et al. (2013). New two-dimensional niobium and vanadium carbides as promising materials for Li-Ion batteries. Journal of the American Chemical Society, 135, 15966–15969.CrossRef Naguib, M., Halim, J., Lu, J., Cook, K. M., Hultman, L., Gogotsi, Y., et al. (2013). New two-dimensional niobium and vanadium carbides as promising materials for Li-Ion batteries. Journal of the American Chemical Society, 135, 15966–15969.CrossRef
15.
go back to reference VahidMohammadi, A., Hadjikhani, A., Shahbazmohamadi, S., & Beidaghi, M. (2017). Two-dimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries. ACS Nano, 11, 11135–11144.CrossRef VahidMohammadi, A., Hadjikhani, A., Shahbazmohamadi, S., & Beidaghi, M. (2017). Two-dimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries. ACS Nano, 11, 11135–11144.CrossRef
16.
go back to reference Mashtalir, O., Naguib, M., Mochalin, V. N., Dall’Agnese, Y., Heon, M., Barsoum, M. W., et al. (2013). Intercalation and delamination of layered carbides and carbonitrides. Nature Communications, 4, 1716.CrossRef Mashtalir, O., Naguib, M., Mochalin, V. N., Dall’Agnese, Y., Heon, M., Barsoum, M. W., et al. (2013). Intercalation and delamination of layered carbides and carbonitrides. Nature Communications, 4, 1716.CrossRef
17.
go back to reference Naguib, M., Mashtalir, O., Carle, J., Presser, V., Lu, J., Hultman, L., et al. (2012). Two-dimensional transition metal carbides. ACS Nano, 6, 1322–1331.CrossRef Naguib, M., Mashtalir, O., Carle, J., Presser, V., Lu, J., Hultman, L., et al. (2012). Two-dimensional transition metal carbides. ACS Nano, 6, 1322–1331.CrossRef
18.
go back to reference Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., et al. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23, 4248–4253. Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., et al. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23, 4248–4253.
19.
go back to reference Lipatov, A., Alhabeb, M., Lukatskaya, M. R., Boson, A., Gogotsi, Y., & Sinitskii, A. (2016). Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Advanced Electronic Materials, 2, 1600255.CrossRef Lipatov, A., Alhabeb, M., Lukatskaya, M. R., Boson, A., Gogotsi, Y., & Sinitskii, A. (2016). Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Advanced Electronic Materials, 2, 1600255.CrossRef
20.
go back to reference Alhabeb, M., Maleski, K., Anasori, B., Lelyukh, P., Clark, L., Sin, S., et al. (2017). Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 29, 7633–7644.CrossRef Alhabeb, M., Maleski, K., Anasori, B., Lelyukh, P., Clark, L., Sin, S., et al. (2017). Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 29, 7633–7644.CrossRef
21.
go back to reference Ying, Y., Liu, Y., Wang, X., Mao, Y., Cao, W., Hu, P., et al. (2015). Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium (VI) from water. ACS Applied Materials & Interfaces, 7, 1795–1803.CrossRef Ying, Y., Liu, Y., Wang, X., Mao, Y., Cao, W., Hu, P., et al. (2015). Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium (VI) from water. ACS Applied Materials & Interfaces, 7, 1795–1803.CrossRef
22.
go back to reference Feng, A., Yu, Y., Wang, Y., Jiang, F., Yu, Y., Mi, L., et al. (2017). Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Materials and Design, 114, 161–166.CrossRef Feng, A., Yu, Y., Wang, Y., Jiang, F., Yu, Y., Mi, L., et al. (2017). Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Materials and Design, 114, 161–166.CrossRef
23.
go back to reference Wang, H.-W., Naguib, M., Page, K., Wesolowski, D. J., & Gogotsi, Y. (2016). Resolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function. Chemistry of Materials, 28, 349–359.CrossRef Wang, H.-W., Naguib, M., Page, K., Wesolowski, D. J., & Gogotsi, Y. (2016). Resolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function. Chemistry of Materials, 28, 349–359.CrossRef
24.
