Skip to main content
Top
Published in: Neural Processing Letters 1/2017

02-12-2016

\({\varvec{p}}\)th Moment Exponential Stability of Hybrid Delayed Reaction–Diffusion Cohen–Grossberg Neural Networks

Authors: Weiyuan Zhang, Junmin Li, Chenyang Ding, Keyi Xing

Published in: Neural Processing Letters | Issue 1/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we propose hybrid reaction–diffusion Cohen–Grossberg neural networks (RDCGNNs) with variable coefficients and mixed time delays. By using the Lyapunov–Krasovkii functional approach, stochastic analysis technique and Hardy inequality, some novel sufficient conditions are derived to ensure the pth moment exponential stability of hybrid RDCGNNs with mixed time delays. The obtained sufficient conditions are relevant to the diffusion terms. The results of this paper are novel and improve some of the previously known results. Finally, two numerical examples are provided to verify the usefulness of the obtained results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cohen M, Grossberg S (1983) Absolute stability and global pattern formation and parallel memory storage by competitive neural networks. IEEE Trans Syst Man Cybern 13:815–826MathSciNetCrossRefMATH Cohen M, Grossberg S (1983) Absolute stability and global pattern formation and parallel memory storage by competitive neural networks. IEEE Trans Syst Man Cybern 13:815–826MathSciNetCrossRefMATH
2.
go back to reference Cao J, Wang J (2005) Global exponential stability and periodicity of recurrent neural networks with time delays. IEEE Trans Circuit Syst I 52:920–931MathSciNetCrossRef Cao J, Wang J (2005) Global exponential stability and periodicity of recurrent neural networks with time delays. IEEE Trans Circuit Syst I 52:920–931MathSciNetCrossRef
3.
go back to reference Shi Y, Zhu P (2014) Asymptotic stability analysis of stochastic reaction-diffusion Cohen–Grossberg neural networks with mixed time delays. Appl Math Comput 242(1):159–167MathSciNetMATH Shi Y, Zhu P (2014) Asymptotic stability analysis of stochastic reaction-diffusion Cohen–Grossberg neural networks with mixed time delays. Appl Math Comput 242(1):159–167MathSciNetMATH
4.
go back to reference Zhao H, Yuan J, Zhang X (2015) Stability and bifurcation analysis of reaction-diffusion neural networks with delays. Neurocomputing 147(5):280–290 Zhao H, Yuan J, Zhang X (2015) Stability and bifurcation analysis of reaction-diffusion neural networks with delays. Neurocomputing 147(5):280–290
5.
go back to reference Arik S, Orman Z (2005) Global stability analysis of Cohen–Grossberg neural networks with time-varying delays. Phys Lett A 341:410–421CrossRefMATH Arik S, Orman Z (2005) Global stability analysis of Cohen–Grossberg neural networks with time-varying delays. Phys Lett A 341:410–421CrossRefMATH
6.
go back to reference Huang C, Cao J (2011) Convergence dynamics of stochastic Cohen–Grossberg neural networks with unbounded distributed delays. IEEE Trans Neural Netw 22:561–572CrossRef Huang C, Cao J (2011) Convergence dynamics of stochastic Cohen–Grossberg neural networks with unbounded distributed delays. IEEE Trans Neural Netw 22:561–572CrossRef
7.
go back to reference Kwon OM, Park JuH, Lee SM, Cha EJ (2013) Analysis on delay-dependent stability for neural networks with time-varying delays. Neurocomputing 103:114–120CrossRef Kwon OM, Park JuH, Lee SM, Cha EJ (2013) Analysis on delay-dependent stability for neural networks with time-varying delays. Neurocomputing 103:114–120CrossRef
8.
go back to reference Fang M, Park JuH (2013) Non-fragile synchronization of neural networks with time-varying delay and randomly occurring controller gain fluctuation. Appl Math Comput 219:8009–8017MathSciNetMATH Fang M, Park JuH (2013) Non-fragile synchronization of neural networks with time-varying delay and randomly occurring controller gain fluctuation. Appl Math Comput 219:8009–8017MathSciNetMATH
9.
go back to reference Rakkiyappan R, Balasubramaniam P (2008) Delay-dependent asymptotic stability for stochastic delayed recurrent neural networks with time varying delays. Appl Math Comput 198:526–533MathSciNetMATH Rakkiyappan R, Balasubramaniam P (2008) Delay-dependent asymptotic stability for stochastic delayed recurrent neural networks with time varying delays. Appl Math Comput 198:526–533MathSciNetMATH
10.
