Skip to main content
Top

2014 | OriginalPaper | Chapter

9. The Application of Nanostructure MoS2 Materials in Energy Storage and Conversion

Authors : Xue Zhang, Jin Liang, Shujiang Ding

Published in: MoS2

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A series of environmental problems have emerged owing to the excess consumption of fossil fuels. Development of clean alternative energy has turned into an urgent issue facing to all the nations. Nanostructured MoS2, with particular chemical and physical properties, has been studied extensively and intensively over the past years. A comprehensive overview of the progress achieved within the application of MoS2 in energy storage and conversion will be given, which is composed of lithium ion batteries, Mg ion batteries, dye-sensitized solar cells and photocatalytic hydrogen evolution.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yue, G., Lin, J.Y., Tai, S.Y.: A catalytic composite film of MoS2/graphene flake as a counter electrode for Pt-free dye-sensitized solar cells. Electrochim. Acta 85, 162–168 (2012)CrossRef Yue, G., Lin, J.Y., Tai, S.Y.: A catalytic composite film of MoS2/graphene flake as a counter electrode for Pt-free dye-sensitized solar cells. Electrochim. Acta 85, 162–168 (2012)CrossRef
2.
go back to reference Zhang, X., Luster, B., Church A., et al.: Carbon nanotube-MoS2 composites as solid lubricants. ACS Appl. Mater. Interfaces 1(3), 735–739 (2009) Zhang, X., Luster, B., Church A., et al.: Carbon nanotube-MoS2 composites as solid lubricants. ACS Appl. Mater. Interfaces 1(3), 735–739 (2009)
3.
go back to reference Wang, S., Jiang, X., Zheng, H., et al.: Solvothermal synthesis of MoS2/Carbon nanotube composites with improved electrochemical performance for lithium ion batteries. Nanosci. Nanotechnol. Lett. 4(4), 378–383 (2012) Wang, S., Jiang, X., Zheng, H., et al.: Solvothermal synthesis of MoS2/Carbon nanotube composites with improved electrochemical performance for lithium ion batteries. Nanosci. Nanotechnol. Lett. 4(4), 378–383 (2012)
4.
go back to reference Li, H., Li, W.J., Ma, L., et al.: Electrochemical lithiation/delithiation performances of 3D flowerlike MoS2 powders prepared by ionic liquid assisted hydrothermal route. J. Alloy. Compd. 471(1–2), 442–447 (2009)CrossRef Li, H., Li, W.J., Ma, L., et al.: Electrochemical lithiation/delithiation performances of 3D flowerlike MoS2 powders prepared by ionic liquid assisted hydrothermal route. J. Alloy. Compd. 471(1–2), 442–447 (2009)CrossRef
5.
go back to reference Feng, C.Q., Ma, J., Li, H., et al.: Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications. Mater. Res. Bull. 44(9), 1811–1815 (2009)CrossRef Feng, C.Q., Ma, J., Li, H., et al.: Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications. Mater. Res. Bull. 44(9), 1811–1815 (2009)CrossRef
6.
go back to reference Ding, S.J., Zhang, D.Y., Chen, J.S., et al.: Facile synthesis of hierarchical MoS2 microspheres composed of few-layered nanosheets and their lithium storage properties. Nanoscale 4(1), 95–98 (2012)CrossRef Ding, S.J., Zhang, D.Y., Chen, J.S., et al.: Facile synthesis of hierarchical MoS2 microspheres composed of few-layered nanosheets and their lithium storage properties. Nanoscale 4(1), 95–98 (2012)CrossRef
7.
go back to reference Wang, M., Li, G., Xu, H., et al.: Enhanced lithium storage performances of hierarchical hollow MoS2 nanoparticles assembled from nanosheets. ACS Appl. Mater. Interfaces 5(3), 1003–1008 (2013) Wang, M., Li, G., Xu, H., et al.: Enhanced lithium storage performances of hierarchical hollow MoS2 nanoparticles assembled from nanosheets. ACS Appl. Mater. Interfaces 5(3), 1003–1008 (2013)
8.
go back to reference Tenne, R., Margulis, L., Genut, M., et al.: Polyhedral and cylindrical structures of tungsten disulfide. Nature 360(6403), 444–446 (1992)CrossRef Tenne, R., Margulis, L., Genut, M., et al.: Polyhedral and cylindrical structures of tungsten disulfide. Nature 360(6403), 444–446 (1992)CrossRef
9.
go back to reference Feldman, Y., Wasserman, E., Srolovitz, D.J., et al.: High-rate, gas-phase growth of Mos2 nested inorganic fullerenes and nanotubes. Science 267(5195), 222–225 (1995)CrossRef Feldman, Y., Wasserman, E., Srolovitz, D.J., et al.: High-rate, gas-phase growth of Mos2 nested inorganic fullerenes and nanotubes. Science 267(5195), 222–225 (1995)CrossRef
10.
go back to reference Feldman, Y., Frey, G.L., Homyonfer, M., et al.: Bulk synthesis of inorganic fullerene-like MS(2) (M = Mo, W) from the respective trioxides and the reaction mechanism. J. Am. Chem. Soc. 118(23), 5362–5367 (1996)CrossRef Feldman, Y., Frey, G.L., Homyonfer, M., et al.: Bulk synthesis of inorganic fullerene-like MS(2) (M = Mo, W) from the respective trioxides and the reaction mechanism. J. Am. Chem. Soc. 118(23), 5362–5367 (1996)CrossRef
11.