go back to reference Karlsson, L. H., Birch, J., Halim, J., Barsoum, M. W., & Persson, P. O. Å. (2015). Atomically resolved structural and chemical investigation of single MXene sheets. Nano Letters, 15, 4955–4960.CrossRef Karlsson, L. H., Birch, J., Halim, J., Barsoum, M. W., & Persson, P. O. Å. (2015). Atomically resolved structural and chemical investigation of single MXene sheets. Nano Letters, 15, 4955–4960.CrossRef
25.
go back to reference Xuan, J., Wang, Z., Chen, Y., Liang, D., Cheng, L., Yang, X., et al. (2016). Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angewandte Chemie, 128, 14789–14794.CrossRef Xuan, J., Wang, Z., Chen, Y., Liang, D., Cheng, L., Yang, X., et al. (2016). Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angewandte Chemie, 128, 14789–14794.CrossRef
26.
go back to reference Halim, J., Lukatskaya, M. R., Cook, K. M., Lu, J., Smith, C. R., Näslund, L.-Å., et al. (2014). Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chemistry of Materials, 26, 2374–2381.CrossRef Halim, J., Lukatskaya, M. R., Cook, K. M., Lu, J., Smith, C. R., Näslund, L.-Å., et al. (2014). Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chemistry of Materials, 26, 2374–2381.CrossRef
27.
go back to reference Wang, H., Zhang, J., Wu, Y., Huang, H., Li, G., Zhang, X., et al. (2016). Surface modified MXene Ti3C2 multilayers by aryl diazonium salts leading to large-scale delamination. Applied Surface Science, 384, 287–293.CrossRef Wang, H., Zhang, J., Wu, Y., Huang, H., Li, G., Zhang, X., et al. (2016). Surface modified MXene Ti3C2 multilayers by aryl diazonium salts leading to large-scale delamination. Applied Surface Science, 384, 287–293.CrossRef
28.
go back to reference Anasori, B., Xie, Y., Beidaghi, M., Lu, J., Hosler, B. C., Hultman, L., et al. (2015). Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano, 9, 9507–9516.CrossRef Anasori, B., Xie, Y., Beidaghi, M., Lu, J., Hosler, B. C., Hultman, L., et al. (2015). Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano, 9, 9507–9516.CrossRef
29.
go back to reference Peng, Y.-Y., Akuzum, B., Kurra, N., Zhao, M.-Q., Alhabeb, M., Anasori, B., et al. (2016). All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy & Environmental Science, 9, 2847–2854.CrossRef Peng, Y.-Y., Akuzum, B., Kurra, N., Zhao, M.-Q., Alhabeb, M., Anasori, B., et al. (2016). All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy & Environmental Science, 9, 2847–2854.CrossRef
30.
go back to reference Shahzad, F., Alhabeb, M., Hatter, C. B., Anasori, B., Hong, S. M., Koo, C. M., et al. (2016). Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 353, 1137–1140.CrossRef Shahzad, F., Alhabeb, M., Hatter, C. B., Anasori, B., Hong, S. M., Koo, C. M., et al. (2016). Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 353, 1137–1140.CrossRef
31.
go back to reference Sang, X., Xie, Y., Lin, M.-W., Alhabeb, M., Van Aken, K. L., Gogotsi, Y., et al. (2016). Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano, 10, 9193–9200.CrossRef Sang, X., Xie, Y., Lin, M.-W., Alhabeb, M., Van Aken, K. L., Gogotsi, Y., et al. (2016). Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano, 10, 9193–9200.CrossRef
32.
