Skip to main content
Top
Published in: Journal of Materials Science 17/2018

04-06-2018 | Composites

Temperature-dependent longitudinal tensile strength model for short-fiber-reinforced polymer composites considering fiber orientation and fiber length distribution

Authors: Ying Li, Weiguo Li, Yong Deng, Jiaxing Shao, Jianzuo Ma, Yong Tao, Haibo Kou, Xianhe Zhang, Xuyao Zhang, Liming Chen, Fanglan Peng

Published in: Journal of Materials Science | Issue 17/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, a temperature-dependent longitudinal tensile strength model for short-fiber-reinforced polymer composites (SFRPCs) is established based on the sensitivities of thermal-physical properties of polymer materials to temperature and our previous work. The effects of temperature, fiber orientation distribution, fiber length distribution and residual thermal stress are considered in this model. The theoretical model is verified by comparison with tensile strength of glass SFRPCs at different temperatures. Good agreement between the model predictions and experimental results is obtained, which indicates the reasonability of the proposed models. Furthermore, the comparisons between the present models and the classical models are discussed, and the influencing factors analysis for SFRPCs is also conducted in detail. This study can not only provide a potential convenient means for predicting the temperature-dependent tensile strength of SFRPCs, but also offer useful suggestions for the material evaluation, strengthening and design.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Liang J-Z (2012) Predictions of Young’s modulus of short inorganic fiber reinforced polymer composites. Compos Part B Eng 43(4):1763–1766CrossRef Liang J-Z (2012) Predictions of Young’s modulus of short inorganic fiber reinforced polymer composites. Compos Part B Eng 43(4):1763–1766CrossRef
2.
go back to reference Mortazavian S, Fatemi A (2015) Effects of fiber orientation and anisotropy on tensile strength and elastic modulus of short fiber reinforced polymer composites. Compos Part B Eng 72:116–129CrossRef Mortazavian S, Fatemi A (2015) Effects of fiber orientation and anisotropy on tensile strength and elastic modulus of short fiber reinforced polymer composites. Compos Part B Eng 72:116–129CrossRef
3.
go back to reference Heim D, Hartmann M, Neumayer J, Klotz C, Ahmet-Tsaous Ö, Zaremba S, Drechsler K (2013) Novel method for determination of critical fiber length in short fiber carbon/carbon composites by double lap joint. Compos Part B Eng 54:365–370CrossRef Heim D, Hartmann M, Neumayer J, Klotz C, Ahmet-Tsaous Ö, Zaremba S, Drechsler K (2013) Novel method for determination of critical fiber length in short fiber carbon/carbon composites by double lap joint. Compos Part B Eng 54:365–370CrossRef
4.
go back to reference Fu S-Y, Lauke B (1996) Effects of fiber length and fiber orientation distributions on the tensile strength of short-fiber-reinforced polymers. Compos Sci Technol 56(10):1179–1190CrossRef Fu S-Y, Lauke B (1996) Effects of fiber length and fiber orientation distributions on the tensile strength of short-fiber-reinforced polymers. Compos Sci Technol 56(10):1179–1190CrossRef
5.
go back to reference Launay A, Marco Y, Maitournam M, Raoult I (2013) Modelling the influence of temperature and relative humidity on the time-dependent mechanical behaviour of a short glass fibre reinforced polyamide. Mech Mater 56:1–10CrossRef Launay A, Marco Y, Maitournam M, Raoult I (2013) Modelling the influence of temperature and relative humidity on the time-dependent mechanical behaviour of a short glass fibre reinforced polyamide. Mech Mater 56:1–10CrossRef
6.
go back to reference Bai Y, Post NL, Lesko JJ, Keller T (2008) Experimental investigations on temperature-dependent thermo-physical and mechanical properties of pultruded GFRP composites. Thermochim Acta 469(1):28–35CrossRef Bai Y, Post NL, Lesko JJ, Keller T (2008) Experimental investigations on temperature-dependent thermo-physical and mechanical properties of pultruded GFRP composites. Thermochim Acta 469(1):28–35CrossRef
7.