go back to reference Zelenski, C.M., Dorhout, P.K.: Template synthesis of near-monodisperse microscale nanofibers and nanotubules of MoS2. J. Am. Chem. Soc. 120(4), 734–742 (1998)CrossRef Zelenski, C.M., Dorhout, P.K.: Template synthesis of near-monodisperse microscale nanofibers and nanotubules of MoS2. J. Am. Chem. Soc. 120(4), 734–742 (1998)CrossRef
12.
go back to reference Nath, M., Govindaraj, A., Rao, C.N.R.: Simple synthesis of MoS2 and WS2 nanotubes. Adv. Mater. 13(4), 283 (2001)CrossRef Nath, M., Govindaraj, A., Rao, C.N.R.: Simple synthesis of MoS2 and WS2 nanotubes. Adv. Mater. 13(4), 283 (2001)CrossRef
13.
go back to reference Bonneau, P.R., Jarvis, R.F., Kaner, R.B.: Rapid solid-state synthesis of materials from molybdenum-disulfide to refractories. Nature 349(6309), 510–512 (1991)CrossRef Bonneau, P.R., Jarvis, R.F., Kaner, R.B.: Rapid solid-state synthesis of materials from molybdenum-disulfide to refractories. Nature 349(6309), 510–512 (1991)CrossRef
14.
go back to reference Mdleleni, M.M., Hyeon, T., Suslick, K.S.: Sonochemical synthesis of nanostructured molybdenum sulfide. J. Am. Chem. Soc. 120(24), 6189–6190 (1998)CrossRef Mdleleni, M.M., Hyeon, T., Suslick, K.S.: Sonochemical synthesis of nanostructured molybdenum sulfide. J. Am. Chem. Soc. 120(24), 6189–6190 (1998)CrossRef
15.
go back to reference Lee, H., Kanai, M., Kawai, T.: Preparation of transition metal chalcogenide thin films by pulsed laser ablation. Thin Solid Films 277(1–2), 98–100 (1996)CrossRef Lee, H., Kanai, M., Kawai, T.: Preparation of transition metal chalcogenide thin films by pulsed laser ablation. Thin Solid Films 277(1–2), 98–100 (1996)CrossRef
16.
go back to reference Vollath, D., Szabo, D.V.: Synthesis of nanocrystalline MoS2 and WS2 in a microwave plasma. Mater. Lett. 35(3–4), 236–244 (1998)CrossRef Vollath, D., Szabo, D.V.: Synthesis of nanocrystalline MoS2 and WS2 in a microwave plasma. Mater. Lett. 35(3–4), 236–244 (1998)CrossRef
17.
go back to reference Smith Ronan, J., King Paul, J., Lotya, M., et al.: Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 23(34), 3944 (2011) Smith Ronan, J., King Paul, J., Lotya, M., et al.: Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 23(34), 3944 (2011)
18.
go back to reference Yao, Y., Lin, Z., Li, Z., et al.: Large-scale production of two-dimensional nanosheets. J. Mater. Chem. 22(27), 13494–13499 (2012) Yao, Y., Lin, Z., Li, Z., et al.: Large-scale production of two-dimensional nanosheets. J. Mater. Chem. 22(27), 13494–13499 (2012)
19.
go back to reference Lee, Y.H., Zhang, X.Q., Zhang, W., et al.: Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24(17), 2320–2325 (2012) Lee, Y.H., Zhang, X.Q., Zhang, W., et al.: Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24(17), 2320–2325 (2012)
20.
go back to reference Zeng, Z., Yin, Z., Huang, X., et al.: Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem.-Int. Ed. 50(47), 11093–11097 (2011) Zeng, Z., Yin, Z., Huang, X., et al.: Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem.-Int. Ed. 50(47), 11093–11097 (2011)
21.
go back to reference Castellanos-Gomez, A., Barkelid, M., Goossens, A.M., et al.: Laser-thinning of MoS2: on demand generation of a single-layer semiconductor. Nano Lett. 12(6), 3187–3192 (2012)CrossRef Castellanos-Gomez, A., Barkelid, M., Goossens, A.M., et al.: Laser-thinning of MoS2: on demand generation of a single-layer semiconductor. Nano Lett. 12(6), 3187–3192 (2012)CrossRef
22.
go back to reference Chen, X.H., Fan, R.: Low-temperature hydrothermal synthesis of transition metal dichalcogenides. Chem. Mater. 13(3), 802–805 (2001)CrossRef Chen, X.H., Fan, R.: Low-temperature hydrothermal synthesis of transition metal dichalcogenides. Chem. Mater. 13(3), 802–805 (2001)CrossRef
23.
go back to reference Chen, J., Kuriyama, N., Yuan, H., et al.: Electrochemical hydrogen storage in MoS2 nanotubes. J. Am. Chem. Soc. 123(47), 11813–11814 (2001)CrossRef Chen, J., Kuriyama, N., Yuan, H., et al.: Electrochemical hydrogen storage in MoS2 nanotubes. J. Am. Chem. Soc. 123(47), 11813–11814 (2001)CrossRef
24.
go back to reference Ding, S.J., Chen, J.S., Lou, X.W.: Glucose-assisted growth of MoS2 nanosheets on CNT backbone for improved lithium storage properties. Chem.-A Eur. J. 17(47), 13142–13145 (2011)CrossRef Ding, S.J., Chen, J.S., Lou, X.W.: Glucose-assisted growth of MoS2 nanosheets on CNT backbone for improved lithium storage properties. Chem.-A Eur. J. 17(47), 13142–13145 (2011)CrossRef
25.
