Skip to main content
Top

2012 | OriginalPaper | Chapter

3. The Challenges of Biological Materials

Authors : Steven W. Cranford, Markus J. Buehler

Published in: Biomateriomics

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The challenges of biological materials and systems—the inherent complexity—is a result of the diversity of Nature itself. The evolution of structure in biological materials is guided by the ever-changing requirements of the external environment and have resulted in materials with desirable engineering properties, such as high strength, toughness, adaptability, flaw tolerance, self-healing, mutability and multifunctionality, all with a limited set of—and frequently inferior—building materials. As a result of such constraints, Nature implements a flexible material composed of a limited set of molecular components: soft, deformable, highly convoluted proteins, composed of a minute set of amino acids. Providing a common base, protein form and function has evolved intimately, such that even the prediction of folded structure from a known peptide sequence is a technological challenge. Potential functionality is extended through the use of structural hierarchies—resulting in system robustness, efficiency, and design tolerance—while decreasing the efficacy of any single-scale analysis. At the microscale, the complexity manifests as functional, growing, adaptable materials—producing “shaky” platforms for tissue engineering and growth. While biological and chemical cues may change across scales, mechanical insights can provide a common basis regardless of scale or analytical progression.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
3
The Hall-Petch relation explains how reducing the grain size in polycrystalline materials (e.g. metals, ceramics) leads to a strengthening; the inverse Hall-Petch effect refers to a weakening of the material below a maximum strength.
 
4
We note that a purely mechanistic framework is not sufficient, and requires the integration of biology and chemistry to fully understand processes and systems across scale. Mechanics, however, provides a common basis regardless of scale or analytical progression (e.g., top-down or bottom-up).
 
Literature
1.
go back to reference B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell (Taylor & Francis, New York, 2002) B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell (Taylor & Francis, New York, 2002)
2.
go back to reference N. Wang, D. Stamenovic, Mechanics of vimentin intermediate filaments. J. Muscle Res. Cell Motil. 23(5–6), 535–540 (2002) N. Wang, D. Stamenovic, Mechanics of vimentin intermediate filaments. J. Muscle Res. Cell Motil. 23(5–6), 535–540 (2002)
3.
go back to reference P. Fratzl, R. Weinkamer, Nature’s hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007) P. Fratzl, R. Weinkamer, Nature’s hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007)
4.
go back to reference K. Gelse, E. Poschl, T. Aigner, Collagens—structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 55(12), 1531–1546 (2003) K. Gelse, E. Poschl, T. Aigner, Collagens—structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 55(12), 1531–1546 (2003)
5.
go back to reference W. Liu, L.M. Jawerth, E.A. Sparks, M.R. Falvo, R.R. Hantgan, R. Superfine, S.T. Lord, M. Guthold, Fibrin fibers have extraordinary extensibility and elasticity. Science 313(5787), 634 (2006) W. Liu, L.M. Jawerth, E.A. Sparks, M.R. Falvo, R.R. Hantgan, R. Superfine, S.T. Lord, M. Guthold, Fibrin fibers have extraordinary extensibility and elasticity. Science 313(5787), 634 (2006)
6.
go back to reference J.W. Weisel, Biophysics—enigmas of blood clot elasticity. Science 320(5875), 456–457 (2008) J.W. Weisel, Biophysics—enigmas of blood clot elasticity. Science 320(5875), 456–457 (2008)
7.
go back to reference M.J. Buehler, Y.C. Yung, Deformation and failure of protein materials in physiologically extreme conditions and disease. Nat. Mater. 8(3), 175–188 (2009) M.J. Buehler, Y.C. Yung, Deformation and failure of protein materials in physiologically extreme conditions and disease. Nat. Mater. 8(3), 175–188 (2009)
8.
go back to reference R. Lakes, Materials with structural hierarchy. Nature 361(6412), 511–515 (1993) R. Lakes, Materials with structural hierarchy. Nature 361(6412), 511–515 (1993)
9.
go back to reference R.C. Strohman, The coming kuhnian revolution in biology—commentary. Nat. Biotechnol. 15(3), 194 (1997) R.C. Strohman, The coming kuhnian revolution in biology—commentary. Nat. Biotechnol. 15(3), 194 (1997)
10.
go back to reference P. Nurse, Reductionism and Explanation in Cell Biology. Limits of Reductionism in Biology (Wiley, New York, 1998) P. Nurse, Reductionism and Explanation in Cell Biology. Limits of Reductionism in Biology (Wiley, New York, 1998)
11.
go back to reference E.M. Marcotte, Detecting protein function and protein-protein interactions from genome sequences. Science 285, 751–753 (1999) E.M. Marcotte, Detecting protein function and protein-protein interactions from genome sequences. Science 285, 751–753 (1999)
12.
go back to reference D. Eisenberg, E.M. Marcotte, I. Xenarios, T.O. Yeates, Protein function in the post-genomic era. Nature 405(6788), 823–826 (2000) D. Eisenberg, E.M. Marcotte, I. Xenarios, T.O. Yeates, Protein function in the post-genomic era. Nature 405(6788), 823–826 (2000)
13.
go back to reference G.B. Olson, Designing a new material world. Science 288(5468), 993 (2000) G.B. Olson, Designing a new material world. Science 288(5468), 993 (2000)
14.
go back to reference M.J. Buehler, Tu(r)ning weakness to strength. Nano Today 5(5), 379–383 (2010) M.J. Buehler, Tu(r)ning weakness to strength. Nano Today 5(5), 379–383 (2010)
15.
go back to reference T. Ackbarow, M.J. Buehler, Hierarchical coexistence of universality and diversity controls robustness and multi-functionality in protein materials. J. Comput. Theor. Nanosci. 5(7), 1193–1204 (2008) T. Ackbarow, M.J. Buehler, Hierarchical coexistence of universality and diversity controls robustness and multi-functionality in protein materials. J. Comput. Theor. Nanosci. 5(7), 1193–1204 (2008)
16.
go back to reference M.J. Buehler, Y.C. Yung, How protein materials balance strength, robustness, and adaptability. HFSP J. 4(1), 26–40 (2010) M.J. Buehler, Y.C. Yung, How protein materials balance strength, robustness, and adaptability. HFSP J. 4(1), 26–40 (2010)
17.