go back to reference Liang J-Z (2011) Predictions of tensile strength of short inorganic fibre reinforced polymer composites. Polym Test 30(7):749–752CrossRef Liang J-Z (2011) Predictions of tensile strength of short inorganic fibre reinforced polymer composites. Polym Test 30(7):749–752CrossRef
9.
go back to reference Zhu D, Gu BQ, Chen Y (2008) Study on temperature-dependent tensile strength of short-fiber-reinforced elastomer matrix composites. Adv Mater Res 44:97–104CrossRef Zhu D, Gu BQ, Chen Y (2008) Study on temperature-dependent tensile strength of short-fiber-reinforced elastomer matrix composites. Adv Mater Res 44:97–104CrossRef
10.
go back to reference Gupta M, Wang K (1993) Fiber orientation and mechanical properties of short-fiber-reinforced injection-molded composites: simulated and experimental results. Polym Compos 14(5):367–382CrossRef Gupta M, Wang K (1993) Fiber orientation and mechanical properties of short-fiber-reinforced injection-molded composites: simulated and experimental results. Polym Compos 14(5):367–382CrossRef
11.
go back to reference Choy C, Leung W, Kowk K, Lau FP (1992) Elastic moduli and thermal conductivity of injection-molded short-fiber-reinforced thermoplastics. Polym Compos 13(2):69–80CrossRef Choy C, Leung W, Kowk K, Lau FP (1992) Elastic moduli and thermal conductivity of injection-molded short-fiber-reinforced thermoplastics. Polym Compos 13(2):69–80CrossRef
12.
go back to reference Fu S-Y, Lauke B (1998) An analytical characterization of the anisotropy of the elastic modulus of misaligned short-fiber-reinforced polymers. Compos Sci Technol 58(12):1961–1972CrossRef Fu S-Y, Lauke B (1998) An analytical characterization of the anisotropy of the elastic modulus of misaligned short-fiber-reinforced polymers. Compos Sci Technol 58(12):1961–1972CrossRef
13.
go back to reference Lauke B, Fu S-Y (1999) Strength anisotropy of misaligned short-fibre-reinforced polymers. Compos Sci Technol 59(5):699–708CrossRef Lauke B, Fu S-Y (1999) Strength anisotropy of misaligned short-fibre-reinforced polymers. Compos Sci Technol 59(5):699–708CrossRef
14.
go back to reference Chin WK, Liu HT, Lee YD (1988) Effects of fiber length and orientation distribution on the elastic modulus of short fiber reinforced thermoplastics. Polym Compos 9(1):27–35CrossRef Chin WK, Liu HT, Lee YD (1988) Effects of fiber length and orientation distribution on the elastic modulus of short fiber reinforced thermoplastics. Polym Compos 9(1):27–35CrossRef
15.
go back to reference Miwa M, Ohsawa T, Tahara K (1980) Effects of fiber length on the tensile strength of epoxy/glass fiber and polyester/glass fiber composites. J Appl Polym Sci 25(5):795–807CrossRef Miwa M, Ohsawa T, Tahara K (1980) Effects of fiber length on the tensile strength of epoxy/glass fiber and polyester/glass fiber composites. J Appl Polym Sci 25(5):795–807CrossRef
17.
go back to reference Wang Z, Zhou Y, Mallick P (2002) Effects of temperature and strain rate on the tensile behavior of short fiber reinforced polyamide-6. Polym Compos 23(5):858–871CrossRef Wang Z, Zhou Y, Mallick P (2002) Effects of temperature and strain rate on the tensile behavior of short fiber reinforced polyamide-6. Polym Compos 23(5):858–871CrossRef
18.
go back to reference Lees J (1968) A study of the tensile strength of short fiber reinforced plastics. Polym Eng Sci 8(3):195–201CrossRef Lees J (1968) A study of the tensile strength of short fiber reinforced plastics. Polym Eng Sci 8(3):195–201CrossRef
19.
go back to reference Stelzer P, Reiter M, Major Z (2012) Simulation of the tensile modulus and the tensile strength of short fibre reinforced polymers (SFRP). In: proceedings of the 11th youth symposium on experimental solid mechanics, Brasov, Romania Stelzer P, Reiter M, Major Z (2012) Simulation of the tensile modulus and the tensile strength of short fibre reinforced polymers (SFRP). In: proceedings of the 11th youth symposium on experimental solid mechanics, Brasov, Romania
20.