go back to reference Chhowalla, M., Amaratunga, G.: Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature 407(6801), 164–167 (2000)CrossRef Chhowalla, M., Amaratunga, G.: Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature 407(6801), 164–167 (2000)CrossRef
26.
go back to reference Zhang, J., Soon Jia, M., Loh Kian, P., et al.: Magnetic molybdenum disulfide nanosheet films. Nano Lett. 7(8), 2370–2376 (2007) Zhang, J., Soon Jia, M., Loh Kian, P., et al.: Magnetic molybdenum disulfide nanosheet films. Nano Lett. 7(8), 2370–2376 (2007)
27.
go back to reference Divigalpitiya, W.M.R., Frindt, R.F., Morrison, S.R.: Inclusion systems of organic-molecules in restacked single-layer molybdenum-disulfide. Science 246(4928), 369–371 (1989) Divigalpitiya, W.M.R., Frindt, R.F., Morrison, S.R.: Inclusion systems of organic-molecules in restacked single-layer molybdenum-disulfide. Science 246(4928), 369–371 (1989)
28.
go back to reference Sun, M.Y., Adjaye, J., Nelson, A.E.: Theoretical investigations of the structures and properties of molybdenum-based sulfide catalysts. Appl. Catal. A-Gen. 263(2), 131–143 (2004)CrossRef Sun, M.Y., Adjaye, J., Nelson, A.E.: Theoretical investigations of the structures and properties of molybdenum-based sulfide catalysts. Appl. Catal. A-Gen. 263(2), 131–143 (2004)CrossRef
29.
go back to reference Park, S.K., Yu, S.H., Woo, S., et al.: A simple l-cysteine-assisted method for the growth of MoS2 nanosheets on carbon nanotubes for high-performance lithium ion batteries. Dalton Trans. 42(7), 2399–2405 (2013)CrossRef Park, S.K., Yu, S.H., Woo, S., et al.: A simple l-cysteine-assisted method for the growth of MoS2 nanosheets on carbon nanotubes for high-performance lithium ion batteries. Dalton Trans. 42(7), 2399–2405 (2013)CrossRef
30.
go back to reference Dresselhaus, M.S., Thomas, I.L.: Alternative energy technologies. Nature 414(6861), 332–337 (2001)CrossRef Dresselhaus, M.S., Thomas, I.L.: Alternative energy technologies. Nature 414(6861), 332–337 (2001)CrossRef
31.
go back to reference Sen, U.K., Mitra, S.: High-rate and high-energy-density lithium-ion battery anode containing 2D MoS2 nanowall and cellulose binder. ACS Appl. Mater. Interfaces 5(4), 1240–1247 (2013)CrossRef Sen, U.K., Mitra, S.: High-rate and high-energy-density lithium-ion battery anode containing 2D MoS2 nanowall and cellulose binder. ACS Appl. Mater. Interfaces 5(4), 1240–1247 (2013)CrossRef
32.
go back to reference Yang, L.C., Wang, S.N., Mao, J.J., et al.: Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv. Mater. 25(8), 1180–1184 (2013)CrossRef Yang, L.C., Wang, S.N., Mao, J.J., et al.: Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv. Mater. 25(8), 1180–1184 (2013)CrossRef
33.
go back to reference Bruce Peter G., Scrosati, B., Tarascon, J.M.: Nanomaterials for rechargeable lithium batteries. Angew. chem.-Int. ed. 47(16), 2930–2946 (2008) Bruce Peter G., Scrosati, B., Tarascon, J.M.: Nanomaterials for rechargeable lithium batteries. Angew. chem.-Int. ed. 47(16), 2930–2946 (2008)
34.
go back to reference Winter, M., Brodd, R.J.: What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245–4269 (2004)CrossRef Winter, M., Brodd, R.J.: What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245–4269 (2004)CrossRef
35.
go back to reference Zhou, X.S., Wan, L.J., Guo, Y.G.: Synthesis of MoS2 nanosheet-graphene nanosheet hybrid materials for stable lithium storage. Chem. Commun. 49(18), 1838–1840 (2013)CrossRef Zhou, X.S., Wan, L.J., Guo, Y.G.: Synthesis of MoS2 nanosheet-graphene nanosheet hybrid materials for stable lithium storage. Chem. Commun. 49(18), 1838–1840 (2013)CrossRef
36.
go back to reference Whittingham, M.S.: Lithium batteries and cathode materials. Chem. Rev. 104(10), 4271–4301 (2004)CrossRef Whittingham, M.S.: Lithium batteries and cathode materials. Chem. Rev. 104(10), 4271–4301 (2004)CrossRef
37.
go back to reference Liu, H., Su, D.W., Zhou, R.F., et al.: Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage. Adv. Energy Mater. 2(8), 970–975 (2012)CrossRef Liu, H., Su, D.W., Zhou, R.F., et al.: Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage. Adv. Energy Mater. 2(8), 970–975 (2012)CrossRef
38.
go back to reference Sathish, M., Tomai, T., Honma, I.: Graphene anchored with Fe3O4 nanoparticles as anode for enhanced Li-ion storage. J. Power Sources 217, 85–91 (2012)CrossRef Sathish, M., Tomai, T., Honma, I.: Graphene anchored with Fe3O4 nanoparticles as anode for enhanced Li-ion storage. J. Power Sources 217, 85–91 (2012)CrossRef
39.