go back to reference G.E. Fantner, T. Hassenkam, J.H. Kindt, J.C. Weaver, H. Birkedal, L. Pechenik, J.A. Cutroni, G.A.G. Cidade, G.D. Stucky, D.E. Morse, P.K. Hansma, Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat. Mater. 4(8), 612–616 (2005) G.E. Fantner, T. Hassenkam, J.H. Kindt, J.C. Weaver, H. Birkedal, L. Pechenik, J.A. Cutroni, G.A.G. Cidade, G.D. Stucky, D.E. Morse, P.K. Hansma, Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat. Mater. 4(8), 612–616 (2005)
18.
go back to reference T. Hassenkam, G.E. Fantner, J.A. Cutroni, J.C. Weaver, D.E. Morse, P.K. Hansma, High-resolution afm imaging of intact and fractured trabecular bone. Bone 35(1), 4–10 (2004) T. Hassenkam, G.E. Fantner, J.A. Cutroni, J.C. Weaver, D.E. Morse, P.K. Hansma, High-resolution afm imaging of intact and fractured trabecular bone. Bone 35(1), 4–10 (2004)
19.
go back to reference R.O. Ritchie, M.J. Buehler, P. Hansma, Plasticity and toughness in bone. Phys. Today 62(6), 41–47 (2009) R.O. Ritchie, M.J. Buehler, P. Hansma, Plasticity and toughness in bone. Phys. Today 62(6), 41–47 (2009)
20.
go back to reference D. Taylor, J.G. Hazenberg, T.C. Lee, Living with cracks: damage and repair in human bone. Nat. Mater. 6(4), 263–268 (2007) D. Taylor, J.G. Hazenberg, T.C. Lee, Living with cracks: damage and repair in human bone. Nat. Mater. 6(4), 263–268 (2007)
21.
go back to reference S. Rammensee, U. Slotta, T. Scheibel, A.R. Bausch, Assembly mechanism of recombinant spider silk proteins. Proc. Natl. Acad. Sci. USA 105(18), 6590–6595 (2008) S. Rammensee, U. Slotta, T. Scheibel, A.R. Bausch, Assembly mechanism of recombinant spider silk proteins. Proc. Natl. Acad. Sci. USA 105(18), 6590–6595 (2008)
22.
go back to reference F. Vollrath, D. Porter, Spider silk as archetypal protein elastomer. Soft Matter 2(5), 377–385 (2006) F. Vollrath, D. Porter, Spider silk as archetypal protein elastomer. Soft Matter 2(5), 377–385 (2006)
23.
go back to reference N. Du, X.Y. Liu, J. Narayanan, L.A. Li, M.L.M. Lim, D.Q. Li, Design of superior spider silk: from nanostructure to mechanical properties. Biophys. J. 91(12), 4528–4535 (2006) N. Du, X.Y. Liu, J. Narayanan, L.A. Li, M.L.M. Lim, D.Q. Li, Design of superior spider silk: from nanostructure to mechanical properties. Biophys. J. 91(12), 4528–4535 (2006)
24.
go back to reference T. Ackbarow, D. Sen, C. Thaulow, M.J. Buehler, Alpha-helical protein networks are self-protective and flaw-tolerant. PLoS ONE 4(6), e6015 (2009) T. Ackbarow, D. Sen, C. Thaulow, M.J. Buehler, Alpha-helical protein networks are self-protective and flaw-tolerant. PLoS ONE 4(6), e6015 (2009)
25.
go back to reference Z. Qin, L. Kreplak, M.J. Buehler, Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments. PLoS ONE 4(10), e12115 (2009) Z. Qin, L. Kreplak, M.J. Buehler, Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments. PLoS ONE 4(10), e12115 (2009)
26.
go back to reference S.G. Wise, S.M. Mithieux, A.S. Weiss, Engineered tropoelastin and elastin-based biomaterials. Adv. Protein Chem. Struct. Biol. 78, 1–24 (2009) S.G. Wise, S.M. Mithieux, A.S. Weiss, Engineered tropoelastin and elastin-based biomaterials. Adv. Protein Chem. Struct. Biol. 78, 1–24 (2009)
27.
go back to reference A.S. Weiss, J.F. Almine, D.V. Bax, S.M. Mithieux, L. Nivison-Smith, J. Rnjak, A. Waterhouse, S.G. Wise, Elastin-based materials. Chem. Soc. Rev. 39(9), 3371–3379 (2010) A.S. Weiss, J.F. Almine, D.V. Bax, S.M. Mithieux, L. Nivison-Smith, J. Rnjak, A. Waterhouse, S.G. Wise, Elastin-based materials. Chem. Soc. Rev. 39(9), 3371–3379 (2010)
28.
go back to reference M.J. Buehler, T. Ackbarow, Hierarchical coexistence of universality and diversity controls robustness and multi-functionality in protein materials. J. Comput. Theor. Nanosci. 5(7), 1193–1204 (2008) M.J. Buehler, T. Ackbarow, Hierarchical coexistence of universality and diversity controls robustness and multi-functionality in protein materials. J. Comput. Theor. Nanosci. 5(7), 1193–1204 (2008)
29.
go back to reference M.J. Buehler, Computational and theoretical materiomics: properties of biological and de novo bioinspired materials. J. Comput. Theor. Nanosci. 7(7), 1203–1209 (2010) M.J. Buehler, Computational and theoretical materiomics: properties of biological and de novo bioinspired materials. J. Comput. Theor. Nanosci. 7(7), 1203–1209 (2010)
30.
go back to reference J.L. Morrison, R. Breitling, D.J. Higham, D.R. Gilbert, A lock-and-key model for protein-protein interactions. Bioinformatics 22(16), 2012–2019 (2006) J.L. Morrison, R. Breitling, D.J. Higham, D.R. Gilbert, A lock-and-key model for protein-protein interactions. Bioinformatics 22(16), 2012–2019 (2006)
31.
go back to reference J.C. Kendrew, G. Bodo, H.M. Dintzis, R.G. Parrish, H. Wyckoff, D.C. Phillips, A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 181(4610), 662–666 (1958) J.C. Kendrew, G. Bodo, H.M. Dintzis, R.G. Parrish, H. Wyckoff, D.C. Phillips, A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 181(4610), 662–666 (1958)
32.
go back to reference P.A. Janmey, J.F. Leterrier, H. Herrmann, Assembly and structure of neurofilaments. Curr. Opin. Colloid Interface Sci. 8(1), 40–47 (2003) P.A. Janmey, J.F. Leterrier, H. Herrmann, Assembly and structure of neurofilaments. Curr. Opin. Colloid Interface Sci. 8(1), 40–47 (2003)
33.