go back to reference Hiratsuka M, Aoki T, Higuchi T (1999) Enzyme transistor circuits for reaction-diffusion computing. IEEE Trans Circuits Syst I 46(2):294303CrossRef Hiratsuka M, Aoki T, Higuchi T (1999) Enzyme transistor circuits for reaction-diffusion computing. IEEE Trans Circuits Syst I 46(2):294303CrossRef
11.
go back to reference Hiratsuka M, Aoki T, Higuchi T (1999) Pattern formation in reaction-diffusion enzyme transistor circuits. IEICE Trans Fundam E82–A(9):1809–1817 Hiratsuka M, Aoki T, Higuchi T (1999) Pattern formation in reaction-diffusion enzyme transistor circuits. IEICE Trans Fundam E82–A(9):1809–1817
12.
go back to reference Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B237:31-12 Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B237:31-12
14.
go back to reference Steinbock O, Toth A, Showalter K (1995) Navigating complex labyrinths: optimal paths from chemical waves. Science 267:868–871CrossRef Steinbock O, Toth A, Showalter K (1995) Navigating complex labyrinths: optimal paths from chemical waves. Science 267:868–871CrossRef
15.
go back to reference Kuhnert L, Agladze KI, Krinsky VI (1989) Image processing using light-sensitive chemical waves. Nature 337:244–247CrossRef Kuhnert L, Agladze KI, Krinsky VI (1989) Image processing using light-sensitive chemical waves. Nature 337:244–247CrossRef
16.
go back to reference Krinsky VI (1984) Autowaves: results, problems, outlooks, in self-organization: autowaves and structures far from equilibrium. Springer, BerlinCrossRefMATH Krinsky VI (1984) Autowaves: results, problems, outlooks, in self-organization: autowaves and structures far from equilibrium. Springer, BerlinCrossRefMATH
17.
go back to reference Chua LO, Roska T (1993) The CNN paradigm. IEEE Trans Circuits Syst I, Fundam Theory Appl 40:147–156CrossRefMATH Chua LO, Roska T (1993) The CNN paradigm. IEEE Trans Circuits Syst I, Fundam Theory Appl 40:147–156CrossRefMATH
19.
go back to reference Chua LO, Hasler M, Moschytz GS, Neirynck J (1995) Autonomous cellular neural networks: a unified paradigm for pattern formation and active wave propagation. IEEE Trans Circuits Syst I 42:559–577MathSciNetCrossRef Chua LO, Hasler M, Moschytz GS, Neirynck J (1995) Autonomous cellular neural networks: a unified paradigm for pattern formation and active wave propagation. IEEE Trans Circuits Syst I 42:559–577MathSciNetCrossRef
20.
go back to reference Roska T, Chua LO, Wolf D, Kozek T, Tezlaff R, Puffer F (1995) Simulating nonlinear waves and partial differential equations via CNN-Part I: basic techniques. IEEE Trans Circuits Syst I 42:807–815CrossRef Roska T, Chua LO, Wolf D, Kozek T, Tezlaff R, Puffer F (1995) Simulating nonlinear waves and partial differential equations via CNN-Part I: basic techniques. IEEE Trans Circuits Syst I 42:807–815CrossRef
21.
go back to reference Li D, He D, Xu D (2012) Mean square exponential stability of impulsive stochastic reaction-diffusion Cohen–Grossberg neural networks with delays. Math Comput Simul 82:1531–1543MathSciNetCrossRefMATH Li D, He D, Xu D (2012) Mean square exponential stability of impulsive stochastic reaction-diffusion Cohen–Grossberg neural networks with delays. Math Comput Simul 82:1531–1543MathSciNetCrossRefMATH
22.
go back to reference Lu JG (2007) Robust global exponential stability for interval reaction-diffusion Hopfield neural networks with distributed delays. IEEE Trans Circuits Syst II 54:1115–1119CrossRef Lu JG (2007) Robust global exponential stability for interval reaction-diffusion Hopfield neural networks with distributed delays. IEEE Trans Circuits Syst II 54:1115–1119CrossRef
23.