go back to reference Chen, S., Wang, Y., Ahn, H., et al.: Microwave hydrothermal synthesis of high performance tin-graphene nanocomposites for lithium ion batteries. J. Power Sources 216, 22–27 (2012) Chen, S., Wang, Y., Ahn, H., et al.: Microwave hydrothermal synthesis of high performance tin-graphene nanocomposites for lithium ion batteries. J. Power Sources 216, 22–27 (2012)
40.
go back to reference Park, S.K., Yu, S.H., Woo, S., et al.: A facile and green strategy for the synthesis of MoS2 nanospheres with excellent Li-ion storage properties. Cryst. Eng. Comm. 14(24), 8323–8325 (2012)CrossRef Park, S.K., Yu, S.H., Woo, S., et al.: A facile and green strategy for the synthesis of MoS2 nanospheres with excellent Li-ion storage properties. Cryst. Eng. Comm. 14(24), 8323–8325 (2012)CrossRef
41.
go back to reference Hwang, H., Kim, H., Cho, J.: MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 11(11), 4826–4830 (2011)CrossRef Hwang, H., Kim, H., Cho, J.: MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 11(11), 4826–4830 (2011)CrossRef
42.
go back to reference Xiao, J., Choi, D.W., Cosimbescu, L., et al.: Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries. Chem. Mater. 22(16), 4522–4524 (2010)CrossRef Xiao, J., Choi, D.W., Cosimbescu, L., et al.: Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries. Chem. Mater. 22(16), 4522–4524 (2010)CrossRef
43.
go back to reference Wang, Z., Chen, T., Chen, W.X., et al.: CTAB-assisted synthesis of single-layer MoS2-graphene composites as anode materials of Li-ion batteries. J Mater. Chem. A 1(6), 2202–2210 (2013)CrossRef Wang, Z., Chen, T., Chen, W.X., et al.: CTAB-assisted synthesis of single-layer MoS2-graphene composites as anode materials of Li-ion batteries. J Mater. Chem. A 1(6), 2202–2210 (2013)CrossRef
44.
go back to reference Zhang, C.F., Wu, H.B., Guo, Z.P., et al.: Facile synthesis of carbon-coated MoS2 nanorods with enhanced lithium storage properties. Electrochem. Commun. 20, 7–10 (2012)CrossRef Zhang, C.F., Wu, H.B., Guo, Z.P., et al.: Facile synthesis of carbon-coated MoS2 nanorods with enhanced lithium storage properties. Electrochem. Commun. 20, 7–10 (2012)CrossRef
45.
go back to reference Du, G.D., Guo, Z.P., Wang, S.Q., et al.: Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chem. Commun. 46(7), 1106–1108 (2010)CrossRef Du, G.D., Guo, Z.P., Wang, S.Q., et al.: Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chem. Commun. 46(7), 1106–1108 (2010)CrossRef
46.
go back to reference Wang, Q., Li, J.H.: Facilitated lithium storage in MoS2 overlayers supported on coaxial carbon nanotubes. J. Phys. Chem. C 111(4), 1675–1682 (2007)CrossRef Wang, Q., Li, J.H.: Facilitated lithium storage in MoS2 overlayers supported on coaxial carbon nanotubes. J. Phys. Chem. C 111(4), 1675–1682 (2007)CrossRef
47.
go back to reference Nogueira, A., Znaiguia, R., Uzio, D., et al.: Curved nanostructures of unsupported and Al2O3-supported MoS2 catalysts: synthesis and HDS catalytic properties. Appl. Catal. A-Gen. 429, 92–105 (2012) Nogueira, A., Znaiguia, R., Uzio, D., et al.: Curved nanostructures of unsupported and Al2O3-supported MoS2 catalysts: synthesis and HDS catalytic properties. Appl. Catal. A-Gen. 429, 92–105 (2012)
48.
go back to reference Rapoport, L., Bilik, Y., Feldman, Y., et al.: Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387(6635), 791–793 (1997)CrossRef Rapoport, L., Bilik, Y., Feldman, Y., et al.: Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387(6635), 791–793 (1997)CrossRef
49.
go back to reference Sun, M.Y., Adjaye, J., Nelson, A.E.: Theoretical investigations of the structures and properties of molybdenum-based sulfide catalysts. Appl. Catal. A-Gen. 263(2), 131–143 (2004)CrossRef Sun, M.Y., Adjaye, J., Nelson, A.E.: Theoretical investigations of the structures and properties of molybdenum-based sulfide catalysts. Appl. Catal. A-Gen. 263(2), 131–143 (2004)CrossRef
50.
go back to reference Bindumadhavan, K., Srivastava, S.K., Mahanty, S.: MoS2-MWCNT hybrids as a superior anode in lithium-ion batteries. Chem. Commun. 49(18), 1823–1825 (2013)CrossRef Bindumadhavan, K., Srivastava, S.K., Mahanty, S.: MoS2-MWCNT hybrids as a superior anode in lithium-ion batteries. Chem. Commun. 49(18), 1823–1825 (2013)CrossRef
51.
go back to reference Guo, Y.G., Hu, J.S., Wan, L.J.: Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 20(15), 2878–2887 (2008)CrossRef Guo, Y.G., Hu, J.S., Wan, L.J.: Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 20(15), 2878–2887 (2008)CrossRef
52.