go back to reference Kelly A, Tyson AW (1965) Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum. J Mech Phys Solids 13(6):329–350CrossRef Kelly A, Tyson AW (1965) Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum. J Mech Phys Solids 13(6):329–350CrossRef
21.
go back to reference Chen PE (1971) Strength properties of discontinuous fiber composites. Polym Eng Sci 11(1):51–56CrossRef Chen PE (1971) Strength properties of discontinuous fiber composites. Polym Eng Sci 11(1):51–56CrossRef
22.
go back to reference Templeton P (1990) Strength predictions of injection molding compounds. J Reinf Plast Compos 9(3):210–225CrossRef Templeton P (1990) Strength predictions of injection molding compounds. J Reinf Plast Compos 9(3):210–225CrossRef
23.
go back to reference Mortazavian S, Fatemi A (2015) Fatigue behavior and modeling of short fiber reinforced polymer composites: a literature review. Int J Fatigue 77:12–27CrossRef Mortazavian S, Fatemi A (2015) Fatigue behavior and modeling of short fiber reinforced polymer composites: a literature review. Int J Fatigue 77:12–27CrossRef
24.
go back to reference Piggott MR (1994) Short fibre polymer composites: a fracture-based theory of fibre reinforcement. J Compos Mater 28(7):588–606CrossRef Piggott MR (1994) Short fibre polymer composites: a fracture-based theory of fibre reinforcement. J Compos Mater 28(7):588–606CrossRef
25.
go back to reference Bowyer W, Bader M (1972) On the re-inforcement of thermoplastics by imperfectly aligned discontinuous fibres. J Mater Sci 7(11):1315–1321. https://doi.org/10.1007/BF00550698 Bowyer W, Bader M (1972) On the re-inforcement of thermoplastics by imperfectly aligned discontinuous fibres. J Mater Sci 7(11):1315–1321. https://​doi.​org/​10.​1007/​BF00550698
27.
go back to reference Ohsawa T, Nakayama A, Miwa M, Hasegawa A (1978) Temperature dependence of critical fiber length for glass fiber-reinforced thermosetting resins. J Appl Polym Sci 22(11):3203–3212CrossRef Ohsawa T, Nakayama A, Miwa M, Hasegawa A (1978) Temperature dependence of critical fiber length for glass fiber-reinforced thermosetting resins. J Appl Polym Sci 22(11):3203–3212CrossRef
28.
go back to reference Mortazavian S, Fatemi A (2017) Tensile behavior and modeling of short fiber-reinforced polymer composites including temperature and strain rate effects. J Thermoplast Compos 30(10):1414–1437CrossRef Mortazavian S, Fatemi A (2017) Tensile behavior and modeling of short fiber-reinforced polymer composites including temperature and strain rate effects. J Thermoplast Compos 30(10):1414–1437CrossRef
29.
go back to reference Li W, Yang F, Fang D (2010) The temperature-dependent fracture strength model for ultra-high temperature ceramics. Acta Mech Sin 26(2):235–239CrossRef Li W, Yang F, Fang D (2010) The temperature-dependent fracture strength model for ultra-high temperature ceramics. Acta Mech Sin 26(2):235–239CrossRef
30.
go back to reference Li W, Zhang X, Kou H, Wang R, Fang D (2016) Theoretical prediction of temperature dependent yield strength for metallic materials. Int J Mech Sci 105:273–278CrossRef Li W, Zhang X, Kou H, Wang R, Fang D (2016) Theoretical prediction of temperature dependent yield strength for metallic materials. Int J Mech Sci 105:273–278CrossRef
31.
go back to reference Kacir L, Narkis M, Ishai O (1977) Oriented short glass fiber composites. III. Structure and mechanical properties of molded sheets. Polym Eng Sci 17(4):234–241CrossRef Kacir L, Narkis M, Ishai O (1977) Oriented short glass fiber composites. III. Structure and mechanical properties of molded sheets. Polym Eng Sci 17(4):234–241CrossRef
32.