go back to reference Wang Z, Zhang H, Li P (2010) An LMI approach to stability analysis of reaction-diffusion Cohen–Grossberg neural networks concerning dirichlet boundary conditions and distributed delays. IEEE Trans Syst Man Cybern B 40:1596–1606CrossRef Wang Z, Zhang H, Li P (2010) An LMI approach to stability analysis of reaction-diffusion Cohen–Grossberg neural networks concerning dirichlet boundary conditions and distributed delays. IEEE Trans Syst Man Cybern B 40:1596–1606CrossRef
24.
go back to reference Li J, Zhang W, Chen M (2013) Synchronization of delayed reaction-diffusion neural networks via an adaptive learning control approach. Comput Math Appl 65:1775–1785MathSciNetCrossRefMATH Li J, Zhang W, Chen M (2013) Synchronization of delayed reaction-diffusion neural networks via an adaptive learning control approach. Comput Math Appl 65:1775–1785MathSciNetCrossRefMATH
25.
go back to reference Zhang W, Xing K, Li J, Chen M (2015) Adaptive synchronization of delayed reaction-diffusion FCNNs via learning control approach. J Intell Fuzzy Syst 28(1):141–150MathSciNetMATH Zhang W, Xing K, Li J, Chen M (2015) Adaptive synchronization of delayed reaction-diffusion FCNNs via learning control approach. J Intell Fuzzy Syst 28(1):141–150MathSciNetMATH
26.
go back to reference Wang Z, Zhang H (2010) Global Asymptotic Stability of Reaction- Diffusion Cohen-Grossberg Neural Network with Continuously Distributed Delays. IEEE Trans Neural Netw 21:39–49CrossRef Wang Z, Zhang H (2010) Global Asymptotic Stability of Reaction- Diffusion Cohen-Grossberg Neural Network with Continuously Distributed Delays. IEEE Trans Neural Netw 21:39–49CrossRef
27.
go back to reference Lakshmikantham V, Bainov DD, Simeonov PS (1989) Theory of impulsive differential equations. World Scientific, SingaporeCrossRefMATH Lakshmikantham V, Bainov DD, Simeonov PS (1989) Theory of impulsive differential equations. World Scientific, SingaporeCrossRefMATH
28.
go back to reference Pan J, Liu X, Zhong S (2010) Stability criteria for impulsive reaction-diffusion Cohen–Grossberg neural networks with time-varying delays. Math Comput Model 51:1037–1050MathSciNetCrossRefMATH Pan J, Liu X, Zhong S (2010) Stability criteria for impulsive reaction-diffusion Cohen–Grossberg neural networks with time-varying delays. Math Comput Model 51:1037–1050MathSciNetCrossRefMATH
29.
go back to reference Pan J, Zhong S (2010) Dynamical behaviors of impulsive reaction-diffusion Cohen–Grossberg neural network with delays. Neurocomputing 73:1344–1351CrossRefMATH Pan J, Zhong S (2010) Dynamical behaviors of impulsive reaction-diffusion Cohen–Grossberg neural network with delays. Neurocomputing 73:1344–1351CrossRefMATH
30.
go back to reference Li K, Song Q (2008) Exponential stability of impulsive Cohen–Grossberg neural networks with time-varying delays and reaction-diffusion term. Neurocomputing 72(1–3):231–240CrossRef Li K, Song Q (2008) Exponential stability of impulsive Cohen–Grossberg neural networks with time-varying delays and reaction-diffusion term. Neurocomputing 72(1–3):231–240CrossRef
31.
go back to reference Li Z, Li KL (2009) Stability analysis of impulsive Cohen–Grossberg neural networks with distributed delays and reaction-diffusion terms. Appl Math Model 33:1337–1348MathSciNetCrossRefMATH Li Z, Li KL (2009) Stability analysis of impulsive Cohen–Grossberg neural networks with distributed delays and reaction-diffusion terms. Appl Math Model 33:1337–1348MathSciNetCrossRefMATH
32.
go back to reference Qiu J (2007) Exponential stability of impulsive neural networks with time-varying delays and reaction-diffusion term. Neurocomputing 70:1102–1108CrossRef Qiu J (2007) Exponential stability of impulsive neural networks with time-varying delays and reaction-diffusion term. Neurocomputing 70:1102–1108CrossRef
33.