go back to reference H. Herrmann, U. Aebi, Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular scaffolds. Annu. Rev. Biochem. 73, 749–789 (2004) H. Herrmann, U. Aebi, Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular scaffolds. Annu. Rev. Biochem. 73, 749–789 (2004)
34.
go back to reference E. Bini, D.P. Knight, D.L. Kaplan, Mapping domain structures in silks from insects and spiders related to protein assembly. J. Mol. Biol. 335(1), 27–40 (2004) E. Bini, D.P. Knight, D.L. Kaplan, Mapping domain structures in silks from insects and spiders related to protein assembly. J. Mol. Biol. 335(1), 27–40 (2004)
35.
go back to reference W.A. Petka, J.L. Harden, K.P. McGrath, D. Wirtz, D.A. Tirrell, Reversible hydrogels from self-assembling artificial proteins. Science 281(5375), 389–392 (1998) W.A. Petka, J.L. Harden, K.P. McGrath, D. Wirtz, D.A. Tirrell, Reversible hydrogels from self-assembling artificial proteins. Science 281(5375), 389–392 (1998)
36.
go back to reference R. Langer, D.A. Tirrell, Designing materials for biology and medicine. Nature 428(6982), 487–492 (2004) R. Langer, D.A. Tirrell, Designing materials for biology and medicine. Nature 428(6982), 487–492 (2004)
37.
go back to reference A. Mershin, B. Cook, L. Kaiser, S.G. Zhang, A classic assembly of nanobiomaterials. Nat. Biotechnol. 23(11), 1379–1380 (2005) A. Mershin, B. Cook, L. Kaiser, S.G. Zhang, A classic assembly of nanobiomaterials. Nat. Biotechnol. 23(11), 1379–1380 (2005)
38.
go back to reference J.M. Smeenk, M.B.J. Otten, J. Thies, D.A. Tirrell, H.G. Stunnenberg, J.C.M. van Hest, Controlled assembly of macromolecular beta-sheet fibrils. Angew. Chem., Int. Ed. 44(13), 1968–1971 (2005) J.M. Smeenk, M.B.J. Otten, J. Thies, D.A. Tirrell, H.G. Stunnenberg, J.C.M. van Hest, Controlled assembly of macromolecular beta-sheet fibrils. Angew. Chem., Int. Ed. 44(13), 1968–1971 (2005)
39.
go back to reference X.J. Zhao, S.G. Zhang, Molecular designer self-assembling peptides. Chem. Soc. Rev. 35(11), 1105–1110 (2006) X.J. Zhao, S.G. Zhang, Molecular designer self-assembling peptides. Chem. Soc. Rev. 35(11), 1105–1110 (2006)
40.
go back to reference J.C.M. van Hest, D.A. Tirrell, Protein-based materials, toward a new level of structural control. Chem. Commun. 19, 1897–1904 (2001) J.C.M. van Hest, D.A. Tirrell, Protein-based materials, toward a new level of structural control. Chem. Commun. 19, 1897–1904 (2001)
41.
go back to reference S.G. Zhang, C. Lockshin, R. Cook, A. Rich, Unusually stable beta-sheet formation in an ionic self-complementary oligopeptide. Biopolymers 34(5), 663–672 (1994) S.G. Zhang, C. Lockshin, R. Cook, A. Rich, Unusually stable beta-sheet formation in an ionic self-complementary oligopeptide. Biopolymers 34(5), 663–672 (1994)
42.
go back to reference P. Chen, S. Jun, Y. Hong, H. Imamura, B.Y. Ha, J. Bechhoefer, Self-assembly of the ionic peptide eak16: the effect of charge distributions on self-assembly. Biophys. J. 87(2), 1249–1259 (2004) P. Chen, S. Jun, Y. Hong, H. Imamura, B.Y. Ha, J. Bechhoefer, Self-assembly of the ionic peptide eak16: the effect of charge distributions on self-assembly. Biophys. J. 87(2), 1249–1259 (2004)
43.
go back to reference A.B. Fulton, W.B. Isaacs, Titin, a huge, elastic sarcomeric protein with a probable role in morphogenesis. BioEssays 13(4), 157–161 (1991) A.B. Fulton, W.B. Isaacs, Titin, a huge, elastic sarcomeric protein with a probable role in morphogenesis. BioEssays 13(4), 157–161 (1991)
44.
go back to reference D.E. Ingber, L. Dike, L. Hansen, S. Karp, H. Liley, A. Maniotis, H. McNamee, D. Mooney, G. Plopper, J. Sims, N. Wang, Cellular Tensegrity—Exploring How Mechanical Changes in the Cytoskeleton Regulate Cell-Growth, Migration, and Tissue Pattern During Morphogenesis. International Review of Cytology—a Survey of Cell Biology, vol. 150 (Academic Press, San Diego, 1994), pp. 173–224 D.E. Ingber, L. Dike, L. Hansen, S. Karp, H. Liley, A. Maniotis, H. McNamee, D. Mooney, G. Plopper, J. Sims, N. Wang, Cellular Tensegrity—Exploring How Mechanical Changes in the Cytoskeleton Regulate Cell-Growth, Migration, and Tissue Pattern During Morphogenesis. International Review of Cytology—a Survey of Cell Biology, vol. 150 (Academic Press, San Diego, 1994), pp. 173–224
45.
go back to reference A.E.X. Brown, R.I. Litvinov, D.E. Discher, J.W. Weisel, Forced unfolding of the coiled-coils of fibrinogen by single molecule afm. Biophys. J., 524a–524a (2007) A.E.X. Brown, R.I. Litvinov, D.E. Discher, J.W. Weisel, Forced unfolding of the coiled-coils of fibrinogen by single molecule afm. Biophys. J., 524a–524a (2007)
46.
go back to reference B.B.C. Lim, E.H. Lee, M. Sotomayor, K. Schulten, Molecular basis of fibrin clot elasticity. Structure 16(3), 449–459 (2008) B.B.C. Lim, E.H. Lee, M. Sotomayor, K. Schulten, Molecular basis of fibrin clot elasticity. Structure 16(3), 449–459 (2008)
47.
go back to reference L. Kreplak, U. Aebi, H. Herrmann, Molecular mechanisms underlying the assembly of intermediate filaments. Exp. Cell Res. 301(1), 77–83 (2004) L. Kreplak, U. Aebi, H. Herrmann, Molecular mechanisms underlying the assembly of intermediate filaments. Exp. Cell Res. 301(1), 77–83 (2004)
48.