go back to reference Zhang, C., Pinilla, S., McEvoy, N., Cullen, C. P., Anasori, B., Long, E., et al. (2017). Oxidation stability of colloidal 2D titanium carbides (MXenes). Chemistry of Materials, 29(11), 4848–4856.CrossRef Zhang, C., Pinilla, S., McEvoy, N., Cullen, C. P., Anasori, B., Long, E., et al. (2017). Oxidation stability of colloidal 2D titanium carbides (MXenes). Chemistry of Materials, 29(11), 4848–4856.CrossRef
33.
go back to reference Maleski, K., Ren, C. E., Zhao, M. Q., Anasori, B., & Gogotsi, Y. (2018). Size-dependent physical and electrochemical properties of two-dimensional MXene Flakes. ACS Applied Materials & Interfaces, 10, 24491–24498.CrossRef Maleski, K., Ren, C. E., Zhao, M. Q., Anasori, B., & Gogotsi, Y. (2018). Size-dependent physical and electrochemical properties of two-dimensional MXene Flakes. ACS Applied Materials & Interfaces, 10, 24491–24498.CrossRef
34.
go back to reference Kayali, E., Vahidmohammadi, A., Orangi, J., & Beidaghi, M. (2018). Controlling the dimensions of 2D MXenes for ultrahigh-rate pseudocapacitive energy storage. ACS Applied Materials & Interfaces, 10, 25949–25954.CrossRef Kayali, E., Vahidmohammadi, A., Orangi, J., & Beidaghi, M. (2018). Controlling the dimensions of 2D MXenes for ultrahigh-rate pseudocapacitive energy storage. ACS Applied Materials & Interfaces, 10, 25949–25954.CrossRef
35.
go back to reference Seh, Z. W., Fredrickson, K. D., Anasori, B., Kibsgaard, J., Strickler, A. L., Lukatskaya, M. R., et al. (2016). Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Letters, 1, 589–594.CrossRef Seh, Z. W., Fredrickson, K. D., Anasori, B., Kibsgaard, J., Strickler, A. L., Lukatskaya, M. R., et al. (2016). Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Letters, 1, 589–594.CrossRef
36.
go back to reference Naguib, M., Unocic, R. R., Armstrong, B. L., & Nanda, J. (2015). Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”. Dalton Transactions, 44, 9353–9358.CrossRef Naguib, M., Unocic, R. R., Armstrong, B. L., & Nanda, J. (2015). Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”. Dalton Transactions, 44, 9353–9358.CrossRef
37.
go back to reference VahidMohammadi, A., Mojtabavi, M., Caffrey, N. M., Wanunu, M., & Beidaghi, M. (2019). Assembling 2D MXenes into highly stable pseudocapacitive electrodes with high power and energy densities. Advanced Materials, 31, 1806931.CrossRef VahidMohammadi, A., Mojtabavi, M., Caffrey, N. M., Wanunu, M., & Beidaghi, M. (2019). Assembling 2D MXenes into highly stable pseudocapacitive electrodes with high power and energy densities. Advanced Materials, 31, 1806931.CrossRef
38.
go back to reference Yang, Y., Umrao, S., Lai, S., & Lee, S. (2017). Large-area highly conductive transparent two-dimensional Ti2CTx film. Journal of Physical Chemistry Letters, 8, 859–865.CrossRef Yang, Y., Umrao, S., Lai, S., & Lee, S. (2017). Large-area highly conductive transparent two-dimensional Ti2CTx film. Journal of Physical Chemistry Letters, 8, 859–865.CrossRef
39.
go back to reference Byeon, A., Glushenkov, A. M., Anasori, B., Urbankowski, P., Li, J., Byles, B. W., et al. (2016). Lithium-ion capacitors with 2D Nb2CTx (MXene): carbon nanotube electrodes. Journal of Power Sources, 326, 686–694.CrossRef Byeon, A., Glushenkov, A. M., Anasori, B., Urbankowski, P., Li, J., Byles, B. W., et al. (2016). Lithium-ion capacitors with 2D Nb2CTx (MXene): carbon nanotube electrodes. Journal of Power Sources, 326, 686–694.CrossRef
40.