go back to reference Li, H., Wang, Z., Chen, L., et al.: Research on advanced materials for Li-ion batteries. Adv. Mater. 21(45), 4593–4607 (2009) Li, H., Wang, Z., Chen, L., et al.: Research on advanced materials for Li-ion batteries. Adv. Mater. 21(45), 4593–4607 (2009)
53.
go back to reference Chen, J., Cheng, F.: Combination of lightweight elements and nanostructured materials for batteries. Acc. Chem. Res. 42(6), 713–723 (2009)CrossRef Chen, J., Cheng, F.: Combination of lightweight elements and nanostructured materials for batteries. Acc. Chem. Res. 42(6), 713–723 (2009)CrossRef
54.
go back to reference Chang, K., Chen, W.X., Ma, L., et al.: Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries. J. Mater. Chem. 21(17), 6251–6257 (2011)CrossRef Chang, K., Chen, W.X., Ma, L., et al.: Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries. J. Mater. Chem. 21(17), 6251–6257 (2011)CrossRef
55.
go back to reference Chang, K., Chen, W.X.: l-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5(6), 4720–4728 (2011)CrossRef Chang, K., Chen, W.X.: l-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5(6), 4720–4728 (2011)CrossRef
56.
go back to reference Das, S.K., Mallavajula, R., Jayaprakash, N., et al.: Self-assembled MoS2-carbon nanostructures: influence of nanostructuring and carbon on lithium battery performance. J. Mater. Chem. 22(26), 12988–12992 (2012)CrossRef Das, S.K., Mallavajula, R., Jayaprakash, N., et al.: Self-assembled MoS2-carbon nanostructures: influence of nanostructuring and carbon on lithium battery performance. J. Mater. Chem. 22(26), 12988–12992 (2012)CrossRef
57.
go back to reference Chang, K., Chen, W.X.: Single-layer MoS2/graphene dispersed in amorphous carbon: towards high electrochemical performances in rechargeable lithium ion batteries. J. Mater. Chem. 21(43), 17175–17184 (2011)CrossRef Chang, K., Chen, W.X.: Single-layer MoS2/graphene dispersed in amorphous carbon: towards high electrochemical performances in rechargeable lithium ion batteries. J. Mater. Chem. 21(43), 17175–17184 (2011)CrossRef
58.
go back to reference Chang, K., Chen, W.X.: In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem. Commun. 47(14), 4252–4254 (2011)CrossRef Chang, K., Chen, W.X.: In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem. Commun. 47(14), 4252–4254 (2011)CrossRef
59.
go back to reference Aurbach, D., Lu, Z., Schechter, A., et al.: Prototype systems for rechargeable magnesium batteries. Nature 407(6805), 724–727 (2000)CrossRef Aurbach, D., Lu, Z., Schechter, A., et al.: Prototype systems for rechargeable magnesium batteries. Nature 407(6805), 724–727 (2000)CrossRef
60.
go back to reference Peng, B., Chen, J.: Functional materials with high-efficiency energy storage and conversion for batteries and fuel cells. Coord. Chem. Rev. 253(23–24), 2805–2813 (2009)CrossRef Peng, B., Chen, J.: Functional materials with high-efficiency energy storage and conversion for batteries and fuel cells. Coord. Chem. Rev. 253(23–24), 2805–2813 (2009)CrossRef
61.
go back to reference Aurbach, D., Suresh Gurukar, S., Levi, E., et al.: Progress in rechargeable magnesium battery technology. Adv. Mater. 19(23), 4260 (2007) Aurbach, D., Suresh Gurukar, S., Levi, E., et al.: Progress in rechargeable magnesium battery technology. Adv. Mater. 19(23), 4260 (2007)
62.
go back to reference Levi, E., Gofer, Y., Aurbach, D.: On the way to rechargeable Mg batteries: the challenge of new cathode materials. Chem. Mater. 22(3), 860–868 (2010)CrossRef Levi, E., Gofer, Y., Aurbach, D.: On the way to rechargeable Mg batteries: the challenge of new cathode materials. Chem. Mater. 22(3), 860–868 (2010)CrossRef
63.
go back to reference Novak, P., Imhof, R., Haas, O.: Magnesium insertion electrodes for rechargeable nonaqueous batteries - a competitive alternative to lithium? Electrochim. Acta 45(1–2), 351–367 (1999)CrossRef Novak, P., Imhof, R., Haas, O.: Magnesium insertion electrodes for rechargeable nonaqueous batteries - a competitive alternative to lithium? Electrochim. Acta 45(1–2), 351–367 (1999)CrossRef
64.
go back to reference Liang, Y.L., Feng, R.J., Yang, S.Q., et al.: Rechargeable Mg batteries with graphene-like MoS2 cathode and ultrasmall Mg nanoparticle anode. Adv. Mater. 23(5), 640 (2011)CrossRef Liang, Y.L., Feng, R.J., Yang, S.Q., et al.: Rechargeable Mg batteries with graphene-like MoS2 cathode and ultrasmall Mg nanoparticle anode. Adv. Mater. 23(5), 640 (2011)CrossRef
65.
go back to reference Tao, Z.L., Xu, L.N., Gou, X.L., et al.: TiS2 nanotubes as the cathode materials of Mg-ion batteries. Chem. Commun. 18, 2080–2081 (2004)CrossRef Tao, Z.L., Xu, L.N., Gou, X.L., et al.: TiS2 nanotubes as the cathode materials of Mg-ion batteries. Chem. Commun. 18, 2080–2081 (2004)CrossRef
66.