go back to reference S.V. Strelkov, J. Schumacher, P. Burkhard, U. Aebi, H. Herrmann, Crystal structure of the human lamin a coil 2b dimer: implications for the head-to-tail association of nuclear lamins. J. Mol. Biol. 343(4), 1067–1080 (2004) S.V. Strelkov, J. Schumacher, P. Burkhard, U. Aebi, H. Herrmann, Crystal structure of the human lamin a coil 2b dimer: implications for the head-to-tail association of nuclear lamins. J. Mol. Biol. 343(4), 1067–1080 (2004)
49.
go back to reference R. Schietke, D. Brohl, T. Wedig, N. Mucke, H. Herrmann, T.M. Magin, Mutations in vimentin disrupt the cytoskeleton in fibroblasts and delay execution of apoptosis. Eur. J. Cell Biol. 85(1), 1–10 (2006) R. Schietke, D. Brohl, T. Wedig, N. Mucke, H. Herrmann, T.M. Magin, Mutations in vimentin disrupt the cytoskeleton in fibroblasts and delay execution of apoptosis. Eur. J. Cell Biol. 85(1), 1–10 (2006)
50.
go back to reference A.V. Sokolova, L. Kreplak, T. Wedig, N. Mucke, D.I. Svergun, H. Herrmann, U. Aebi, S.V. Strelkov, Monitoring intermediate filament assembly by small-angle x-ray scattering reveals the molecular architecture of assembly intermediates. Proc. Natl. Acad. Sci. USA 103(44), 16206–16211 (2006) A.V. Sokolova, L. Kreplak, T. Wedig, N. Mucke, D.I. Svergun, H. Herrmann, U. Aebi, S.V. Strelkov, Monitoring intermediate filament assembly by small-angle x-ray scattering reveals the molecular architecture of assembly intermediates. Proc. Natl. Acad. Sci. USA 103(44), 16206–16211 (2006)
51.
go back to reference M.E. Csete, J.C. Doyle, Reverse engineering of biological complexity. Science 295(5560), 1664–1669 (2002) M.E. Csete, J.C. Doyle, Reverse engineering of biological complexity. Science 295(5560), 1664–1669 (2002)
52.
go back to reference U. Alon, Simplicity in biology. Nature 446(7135), 497 (2007) U. Alon, Simplicity in biology. Nature 446(7135), 497 (2007)
53.
go back to reference J.W. Weisel, A.E.X. Brown, R.I. Litvinov, D.E. Discher, P.K. Purohit, Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science 325(5941), 741–744 (2009) J.W. Weisel, A.E.X. Brown, R.I. Litvinov, D.E. Discher, P.K. Purohit, Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science 325(5941), 741–744 (2009)
54.
go back to reference R. Phillips, P.K. Purohit, J. Kondev, Mechanics of DNA packaging in viruses. Proc. Natl. Acad. Sci. USA 100(6), 3173–3178 (2003) R. Phillips, P.K. Purohit, J. Kondev, Mechanics of DNA packaging in viruses. Proc. Natl. Acad. Sci. USA 100(6), 3173–3178 (2003)
55.
go back to reference T.X. Su, S.K. Das, M. Xiao, P.K. Purohit, Transition between two regimes describing internal fluctuation of DNA in a nanochannel. PLoS ONE 6(3) (2011) T.X. Su, S.K. Das, M. Xiao, P.K. Purohit, Transition between two regimes describing internal fluctuation of DNA in a nanochannel. PLoS ONE 6(3) (2011)
56.
go back to reference J.W. Weisel, P.K. Purohit, R.I. Litvinov, A.E.X. Brown, D.E. Discher, Protein unfolding accounts for the unusual mechanical behavior of fibrin networks. Acta Biomater. 7(6), 2374–2383 (2011) J.W. Weisel, P.K. Purohit, R.I. Litvinov, A.E.X. Brown, D.E. Discher, Protein unfolding accounts for the unusual mechanical behavior of fibrin networks. Acta Biomater. 7(6), 2374–2383 (2011)
57.
go back to reference J.S. Palmer, M.C. Boyce, Constitutive modeling of the stress-strain behavior of f-actin filament networks. Acta Biomater. 4(3), 597–612 (2008) J.S. Palmer, M.C. Boyce, Constitutive modeling of the stress-strain behavior of f-actin filament networks. Acta Biomater. 4(3), 597–612 (2008)
58.
go back to reference V.S. Pande, V.A. Voelz, G.R. Bowman, K. Beauchamp, Molecular simulation of ab initio protein folding for a millisecond folder ntl9(1-39). J. Am. Chem. Soc. 132(5), 1526–1528 (2010) V.S. Pande, V.A. Voelz, G.R. Bowman, K. Beauchamp, Molecular simulation of ab initio protein folding for a millisecond folder ntl9(1-39). J. Am. Chem. Soc. 132(5), 1526–1528 (2010)
59.
go back to reference S.E. Jackson, How do small single-domain proteins fold? Fold. Des. 3(4), 81–91 (1998) S.E. Jackson, How do small single-domain proteins fold? Fold. Des. 3(4), 81–91 (1998)
60.
go back to reference A. Annila, V. Sharma, V.R.I. Kaila, Protein folding as an evolutionary process. Physica A, Stat. Mech. Appl. 388(6), 851–862 (2009) A. Annila, V. Sharma, V.R.I. Kaila, Protein folding as an evolutionary process. Physica A, Stat. Mech. Appl. 388(6), 851–862 (2009)
61.
go back to reference M. Shirts, V.S. Pande, Computing—screen savers of the world unite! Science 290(5498), 1903–1904 (2000) M. Shirts, V.S. Pande, Computing—screen savers of the world unite! Science 290(5498), 1903–1904 (2000)
62.
go back to reference Z. Popovic, S. Cooper, F. Khatib, A. Treuille, J. Barbero, J. Lee, M. Beenen, A. Leaver-Fay, D. Baker, F. Players, Predicting protein structures with a multiplayer online game. Nature 466(7307), 756–760 (2010) Z. Popovic, S. Cooper, F. Khatib, A. Treuille, J. Barbero, J. Lee, M. Beenen, A. Leaver-Fay, D. Baker, F. Players, Predicting protein structures with a multiplayer online game. Nature 466(7307), 756–760 (2010)
63.