go back to reference Kacir L, Narkis M, Ishai O (1975) Oriented short glass-fiber composites. I. Preparation and statistical analysis of aligned fiber mats. Polym Eng Sci 15(7):525–531CrossRef Kacir L, Narkis M, Ishai O (1975) Oriented short glass-fiber composites. I. Preparation and statistical analysis of aligned fiber mats. Polym Eng Sci 15(7):525–531CrossRef
33.
go back to reference Fu SY, Lauke B, Mai YW (2009) Major factors affecting the performance of short fibre reinforced polymers. In: Science and engineering of short fiber reinforced polymer composites. Woodhead Publishing, Cambridge, pp 29–58 Fu SY, Lauke B, Mai YW (2009) Major factors affecting the performance of short fibre reinforced polymers. In: Science and engineering of short fiber reinforced polymer composites. Woodhead Publishing, Cambridge, pp 29–58
35.
go back to reference Ularych F, Sova M, Vokrouhlecḱy J, Turčić B (1993) Empirical relations of the mechanical properties of polyamide 6 reinforced with short glass fibers. Polym Compos 14(3):229–237CrossRef Ularych F, Sova M, Vokrouhlecḱy J, Turčić B (1993) Empirical relations of the mechanical properties of polyamide 6 reinforced with short glass fibers. Polym Compos 14(3):229–237CrossRef
36.
go back to reference Fu SY, Lauke B, Mai YW (2009) Strength of short fibre reinforced polymers. In: Science and engineering of short fiber reinforced polymer composites. Woodhead Publishing, Cambridge, pp 80–118 Fu SY, Lauke B, Mai YW (2009) Strength of short fibre reinforced polymers. In: Science and engineering of short fiber reinforced polymer composites. Woodhead Publishing, Cambridge, pp 80–118
37.
go back to reference Piggott M (1966) A theory of fibre strengthening. Acta Metall 14(11):1429–1436CrossRef Piggott M (1966) A theory of fibre strengthening. Acta Metall 14(11):1429–1436CrossRef
38.
go back to reference Kuriger RJ, Alam MK, Anderson DP (2001) Strength prediction of partially aligned discontinuous fiber-reinforced composites. J Mater Res 16(1):226–232CrossRef Kuriger RJ, Alam MK, Anderson DP (2001) Strength prediction of partially aligned discontinuous fiber-reinforced composites. J Mater Res 16(1):226–232CrossRef
39.
go back to reference Yu Z, Brisson J, Ait-Kadi A (1994) Prediction of mechanical properties of short kevlar fiber-nylon-6, 6 composites. Polym Compos 15(1):64–73CrossRef Yu Z, Brisson J, Ait-Kadi A (1994) Prediction of mechanical properties of short kevlar fiber-nylon-6, 6 composites. Polym Compos 15(1):64–73CrossRef
40.
go back to reference Deng Y, Li W, Wang R, Shao J, Geng P, Kou H, Zhang X, Ma J (2017) Temperature dependent first matrix cracking stress model for the unidirectional fiber reinforced ceramic composites. J Eur Ceram Soc 37(4):1305–1310CrossRef Deng Y, Li W, Wang R, Shao J, Geng P, Kou H, Zhang X, Ma J (2017) Temperature dependent first matrix cracking stress model for the unidirectional fiber reinforced ceramic composites. J Eur Ceram Soc 37(4):1305–1310CrossRef
41.
go back to reference Wang R, Li W, Li D, Fang D (2015) A new temperature dependent fracture strength model for the ZrB 2–SiC composites. J Eur Ceram Soc 35(10):2957–2962CrossRef Wang R, Li W, Li D, Fang D (2015) A new temperature dependent fracture strength model for the ZrB 2–SiC composites. J Eur Ceram Soc 35(10):2957–2962CrossRef
42.
go back to reference Krstic VD (1998) Roles of porosity, residual stresses and grain size in the fracture of brittle solids. Philos Mag A 78(5):1125–1135CrossRef Krstic VD (1998) Roles of porosity, residual stresses and grain size in the fracture of brittle solids. Philos Mag A 78(5):1125–1135CrossRef
43.
go back to reference Govaert L, Brown B, Smith P (1992) Temperature dependence of the Young’s modulus of oriented polyethylene. Macromolecules 25(13):3480–3483CrossRef Govaert L, Brown B, Smith P (1992) Temperature dependence of the Young’s modulus of oriented polyethylene. Macromolecules 25(13):3480–3483CrossRef
44.