go back to reference Nuli, Y., Yang, J., Li, Y., et al.: Mesoporous magnesium manganese silicate as cathode materials for rechargeable magnesium batteries. Chem. Commun. 46(21), 3794–3796 (2010) Nuli, Y., Yang, J., Li, Y., et al.: Mesoporous magnesium manganese silicate as cathode materials for rechargeable magnesium batteries. Chem. Commun. 46(21), 3794–3796 (2010)
67.
go back to reference Li, X.L., Li, Y.D.: MoS2 nanostructures: synthesis and electrochemical Mg2 + intercalation. J Phys. Chem. B 108(37), 13893–13900 (2004)CrossRef Li, X.L., Li, Y.D.: MoS2 nanostructures: synthesis and electrochemical Mg2 + intercalation. J Phys. Chem. B 108(37), 13893–13900 (2004)CrossRef
68.
go back to reference Liu, C.J., Tai, S.Y., Chou, S.W., et al.: Facile synthesis of MoS2/graphene nanocomposite with high catalytic activity toward triiodide reduction in dye-sensitized solar cells. J. Mater. Chem. 22(39), 21057–21064 (2012)CrossRef Liu, C.J., Tai, S.Y., Chou, S.W., et al.: Facile synthesis of MoS2/graphene nanocomposite with high catalytic activity toward triiodide reduction in dye-sensitized solar cells. J. Mater. Chem. 22(39), 21057–21064 (2012)CrossRef
69.
go back to reference Oregan, B., Gratzel, M.: A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TIO2 films. Nature 353(6346), 737–740 (1991)CrossRef Oregan, B., Gratzel, M.: A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TIO2 films. Nature 353(6346), 737–740 (1991)CrossRef
70.
go back to reference Gratzel, M.: Photoelectrochemical cells. Nature 414(6861), 338–344 (2001)CrossRef Gratzel, M.: Photoelectrochemical cells. Nature 414(6861), 338–344 (2001)CrossRef
71.
go back to reference Graetzel, M.: Recent advances in sensitized mesoscopic solar cells. Acc. Chem. Res. 42(11SI), 1788–1798 (2009) Graetzel, M.: Recent advances in sensitized mesoscopic solar cells. Acc. Chem. Res. 42(11SI), 1788–1798 (2009)
72.
go back to reference Lin, J.Y., Chan, C.Y., Chou, S.W.: Electrophoretic deposition of transparent MoS2-graphene nanosheet composite films as counter electrodes in dye-sensitized solar cells. Chem. Commun. 49(14), 1440–1442 (2013)CrossRef Lin, J.Y., Chan, C.Y., Chou, S.W.: Electrophoretic deposition of transparent MoS2-graphene nanosheet composite films as counter electrodes in dye-sensitized solar cells. Chem. Commun. 49(14), 1440–1442 (2013)CrossRef
73.
go back to reference Olsen, E., Hagen, G., Lindquist, S.E.: Dissolution of platinum in methoxy propionitrile containing LiI/I-2. Sol. Energy Mater. Sol. Cells 63(3), 267–273 (2000)CrossRef Olsen, E., Hagen, G., Lindquist, S.E.: Dissolution of platinum in methoxy propionitrile containing LiI/I-2. Sol. Energy Mater. Sol. Cells 63(3), 267–273 (2000)CrossRef
74.
go back to reference Kay, A., Gratzel, M.: Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Sol. Energy Mater. Sol. Cells 44(1), 99–117 (1996)CrossRef Kay, A., Gratzel, M.: Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Sol. Energy Mater. Sol. Cells 44(1), 99–117 (1996)CrossRef
75.
go back to reference Imoto, K., Takahashi, K., Yamaguchi, T., et al.: High-performance carbon counter electrode for dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 79(4), 459–469 (2003)CrossRef Imoto, K., Takahashi, K., Yamaguchi, T., et al.: High-performance carbon counter electrode for dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 79(4), 459–469 (2003)CrossRef
76.
go back to reference Murakami Takurou, N., Graetzel, M.: Counter electrodes for DSC: application of functional materials as catalysts. Inorg. Chim. ACTA. 361(3), 572–580 (2008) Murakami Takurou, N., Graetzel, M.: Counter electrodes for DSC: application of functional materials as catalysts. Inorg. Chim. ACTA. 361(3), 572–580 (2008)
77.
go back to reference Banks, C.E., Davies, T.J., Wildgoose, G.G., et al.: Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chem. Commun. 7, 829–841 (2005)CrossRef Banks, C.E., Davies, T.J., Wildgoose, G.G., et al.: Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chem. Commun. 7, 829–841 (2005)CrossRef
78.
go back to reference Xiao, Y., Lin, J.Y., Tai, S.Y., et al.: Pulse electropolymerization of high performance PEDOT/MWCNT counter electrodes for Pt-free dye-sensitized solar cells. J. Mater. Chem. 22(37), 19919–19925 (2012)CrossRef Xiao, Y., Lin, J.Y., Tai, S.Y., et al.: Pulse electropolymerization of high performance PEDOT/MWCNT counter electrodes for Pt-free dye-sensitized solar cells. J. Mater. Chem. 22(37), 19919–19925 (2012)CrossRef
79.