go back to reference J.D. Bryngelson, J.N. Onuchic, N.D. Socci, P.G. Wolynes, Funnels, pathways, and the energy landscape of protein-folding—a synthesis. Protein. Struct. Funct. Genet. 21(3), 167–195 (1995) J.D. Bryngelson, J.N. Onuchic, N.D. Socci, P.G. Wolynes, Funnels, pathways, and the energy landscape of protein-folding—a synthesis. Protein. Struct. Funct. Genet. 21(3), 167–195 (1995)
64.
go back to reference C.B. Anfinsen, The formation and stabilization of protein structure. Biochem. J. 128(4), 737–749 (1972) C.B. Anfinsen, The formation and stabilization of protein structure. Biochem. J. 128(4), 737–749 (1972)
65.
go back to reference V.S. Pande, A.Y. Grosberg, T. Tanaka, D.S. Rokhsar, Pathways for protein folding: is a new view needed? Curr. Opin. Struct. Biol. 8(1), 68–79 (1998) V.S. Pande, A.Y. Grosberg, T. Tanaka, D.S. Rokhsar, Pathways for protein folding: is a new view needed? Curr. Opin. Struct. Biol. 8(1), 68–79 (1998)
66.
go back to reference C. Levinthal, Are there pathways for protein folding? J. Chim. Phys. PhysicoChimie Biol. 65(1), 44–45 (1968) C. Levinthal, Are there pathways for protein folding? J. Chim. Phys. PhysicoChimie Biol. 65(1), 44–45 (1968)
67.
go back to reference E. Hawkes, B. An, N.M. Benbernou, H. Tanaka, S. Kim, E.D. Demaine, D. Rus, R.J. Wood, Programmable matter by folding. Proc. Natl. Acad. Sci. USA 107(28), 12441–12445 (2010) E. Hawkes, B. An, N.M. Benbernou, H. Tanaka, S. Kim, E.D. Demaine, D. Rus, R.J. Wood, Programmable matter by folding. Proc. Natl. Acad. Sci. USA 107(28), 12441–12445 (2010)
68.
go back to reference E.D. Demaine, M.L. Demaine, Recent results in computational origami. Origami3 (2002), pp. 3–16 E.D. Demaine, M.L. Demaine, Recent results in computational origami. Origami3 (2002), pp. 3–16
69.
go back to reference E.D. Demaine, J. O’Rourke, Geometric Folding Algorithms: Linkages, Origami, Polyhedra (Cambridge University Press, Cambridge, 2008) E.D. Demaine, J. O’Rourke, Geometric Folding Algorithms: Linkages, Origami, Polyhedra (Cambridge University Press, Cambridge, 2008)
70.
go back to reference E.D. Demaine, M.L. Demaine, J.S.B. Mitchell, Folding flat silhouettes and wrapping polyhedral packages: new results in computational origami. Comput. Geom. Theory Appl. 16(1), 3–21 (2000) E.D. Demaine, M.L. Demaine, J.S.B. Mitchell, Folding flat silhouettes and wrapping polyhedral packages: new results in computational origami. Comput. Geom. Theory Appl. 16(1), 3–21 (2000)
71.
go back to reference R.D. Vale, The molecular motor toolbox for intracellular transport. Cell 112(4), 467–480 (2003) R.D. Vale, The molecular motor toolbox for intracellular transport. Cell 112(4), 467–480 (2003)
72.
go back to reference V. Daggett, B. Li, Molecular basis for the extensibility of elastin. J. Muscle Res. Cell Motil. 23(5–6), 561–573 (2002) V. Daggett, B. Li, Molecular basis for the extensibility of elastin. J. Muscle Res. Cell Motil. 23(5–6), 561–573 (2002)
73.
go back to reference S. Keten, M.J. Buehler, Nanostructure and molecular mechanics of spider dragline silk protein assemblies. J. R. Soc. Interface 7(53), 1709–1721 (2010) S. Keten, M.J. Buehler, Nanostructure and molecular mechanics of spider dragline silk protein assemblies. J. R. Soc. Interface 7(53), 1709–1721 (2010)
74.
go back to reference R. Pellenq, A. Kushima, R. Shahsavari, K. Van Vliet, M.J. Buehler, S. Yip, F.-J. Ulm, A realistic molecular model of cement hydrates. Proc. Natl. Acad. Sci. USA 106(38), 16102–16107 (2009) R. Pellenq, A. Kushima, R. Shahsavari, K. Van Vliet, M.J. Buehler, S. Yip, F.-J. Ulm, A realistic molecular model of cement hydrates. Proc. Natl. Acad. Sci. USA 106(38), 16102–16107 (2009)
75.
go back to reference F.J. Ulm, Chemomechanics of concrete at finer scales. Mater. Struct. 36(261), 426–438 (2003) F.J. Ulm, Chemomechanics of concrete at finer scales. Mater. Struct. 36(261), 426–438 (2003)
76.
go back to reference E. Arzt, Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Mater. 46(16), 5611–5626 (1998) E. Arzt, Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Mater. 46(16), 5611–5626 (1998)
77.
go back to reference G. Decher, Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330), 1232–1237 (1997) G. Decher, Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330), 1232–1237 (1997)
78.
go back to reference F. Caruso, R.A. Caruso, H. Mohwald, Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282(5391), 1111–1114 (1998) F. Caruso, R.A. Caruso, H. Mohwald, Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282(5391), 1111–1114 (1998)
79.
go back to reference G. Chen, S. Shen, A. Henry, J. Tong, R.T. Zheng, Polyethylene nanofibres with very high thermal conductivities. Nat. Nanotechnol. 5(4), 251–255 (2010) G. Chen, S. Shen, A. Henry, J. Tong, R.T. Zheng, Polyethylene nanofibres with very high thermal conductivities. Nat. Nanotechnol. 5(4), 251–255 (2010)
80.
go back to reference K.S. Kumar, H. Van Swygenhoven, S. Suresh, Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51(19), 5743–5774 (2003) K.S. Kumar, H. Van Swygenhoven, S. Suresh, Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51(19), 5743–5774 (2003)
81.
go back to reference H. Gao, B. Ji, I.L. Jger, E. Arzt, P. Fratzl, Materials become insensitive to flaws at nanoscale: lessons from nature. Proc. Natl. Acad. Sci. USA 100(10), 5597–5600 (2003) H. Gao, B. Ji, I.L. Jger, E. Arzt, P. Fratzl, Materials become insensitive to flaws at nanoscale: lessons from nature. Proc. Natl. Acad. Sci. USA 100(10), 5597–5600 (2003)
82.