go back to reference Guo H, Cai Z, Sun L, Jiang S (2015) Temperature dependent mechanical property and structure of nylon 6. Acta Polym Sin 10:1175–1179 Guo H, Cai Z, Sun L, Jiang S (2015) Temperature dependent mechanical property and structure of nylon 6. Acta Polym Sin 10:1175–1179
45.
go back to reference Zhou Y, Mallick P (2006) Fatigue performance of an injection-molded short E-glass fiber-reinforced polyamide 6, 6. I. Effects of orientation, holes, and weld line. Polym Compos 27(2):230–237CrossRef Zhou Y, Mallick P (2006) Fatigue performance of an injection-molded short E-glass fiber-reinforced polyamide 6, 6. I. Effects of orientation, holes, and weld line. Polym Compos 27(2):230–237CrossRef
46.
go back to reference Mallick P (2000) Particulate and short fiber reinforced polymer composites. In: Comprehensive composite materials. Elsevier, Dearborn, pp 2–41 Mallick P (2000) Particulate and short fiber reinforced polymer composites. In: Comprehensive composite materials. Elsevier, Dearborn, pp 2–41
48.
go back to reference Mark JE (2007) Physical properties of polymers handbook, 2nd edn. Springer, New YorkCrossRef Mark JE (2007) Physical properties of polymers handbook, 2nd edn. Springer, New YorkCrossRef
49.
go back to reference Hashemi S (2000) Temperature dependence of work of fracture parameters in polybutylene terephthalate (PBT). Polym Eng Sci 40(6):1435–1446CrossRef Hashemi S (2000) Temperature dependence of work of fracture parameters in polybutylene terephthalate (PBT). Polym Eng Sci 40(6):1435–1446CrossRef
51.
go back to reference Pyda M, Nowak-Pyda E, Heeg J, Huth H, Minakov A, Di Lorenzo M, Schick C, Wunderlich B (2006) Melting and crystallization of poly (butylene terephthalate) by temperature-modulated and superfast calorimetry. J Polym Sci Polym Phys 44(9):1364–1377CrossRef Pyda M, Nowak-Pyda E, Heeg J, Huth H, Minakov A, Di Lorenzo M, Schick C, Wunderlich B (2006) Melting and crystallization of poly (butylene terephthalate) by temperature-modulated and superfast calorimetry. J Polym Sci Polym Phys 44(9):1364–1377CrossRef
52.
go back to reference Wang W, Tang L, Qu B (2003) Mechanical properties and morphological structures of short glass fiber reinforced PP/EPDM composite. Eur Polym J 39(11):2129–2134CrossRef Wang W, Tang L, Qu B (2003) Mechanical properties and morphological structures of short glass fiber reinforced PP/EPDM composite. Eur Polym J 39(11):2129–2134CrossRef
53.
go back to reference Singh P, Kamal M (1989) The effect of processing variables on microstructure of injection molded short fiber reinforced polypropylene composites. Polym Compos 10(5):344–351CrossRef Singh P, Kamal M (1989) The effect of processing variables on microstructure of injection molded short fiber reinforced polypropylene composites. Polym Compos 10(5):344–351CrossRef
54.
go back to reference Ji XL, Jing JK, Jiang W, Jiang BZ (2002) Tensile modulus of polymer nanocomposites. Polym Eng Sci 42(5):983–993CrossRef Ji XL, Jing JK, Jiang W, Jiang BZ (2002) Tensile modulus of polymer nanocomposites. Polym Eng Sci 42(5):983–993CrossRef
Metadata
Title
Temperature-dependent longitudinal tensile strength model for short-fiber-reinforced polymer composites considering fiber orientation and fiber length distribution
Authors
Ying Li
Weiguo Li
Yong Deng
Jiaxing Shao
Jianzuo Ma
Yong Tao
Haibo Kou
Xianhe Zhang
Xuyao Zhang
Liming Chen
Fanglan Peng
Publication date
04-06-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 17/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2517-8

Other articles of this Issue 17/2018

Journal of Materials Science 17/2018 Go to the issue

Premium Partners