go back to reference Mojtabavi, M., Vahidmohammadi, A., Liang, W., Beidaghi, M., & Wanunu, M. (2019). Single-molecule sensing using nanopores in two-dimensional transition metal carbide (MXene) membranes. ACS Nano, 13, 3042–3053.CrossRef Mojtabavi, M., Vahidmohammadi, A., Liang, W., Beidaghi, M., & Wanunu, M. (2019). Single-molecule sensing using nanopores in two-dimensional transition metal carbide (MXene) membranes. ACS Nano, 13, 3042–3053.CrossRef
41.
go back to reference Li, L., Wang, F., Zhu, J., & Wu, W. (2017). The facile synthesis of layered Ti2C MXene/carbon nanotube composite paper with enhanced electrochemical properties. Dalton Transactions, 46, 14880–14887.CrossRef Li, L., Wang, F., Zhu, J., & Wu, W. (2017). The facile synthesis of layered Ti2C MXene/carbon nanotube composite paper with enhanced electrochemical properties. Dalton Transactions, 46, 14880–14887.CrossRef
42.
go back to reference Halim, J., Kota, S., Lukatskaya, M. R., Naguib, M., Zhao, M.-Q., Moon, E. J., et al. (2016). Synthesis and characterization of 2D molybdenum carbide (MXene). Advanced Functional Materials, 26, 3118–3127.CrossRef Halim, J., Kota, S., Lukatskaya, M. R., Naguib, M., Zhao, M.-Q., Moon, E. J., et al. (2016). Synthesis and characterization of 2D molybdenum carbide (MXene). Advanced Functional Materials, 26, 3118–3127.CrossRef
43.
go back to reference Mashtalir, O., Lukatskaya, M. R., Zhao, M.-Q., Barsoum, M. W., & Gogotsi, Y. (2015). Amine-assisted delamination of Nb2C MXene for Li-Ion energy storage devices. Advanced Materials, 27, 3501–3506.CrossRef Mashtalir, O., Lukatskaya, M. R., Zhao, M.-Q., Barsoum, M. W., & Gogotsi, Y. (2015). Amine-assisted delamination of Nb2C MXene for Li-Ion energy storage devices. Advanced Materials, 27, 3501–3506.CrossRef
44.
go back to reference Zhou, J., Zha, X., Zhou, X., Chen, F., Gao, G., Wang, S., et al. (2017). Synthesis and electrochemical properties of two-dimensional hafnium carbide. ACS Nano, 11, 3841–3850.CrossRef Zhou, J., Zha, X., Zhou, X., Chen, F., Gao, G., Wang, S., et al. (2017). Synthesis and electrochemical properties of two-dimensional hafnium carbide. ACS Nano, 11, 3841–3850.CrossRef
45.
go back to reference Anasori, B., Shi, C., Moon, E. J., Xie, Y., Voigt, C. A., Kent, P. R. C., May, S. J., et al. (2016). Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers. Nanoscale Horizons, 1, 227–234.CrossRef Anasori, B., Shi, C., Moon, E. J., Xie, Y., Voigt, C. A., Kent, P. R. C., May, S. J., et al. (2016). Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers. Nanoscale Horizons, 1, 227–234.CrossRef
46.
go back to reference Lin, H., Wang, Y., Gao, S., Chen, Y., & Shi, J. (2018). Theranostic 2D Tantalum Carbide (MXene). Advanced Materials, 30, 1703284.CrossRef Lin, H., Wang, Y., Gao, S., Chen, Y., & Shi, J. (2018). Theranostic 2D Tantalum Carbide (MXene). Advanced Materials, 30, 1703284.CrossRef
Metadata
Title
Techniques for MXene Delamination into Single-Layer Flakes
Authors
Armin VahidMohammadi
Emre Kayali
Jafar Orangi
Majid Beidaghi
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-19026-2_11