go back to reference P. Fratzl, H.S. Gupta, E.P. Paschalis, P. Roschger, Structure and mechanical quality of the collagen-mineral nano-composite in bone. J. Mater. Chem. 14(14), 2115–2123 (2004) P. Fratzl, H.S. Gupta, E.P. Paschalis, P. Roschger, Structure and mechanical quality of the collagen-mineral nano-composite in bone. J. Mater. Chem. 14(14), 2115–2123 (2004)
83.
go back to reference P. Fratzl, H. Peterlik, P. Roschger, K. Klaushofer, From brittle to ductile fracture of bone. Nat. Mater. 5(1), 52–55 (2006) P. Fratzl, H. Peterlik, P. Roschger, K. Klaushofer, From brittle to ductile fracture of bone. Nat. Mater. 5(1), 52–55 (2006)
84.
go back to reference U. Aebi, J. Cohn, L. Buhle, L. Gerace, The nuclear lamina is a meshwork of intermediate-type filaments. Nature 323(6088), 560–564 (1986) U. Aebi, J. Cohn, L. Buhle, L. Gerace, The nuclear lamina is a meshwork of intermediate-type filaments. Nature 323(6088), 560–564 (1986)
85.
go back to reference J.K. Rainey, C.K. Wen, M.C. Goh, Hierarchical assembly and the onset of banding in fibrous long spacing collagen revealed by atomic force microscopy. Matrix Biol. 21(8), 647–660 (2002) J.K. Rainey, C.K. Wen, M.C. Goh, Hierarchical assembly and the onset of banding in fibrous long spacing collagen revealed by atomic force microscopy. Matrix Biol. 21(8), 647–660 (2002)
86.
go back to reference S. Keten, M.J. Buehler, Strength limit of entropic elasticity in beta-sheet protein domains. Phys. Rev. E 78, 061913 (2008) S. Keten, M.J. Buehler, Strength limit of entropic elasticity in beta-sheet protein domains. Phys. Rev. E 78, 061913 (2008)
87.
go back to reference S. Keten, M.J. Buehler, Geometric confinement governs the rupture strength of h-bond assemblies at a critical length scale. Nano Lett. 8(2), 743–748 (2008) S. Keten, M.J. Buehler, Geometric confinement governs the rupture strength of h-bond assemblies at a critical length scale. Nano Lett. 8(2), 743–748 (2008)
88.
go back to reference Z. Qin, S. Cranford, T. Ackbarow, M.J. Buehler, Robustness-strength performance of hierarchical alpha-helical protein filaments. Int. J. Appl. Mech. 1(1), 85–112 (2009) Z. Qin, S. Cranford, T. Ackbarow, M.J. Buehler, Robustness-strength performance of hierarchical alpha-helical protein filaments. Int. J. Appl. Mech. 1(1), 85–112 (2009)
89.
go back to reference D. Sen, M.J. Buehler, Structural hierarchies define toughness and defect-tolerance despite simple and mechanically inferior brittle building blocks. Sci. Rep. 1, 35 (2011) D. Sen, M.J. Buehler, Structural hierarchies define toughness and defect-tolerance despite simple and mechanically inferior brittle building blocks. Sci. Rep. 1, 35 (2011)
90.
go back to reference A. Garcia, D. Sen, M.J.B. Buehler, Hierarchical silica nanostructures inspired by diatom algae yield superior deformability, toughness and strength. Metall. Mater. Trans. A 42(13), 3889–3897 (2011) A. Garcia, D. Sen, M.J.B. Buehler, Hierarchical silica nanostructures inspired by diatom algae yield superior deformability, toughness and strength. Metall. Mater. Trans. A 42(13), 3889–3897 (2011)
91.
go back to reference D. Sen, A. Garcia, M.J. Buehler, Mechanics of nano-honeycomb silica structures: a size-dependent brittle-to-ductile transition. J. Nanomech. Micromech. (ASCE) 1(4) (2011) D. Sen, A. Garcia, M.J. Buehler, Mechanics of nano-honeycomb silica structures: a size-dependent brittle-to-ductile transition. J. Nanomech. Micromech. (ASCE) 1(4) (2011)
92.
go back to reference A.R. Dunn, A.S. Adhikari, J. Chai, Mechanical load induces a 100-fold increase in the rate of collagen proteolysis by mmp-1. J. Am. Chem. Soc. 133(6), 1686–1689 (2011) A.R. Dunn, A.S. Adhikari, J. Chai, Mechanical load induces a 100-fold increase in the rate of collagen proteolysis by mmp-1. J. Am. Chem. Soc. 133(6), 1686–1689 (2011)
93.
go back to reference S. Suresh, G. Bao, Cell and molecular mechanics of biological materials. Nat. Mater. 2(11), 715–725 (2003) S. Suresh, G. Bao, Cell and molecular mechanics of biological materials. Nat. Mater. 2(11), 715–725 (2003)
94.
go back to reference M.J. Buehler, Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc. Natl. Acad. Sci. USA 103(33), 12285–12290 (2006) M.J. Buehler, Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc. Natl. Acad. Sci. USA 103(33), 12285–12290 (2006)
95.
go back to reference T. Ackbarow, X. Chen, S. Keten, M.J. Buehler, Hierarchies, multiple energy barriers and robustness govern the fracture mechanics of alpha-helical and beta-sheet protein domains. Proc. Natl. Acad. Sci. USA 104, 16410–16415 (2007) T. Ackbarow, X. Chen, S. Keten, M.J. Buehler, Hierarchies, multiple energy barriers and robustness govern the fracture mechanics of alpha-helical and beta-sheet protein domains. Proc. Natl. Acad. Sci. USA 104, 16410–16415 (2007)
96.
go back to reference M.J. Buehler, S. Keten, T. Ackbarow, Theoretical and computational hierarchical nanomechanics of protein materials: deformation and fracture. Prog. Mater. Sci. 53, 1101–1241 (2008) M.J. Buehler, S. Keten, T. Ackbarow, Theoretical and computational hierarchical nanomechanics of protein materials: deformation and fracture. Prog. Mater. Sci. 53, 1101–1241 (2008)
97.