go back to reference Wang, M., Anghel Alina, M., Marsan, B., et al.: CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells. J. Am. Chem. Soc. 131(44), 15976 (2009)CrossRef Wang, M., Anghel Alina, M., Marsan, B., et al.: CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells. J. Am. Chem. Soc. 131(44), 15976 (2009)CrossRef
80.
go back to reference Lin, J.Y., Liao, J.H., Chou, S.W.: Cathodic electrodeposition of highly porous cobalt sulfide counter electrodes for dye-sensitized solar cells. Electrochim. Acta 56(24), 8818–8826 (2011)CrossRef Lin, J.Y., Liao, J.H., Chou, S.W.: Cathodic electrodeposition of highly porous cobalt sulfide counter electrodes for dye-sensitized solar cells. Electrochim. Acta 56(24), 8818–8826 (2011)CrossRef
81.
go back to reference Sun, H., Qin, D., Huang, S., et al.: Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique. Energy Environ. Sci. 4(8), 2630–2637 (2011)CrossRef Sun, H., Qin, D., Huang, S., et al.: Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique. Energy Environ. Sci. 4(8), 2630–2637 (2011)CrossRef
82.
go back to reference Jiang, Q.W., Li, G.R., Gao, X.P.: Highly ordered TiN nanotube arrays as counter electrodes for dye-sensitized solar cells. Chem. Commun. 44, 6720–6722 (2009)CrossRef Jiang, Q.W., Li, G.R., Gao, X.P.: Highly ordered TiN nanotube arrays as counter electrodes for dye-sensitized solar cells. Chem. Commun. 44, 6720–6722 (2009)CrossRef
83.
go back to reference Li, G.R., Wang, F., Jiang, Q.W., et al.: Carbon nanotubes with titanium nitride as a low-cost counter-electrode material for dye-sensitized solar cells. Angew. Chem.-Int. Ed. 49(21), 3653–3656 (2010) Li, G.R., Wang, F., Jiang, Q.W., et al.: Carbon nanotubes with titanium nitride as a low-cost counter-electrode material for dye-sensitized solar cells. Angew. Chem.-Int. Ed. 49(21), 3653–3656 (2010)
84.
go back to reference Jang, J.S., Ham, D.J., Ramasamy, E., et al.: Platinum-free tungsten carbides as an efficient counter electrode for dye sensitized solar cells. Chem. Commun. 46(45), 8600–8602 (2010) Jang, J.S., Ham, D.J., Ramasamy, E., et al.: Platinum-free tungsten carbides as an efficient counter electrode for dye sensitized solar cells. Chem. Commun. 46(45), 8600–8602 (2010)
85.
go back to reference Wu, M., Lin, X., Hagfeldt, A., et al.: Low-cost molybdenum carbide and tungsten carbide counter electrodes for dye-sensitized solar cells. Angew. Chem.-Int. Ed. 50(15), 3520–3524 (2011) Wu, M., Lin, X., Hagfeldt, A., et al.: Low-cost molybdenum carbide and tungsten carbide counter electrodes for dye-sensitized solar cells. Angew. Chem.-Int. Ed. 50(15), 3520–3524 (2011)
86.
go back to reference Wu, M., Wang, Y., Lin, X., et al.: Economical and effective sulfide catalysts for dye-sensitized solar cells as counter electrodes. Phys. Chem. Chem. Phys. 13(43), 19298–19301 (2011)CrossRef Wu, M., Wang, Y., Lin, X., et al.: Economical and effective sulfide catalysts for dye-sensitized solar cells as counter electrodes. Phys. Chem. Chem. Phys. 13(43), 19298–19301 (2011)CrossRef
87.
go back to reference Zhou, W., Yin, Z., Du, Y., et al.: Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 9(1), 140–147 (2013)CrossRef Zhou, W., Yin, Z., Du, Y., et al.: Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 9(1), 140–147 (2013)CrossRef
88.
go back to reference Mai, N., Tran Phong, D., Pramana Stevin, S., et al.: In situ photo-assisted deposition of MoS2 electrocatalyst onto zinc cadmium sulphide nanoparticle surfaces to construct an efficient photocatalyst for hydrogen generation. Nanoscale 5(4), 1479–1482 (2013) Mai, N., Tran Phong, D., Pramana Stevin, S., et al.: In situ photo-assisted deposition of MoS2 electrocatalyst onto zinc cadmium sulphide nanoparticle surfaces to construct an efficient photocatalyst for hydrogen generation. Nanoscale 5(4), 1479–1482 (2013)
89.
go back to reference Andrew Frame, F., Osterloh Frank, E.: CdSe-MoS2: a quantum size-confined photocatalyst for hydrogen evolution from water under visible light. J. Phys. Chem. C 114(23), 10628–10633 (2010) Andrew Frame, F., Osterloh Frank, E.: CdSe-MoS2: a quantum size-confined photocatalyst for hydrogen evolution from water under visible light. J. Phys. Chem. C 114(23), 10628–10633 (2010)
90.
go back to reference Hinnemann, B., Moses, P.G., Bonde, J., et al.: Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127(15), 5308–5309 (2005)CrossRef Hinnemann, B., Moses, P.G., Bonde, J., et al.: Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127(15), 5308–5309 (2005)CrossRef
91.