go back to reference Zhang X, Wu SL, Li KL (2011) Delay-dependent exponential stability for impulsive Cohen-Grossberg neural networks with time-varying delays and reaction-diffusion terms. Commun Nonlinear Sci Numer Simul 16:1524–1532MathSciNetCrossRefMATH Zhang X, Wu SL, Li KL (2011) Delay-dependent exponential stability for impulsive Cohen-Grossberg neural networks with time-varying delays and reaction-diffusion terms. Commun Nonlinear Sci Numer Simul 16:1524–1532MathSciNetCrossRefMATH
34.
go back to reference Wang J, Wu H, Guo L (2013) Stability analysis of reaction-diffusion Cohen–Grossberg neural networks under impulsive control. Neurocomputing 106(15):21–30CrossRef Wang J, Wu H, Guo L (2013) Stability analysis of reaction-diffusion Cohen–Grossberg neural networks under impulsive control. Neurocomputing 106(15):21–30CrossRef
35.
go back to reference Hu C, Jiang H, Teng Z (2010) Impulsive control and synchronization for delayed neural networks with reaction-diffusion terms. IEEE Trans Neural Netw 21:67–81CrossRef Hu C, Jiang H, Teng Z (2010) Impulsive control and synchronization for delayed neural networks with reaction-diffusion terms. IEEE Trans Neural Netw 21:67–81CrossRef
36.
go back to reference Haykin S (1994) Neural networks. Prentice-Hall, Upper Saddle RiverMATH Haykin S (1994) Neural networks. Prentice-Hall, Upper Saddle RiverMATH
37.
go back to reference Wan L, Zhou Q (2008) Exponential stability of stochastic reaction-diffusion Cohen–Grossberg neural networks with delays. Appl Math Comput 206:818–824MathSciNetMATH Wan L, Zhou Q (2008) Exponential stability of stochastic reaction-diffusion Cohen–Grossberg neural networks with delays. Appl Math Comput 206:818–824MathSciNetMATH
38.
go back to reference Lv Y, Lv W, Sun JH (2008) Convergence dynamics of stochastic reaction-diffusion recurrent neural networks with continuously distributed delays. Nonlinear Anal Real World Appl 9:1590–1606MathSciNetCrossRefMATH Lv Y, Lv W, Sun JH (2008) Convergence dynamics of stochastic reaction-diffusion recurrent neural networks with continuously distributed delays. Nonlinear Anal Real World Appl 9:1590–1606MathSciNetCrossRefMATH
39.
go back to reference Xu X, Zhang J, Zhang W (2011) Mean square exponential stability of stochastic neural networks with reaction-diffusion terms and delay. Appl Math Lett 24:5–11MathSciNetCrossRefMATH Xu X, Zhang J, Zhang W (2011) Mean square exponential stability of stochastic neural networks with reaction-diffusion terms and delay. Appl Math Lett 24:5–11MathSciNetCrossRefMATH
40.
go back to reference Balasubramaniam P, Vidhya C (2010) Global asymptotic stability of stochastic BAM neural networks with distributed delays and reaction-diffusion terms. J Comput Appl Math 234:3458–3466MathSciNetCrossRefMATH Balasubramaniam P, Vidhya C (2010) Global asymptotic stability of stochastic BAM neural networks with distributed delays and reaction-diffusion terms. J Comput Appl Math 234:3458–3466MathSciNetCrossRefMATH
41.
go back to reference Li X (2010) Existence and global exponential stability of periodic solution for delayed neural networks with impulsive and stochastic effects. Neurocomputing 73:749–758CrossRef Li X (2010) Existence and global exponential stability of periodic solution for delayed neural networks with impulsive and stochastic effects. Neurocomputing 73:749–758CrossRef
42.
go back to reference Yang G, Kao Y, Li W, Sun X (2013) Exponential stability of impulsive stochastic fuzzy cellular neural networks with mixed delays and reaction-diffusion terms. Neural Comput Appl 23:1109–1121CrossRef Yang G, Kao Y, Li W, Sun X (2013) Exponential stability of impulsive stochastic fuzzy cellular neural networks with mixed delays and reaction-diffusion terms. Neural Comput Appl 23:1109–1121CrossRef
43.
go back to reference Li XD (2009) Existence and global exponential stability of periodic solution for impulsive Cohen–Grossberg-type BAM neural networks with continuously distributed delays. Appl Math Comput 215:292–307MathSciNetMATH Li XD (2009) Existence and global exponential stability of periodic solution for impulsive Cohen–Grossberg-type BAM neural networks with continuously distributed delays. Appl Math Comput 215:292–307MathSciNetMATH
44.