go back to reference J.M. Ferrer, H. Lee, J. Chen, B. Pelz, F. Nakamura, R.D. Kamm, M.J. Lang, Measuring molecular rupture forces between single actin filaments and actin-binding proteins. Proc. Natl. Acad. Sci. USA 105(27), 9221–9226 (2008) J.M. Ferrer, H. Lee, J. Chen, B. Pelz, F. Nakamura, R.D. Kamm, M.J. Lang, Measuring molecular rupture forces between single actin filaments and actin-binding proteins. Proc. Natl. Acad. Sci. USA 105(27), 9221–9226 (2008)
98.
go back to reference J.M. Gosline, P.A. Guerette, C.S. Ortlepp, K.N. Savage, The mechanical design of spider silks: from fibroin sequence to mechanical function. J. Exp. Biol. 202(23), 3295–3303 (1999) J.M. Gosline, P.A. Guerette, C.S. Ortlepp, K.N. Savage, The mechanical design of spider silks: from fibroin sequence to mechanical function. J. Exp. Biol. 202(23), 3295–3303 (1999)
99.
go back to reference D.L. Kaplan, F.G. Omenetto, New opportunities for an ancient material. Science 329(5991), 528–531 (2010) D.L. Kaplan, F.G. Omenetto, New opportunities for an ancient material. Science 329(5991), 528–531 (2010)
100.
go back to reference F. Vollrath, D. Porter, Silk as a biomimetic ideal for structural polymers. Adv. Mater. 21(4), 487–492 (2009) F. Vollrath, D. Porter, Silk as a biomimetic ideal for structural polymers. Adv. Mater. 21(4), 487–492 (2009)
101.
go back to reference A. Gautieri, S. Vesentini, A. Redaelli, M.J.B. Buehler, Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett. 11(2), 757–766 (2011) A. Gautieri, S. Vesentini, A. Redaelli, M.J.B. Buehler, Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett. 11(2), 757–766 (2011)
102.
go back to reference H. Kitano, Computational systems biology. Nature 420(6912), 206–210 (2002) H. Kitano, Computational systems biology. Nature 420(6912), 206–210 (2002)
103.
go back to reference S.W. Cranford, M.J. Buehler, Shaky foundations of hierarchical biological materials. Nano Today 6(4), 332–338 (2011) S.W. Cranford, M.J. Buehler, Shaky foundations of hierarchical biological materials. Nano Today 6(4), 332–338 (2011)
104.
go back to reference B.B. Mandal, S.C. Kundu, Cell proliferation and migration in silk fibroin 3d scaffolds. Biomaterials 30(15), 2956–2965 (2009) B.B. Mandal, S.C. Kundu, Cell proliferation and migration in silk fibroin 3d scaffolds. Biomaterials 30(15), 2956–2965 (2009)
105.
go back to reference H. Fernandes, L. Moroni, C. van Blitterswijk, J. de Boer, Extracellular matrix and tissue engineering applications. J. Mater. Chem. 19(31), 5474–5484 (2009) H. Fernandes, L. Moroni, C. van Blitterswijk, J. de Boer, Extracellular matrix and tissue engineering applications. J. Mater. Chem. 19(31), 5474–5484 (2009)
106.
go back to reference A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Matrix elasticity directs stem cell lineage specification. Cell 126(4), 677–689 (2006) A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Matrix elasticity directs stem cell lineage specification. Cell 126(4), 677–689 (2006)
107.
go back to reference D.E. Discher, P. Janmey, Y.L. Wang, Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751), 1139–1143 (2005) D.E. Discher, P. Janmey, Y.L. Wang, Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751), 1139–1143 (2005)
108.
go back to reference K. Kim, D. Dean, J. Wallace, R. Breithaupt, A.G. Mikos, J.P. Fisher, The influence of stereolithographic scaffold architecture and composition on osteogenic signal expression with rat bone marrow stromal cells. Biomaterials 32(15), 3750–3763 (2011) K. Kim, D. Dean, J. Wallace, R. Breithaupt, A.G. Mikos, J.P. Fisher, The influence of stereolithographic scaffold architecture and composition on osteogenic signal expression with rat bone marrow stromal cells. Biomaterials 32(15), 3750–3763 (2011)
109.
go back to reference F.P.W. Melchels, A.M.C. Barradas, C.A. van Blitterswijk, J. de Boer, J. Feijen, D.W. Grijpma, Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing. Acta Biomater. 6(11), 4208–4217 (2010) F.P.W. Melchels, A.M.C. Barradas, C.A. van Blitterswijk, J. de Boer, J. Feijen, D.W. Grijpma, Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing. Acta Biomater. 6(11), 4208–4217 (2010)
110.
go back to reference X. Liu, X. Jin, P.X. Ma, Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair. Nat. Mater. 10, 398–406 (2011) X. Liu, X. Jin, P.X. Ma, Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair. Nat. Mater. 10, 398–406 (2011)
111.
go back to reference K. Kim, A. Yeatts, D. Dean, J.P. Fisher, Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression. Tissue Eng. B Rev. 16(5), 523–539 (2010) K. Kim, A. Yeatts, D. Dean, J.P. Fisher, Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression. Tissue Eng. B Rev. 16(5), 523–539 (2010)
112.
go back to reference J.L. Drury, D.J. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24), 4337–4351 (2003) J.L. Drury, D.J. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24), 4337–4351 (2003)
113.
go back to reference A. Nandakumar, L. Yang, P. Habibovic, C. van Blitterswijk, Calcium phosphate coated electrospun fiber matrices as scaffolds for bone tissue engineering. Langmuir 26(10), 7380–7387 (2010) A. Nandakumar, L. Yang, P. Habibovic, C. van Blitterswijk, Calcium phosphate coated electrospun fiber matrices as scaffolds for bone tissue engineering. Langmuir 26(10), 7380–7387 (2010)
114.
go back to reference T.P.J. Knowles, T.W. Oppenheim, A.K. Buell, D.Y. Chirgadze, M.E. Welland, Nanostructured films from hierarchical self-assembly of amyloidogenic proteins. Nat. Nanotechnol. 5(3), 204–207 (2010) T.P.J. Knowles, T.W. Oppenheim, A.K. Buell, D.Y. Chirgadze, M.E. Welland, Nanostructured films from hierarchical self-assembly of amyloidogenic proteins. Nat. Nanotechnol. 5(3), 204–207 (2010)
115.
go back to reference M. Shin, H. Yoshimoto, J.P. Vacanti, In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Eng. 10(1–2), 33–41 (2004) M. Shin, H. Yoshimoto, J.P. Vacanti, In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Eng. 10(1–2), 33–41 (2004)
116.