go back to reference Tran Phong, D., Pramana Stevin, S., Kale Vinayak, S., et al.: Novel assembly of an MoS2 electrocatalyst onto a silicon nanowire array electrode to construct a photocathode composed of elements abundant on the Earth for hydrogen generation. Chem.-A Eur. J. 18(44), 13994–13999 (2012) Tran Phong, D., Pramana Stevin, S., Kale Vinayak, S., et al.: Novel assembly of an MoS2 electrocatalyst onto a silicon nanowire array electrode to construct a photocathode composed of elements abundant on the Earth for hydrogen generation. Chem.-A Eur. J. 18(44), 13994–13999 (2012)
92.
go back to reference Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37 (1972)CrossRef Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37 (1972)CrossRef
93.
go back to reference Min, S., Lu, G.: Sites for high efficient photocatalytic hydrogen evolution on a limited-layered MoS2 co-catalyst confined on graphene sheets-the role of graphene. J. Phys. Chem. C. 116(48), 25415–25424 (2012) Min, S., Lu, G.: Sites for high efficient photocatalytic hydrogen evolution on a limited-layered MoS2 co-catalyst confined on graphene sheets-the role of graphene. J. Phys. Chem. C. 116(48), 25415–25424 (2012)
94.
go back to reference Walter Michael, G., Warren Emily, L., Mckone James, R., et al.: Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010) Walter Michael, G., Warren Emily, L., Mckone James, R., et al.: Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010)
95.
go back to reference Chen, G., Li, D., Li, F., et al.: Ball-milling combined calcination synthesis of MoS2/CdS photocatalysts for high photocatalytic H-2 evolution activity under visible light irradiation. Appl. Catal. A-Gen. 443, 138–144 (2012) Chen, G., Li, D., Li, F., et al.: Ball-milling combined calcination synthesis of MoS2/CdS photocatalysts for high photocatalytic H-2 evolution activity under visible light irradiation. Appl. Catal. A-Gen. 443, 138–144 (2012)
96.
go back to reference Xu, Z., Wu, G., Yan, H., et al.: Photocatalytic H-2 evolution on MoS2/CdS catalysts under visible light irradiation. J. Phys. Chem. C 114(4), 1963–1968 (2010)CrossRef Xu, Z., Wu, G., Yan, H., et al.: Photocatalytic H-2 evolution on MoS2/CdS catalysts under visible light irradiation. J. Phys. Chem. C 114(4), 1963–1968 (2010)CrossRef
97.
go back to reference Zhang, W., Wang, Y., Wang, Z., et al.: Highly efficient and noble metal-free NiS/CdS photocatalysts for H-2 evolution from lactic acid sacrificial solution under visible light. Chem. Commun. 46(40), 7631–7633 (2010)CrossRef Zhang, W., Wang, Y., Wang, Z., et al.: Highly efficient and noble metal-free NiS/CdS photocatalysts for H-2 evolution from lactic acid sacrificial solution under visible light. Chem. Commun. 46(40), 7631–7633 (2010)CrossRef
98.
go back to reference Liu, H., Zhang, K., Jing, D., et al.: SrS/CdS composite powder as a novel photocatalyst for hydrogen production under visible light irradiation. Int. J. Hydrogen Energy 35(13SI), 7080–7086 (2010) Liu, H., Zhang, K., Jing, D., et al.: SrS/CdS composite powder as a novel photocatalyst for hydrogen production under visible light irradiation. Int. J. Hydrogen Energy 35(13SI), 7080–7086 (2010)
99.
go back to reference Zhang, J., Yu, J., Zhang, Y., et al.: Visible light photocatalytic H-2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Lett. 11(11), 4774–4779 (2011) Zhang, J., Yu, J., Zhang, Y., et al.: Visible light photocatalytic H-2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Lett. 11(11), 4774–4779 (2011)
100.
go back to reference Xu, Z., Han, J., Ma, G., et al.: Photocatalytic H-2 evolution on CdS loaded with WS2 as co-catalyst under visible light irradiation. J. Phys. Chem. C 115(24), 12202–12208 (2011)CrossRef Xu, Z., Han, J., Ma, G., et al.: Photocatalytic H-2 evolution on CdS loaded with WS2 as co-catalyst under visible light irradiation. J. Phys. Chem. C 115(24), 12202–12208 (2011)CrossRef
101.
go back to reference Xu, Z., Yan, H., Wu, G., et al.: Enhancement of photocatalytic H-2 evolution on CdS by loading MOS2 as co-catalyst under visible light irradiation. J. Am. Chem. Soc. 130(23), 7176 (2008)CrossRef Xu, Z., Yan, H., Wu, G., et al.: Enhancement of photocatalytic H-2 evolution on CdS by loading MOS2 as co-catalyst under visible light irradiation. J. Am. Chem. Soc. 130(23), 7176 (2008)CrossRef
102.
go back to reference Xiang, Q., Yu, J., Jaroniec, M.: Synergetic effect of MoS2 and graphene as co-catalysts for enhanced photocatalytic H-2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134(15), 6575–6578 (2012)CrossRef Xiang, Q., Yu, J., Jaroniec, M.: Synergetic effect of MoS2 and graphene as co-catalysts for enhanced photocatalytic H-2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134(15), 6575–6578 (2012)CrossRef
Metadata
Title
The Application of Nanostructure MoS2 Materials in Energy Storage and Conversion
Authors
Xue Zhang
Jin Liang
Shujiang Ding
Copyright Year
2014
DOI
https://doi.org/10.1007/978-3-319-02850-7_9