go back to reference Hardy GH, Littlewood JE, Polya G (1952) Inequalities, 2nd edn. Cambridge Univ. Press, LondonMATH Hardy GH, Littlewood JE, Polya G (1952) Inequalities, 2nd edn. Cambridge Univ. Press, LondonMATH
45.
go back to reference Mao X (1997) Stochastic differential equations and applications, 1st edn. Horwood, ChichesterMATH Mao X (1997) Stochastic differential equations and applications, 1st edn. Horwood, ChichesterMATH
46.
go back to reference Omatu S, Seinfeld JH (1989) Distributed parameter systems. Clarendon-Press, OxfordMATH Omatu S, Seinfeld JH (1989) Distributed parameter systems. Clarendon-Press, OxfordMATH
47.
go back to reference Taniguchi Takeshi (1998) Almost sure exponential stability for stochastic partial functional differential equations. Stoch Anal Appl 16(5):965–975MathSciNetCrossRefMATH Taniguchi Takeshi (1998) Almost sure exponential stability for stochastic partial functional differential equations. Stoch Anal Appl 16(5):965–975MathSciNetCrossRefMATH
48.
go back to reference Li X, Fu X, Balasubramaniam P, Rakkiyappan R (2010) Existence, uniqueness and stability analysis of recurrent neural networks with time delay in the leakage term under impulsive perturbations. Nonlinear Anal Real World Appl 11(5):4092–4108MathSciNetCrossRefMATH Li X, Fu X, Balasubramaniam P, Rakkiyappan R (2010) Existence, uniqueness and stability analysis of recurrent neural networks with time delay in the leakage term under impulsive perturbations. Nonlinear Anal Real World Appl 11(5):4092–4108MathSciNetCrossRefMATH
49.
go back to reference Cronin-Scanlon J (1964) Fixed points and topological degree in nonlinear analysis. In: Math. Surveys, vol. 11, Amer. Math. Soc., Providence Cronin-Scanlon J (1964) Fixed points and topological degree in nonlinear analysis. In: Math. Surveys, vol. 11, Amer. Math. Soc., Providence
50.
go back to reference Zhao H, Wang K (2006) Dynamical behaviors of Cohen-Grossberg neural networks with delays and reaction-diffusion terms. Neurocomputing 70(1):536–543CrossRef Zhao H, Wang K (2006) Dynamical behaviors of Cohen-Grossberg neural networks with delays and reaction-diffusion terms. Neurocomputing 70(1):536–543CrossRef
51.
go back to reference Huang CX, Cao JD (2010) On pth moment exponential stability of stochastic Cohen–Grossberg neural networks with time-varying delays. Neurocomputing 73:986–990CrossRef Huang CX, Cao JD (2010) On pth moment exponential stability of stochastic Cohen–Grossberg neural networks with time-varying delays. Neurocomputing 73:986–990CrossRef
52.
go back to reference Zhao H, Ding N (2006) Dynamic analysis of stochastic Cohen–Grossberg neural networks with time delays. Appl Math Comput 183(1):464–470MathSciNetMATH Zhao H, Ding N (2006) Dynamic analysis of stochastic Cohen–Grossberg neural networks with time delays. Appl Math Comput 183(1):464–470MathSciNetMATH
53.
go back to reference Lu W, Chen T (2007) \(R_n^+ \)-global stability of a Cohen–Grossberg neural network with nonnegative equilibria. Neural Netw 20:714–722CrossRefMATH Lu W, Chen T (2007) \(R_n^+ \)-global stability of a Cohen–Grossberg neural network with nonnegative equilibria. Neural Netw 20:714–722CrossRefMATH
Metadata
Title
th Moment Exponential Stability of Hybrid Delayed Reaction–Diffusion Cohen–Grossberg Neural Networks
Authors
Weiyuan Zhang
Junmin Li
Chenyang Ding
Keyi Xing
Publication date
02-12-2016
Publisher
Springer US
Published in
Neural Processing Letters / Issue 1/2017
Print ISSN: 1370-4621
Electronic ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-016-9572-4

Other articles of this Issue 1/2017

Neural Processing Letters 1/2017 Go to the issue