go back to reference E. Alsberg, K.W. Anderson, A. Albeiruti, J.A. Rowley, D.J. Mooney, Engineering growing tissues. Proc. Natl. Acad. Sci. USA 99(19), 12025–12030 (2002) E. Alsberg, K.W. Anderson, A. Albeiruti, J.A. Rowley, D.J. Mooney, Engineering growing tissues. Proc. Natl. Acad. Sci. USA 99(19), 12025–12030 (2002)
117.
go back to reference M.A.C. Stuart, W.T.S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G.B. Sukhorukov, I. Szleifer, V.V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, S. Minko, Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9(2), 101–113 (2010) M.A.C. Stuart, W.T.S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G.B. Sukhorukov, I. Szleifer, V.V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, S. Minko, Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9(2), 101–113 (2010)
118.
go back to reference W. Senaratne, L. Andruzzi, C.K. Ober, Self-assembled monolayers and polymer brushes in biotechnology: current applications and future perspectives. Biomacromolecules 6(5), 2427–2448 (2005) W. Senaratne, L. Andruzzi, C.K. Ober, Self-assembled monolayers and polymer brushes in biotechnology: current applications and future perspectives. Biomacromolecules 6(5), 2427–2448 (2005)
119.
go back to reference P.M. Mendes, Stimuli-responsive surfaces for bio-applications. Chem. Soc. Rev. 37(11), 2512–2529 (2008) P.M. Mendes, Stimuli-responsive surfaces for bio-applications. Chem. Soc. Rev. 37(11), 2512–2529 (2008)
120.
go back to reference Z.S. Liu, P. Calvert, Multilayer hydrogels as muscle-like actuators. Adv. Mater. 12(4), 288–291 (2000) Z.S. Liu, P. Calvert, Multilayer hydrogels as muscle-like actuators. Adv. Mater. 12(4), 288–291 (2000)
121.
go back to reference J.P. Fisher, D. Dean, A.G. Mikos, Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly(propylene fumarate) biomaterials. Biomaterials 23(22), 4333–4343 (2002) J.P. Fisher, D. Dean, A.G. Mikos, Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly(propylene fumarate) biomaterials. Biomaterials 23(22), 4333–4343 (2002)
122.
go back to reference K.K. Chia, M.F. Rubner, R.E. Cohen, ph-responsive reversibly swellable nanotube arrays. Langmuir 25(24), 14044–14052 (2009) K.K. Chia, M.F. Rubner, R.E. Cohen, ph-responsive reversibly swellable nanotube arrays. Langmuir 25(24), 14044–14052 (2009)
123.
go back to reference S.W. Cranford, C. Ortiz, M.J. Buehler, Mechanomutable properties of a paa/pah polyelectrolyte complex: rate dependence and ionization effects on tunable adhesion strength. Soft Matter 6(17), 4175–4188 (2010) S.W. Cranford, C. Ortiz, M.J. Buehler, Mechanomutable properties of a paa/pah polyelectrolyte complex: rate dependence and ionization effects on tunable adhesion strength. Soft Matter 6(17), 4175–4188 (2010)
124.
go back to reference R.A. Marklein, J.A. Burdick, Spatially controlled hydrogel mechanics to modulate stem cell interactions. Soft Matter 6(1), 136–143 (2010) R.A. Marklein, J.A. Burdick, Spatially controlled hydrogel mechanics to modulate stem cell interactions. Soft Matter 6(1), 136–143 (2010)
125.
go back to reference S.J. Bryant, R.J. Bender, K.L. Durand, K.S. Anseth, Encapsulating chondrocytes in degrading peg hydrogels with high modulus: engineering gel structural changes to facilitate cartilaginous tissue production. Biotechnol. Bioeng. 86(7), 747–755 (2004) S.J. Bryant, R.J. Bender, K.L. Durand, K.S. Anseth, Encapsulating chondrocytes in degrading peg hydrogels with high modulus: engineering gel structural changes to facilitate cartilaginous tissue production. Biotechnol. Bioeng. 86(7), 747–755 (2004)
126.
go back to reference C. Alexander, K.M. Shakesheff, Responsive polymers at the biology/materials science interface. Adv. Mater. 18(24), 3321–3328 (2006) C. Alexander, K.M. Shakesheff, Responsive polymers at the biology/materials science interface. Adv. Mater. 18(24), 3321–3328 (2006)
127.
go back to reference L. Ionov, N. Houbenov, A. Sidorenko, M. Stamm, S. Minko, Stimuli-responsive command polymer surface for generation of protein gradients. Biointerphases 4(2), 45–49 (2009) L. Ionov, N. Houbenov, A. Sidorenko, M. Stamm, S. Minko, Stimuli-responsive command polymer surface for generation of protein gradients. Biointerphases 4(2), 45–49 (2009)
128.
go back to reference R.W. Sands, D.J. Mooney, Polymers to direct cell fate by controlling the microenvironment. Curr. Opin. Biotechnol. 18(5), 448–453 (2007) R.W. Sands, D.J. Mooney, Polymers to direct cell fate by controlling the microenvironment. Curr. Opin. Biotechnol. 18(5), 448–453 (2007)
129.
go back to reference I. Tokarev, M. Orlov, S. Minko, Responsive polyelectrolyte gel membranes. Adv. Mater. 18(18), 2458 (2006) I. Tokarev, M. Orlov, S. Minko, Responsive polyelectrolyte gel membranes. Adv. Mater. 18(18), 2458 (2006)
130.
go back to reference I. Tokarev, S. Minko, Multiresponsive, hierarchically structured membranes: new, challenging, biomimetic materials for biosensors, controlled release, biochemical gates, and nanoreactors. Adv. Mater. 21(2), 241–247 (2009) I. Tokarev, S. Minko, Multiresponsive, hierarchically structured membranes: new, challenging, biomimetic materials for biosensors, controlled release, biochemical gates, and nanoreactors. Adv. Mater. 21(2), 241–247 (2009)
131.
go back to reference M. Motornov, T.K. Tam, M. Pita, I. Tokarev, E. Katz, S. Minko, Switchable selectivity for gating ion transport with mixed polyelectrolyte brushes: approaching ‘smart’ drug delivery systems. Nanotechnology 20(43), 434006 (2009) M. Motornov, T.K. Tam, M. Pita, I. Tokarev, E. Katz, S. Minko, Switchable selectivity for gating ion transport with mixed polyelectrolyte brushes: approaching ‘smart’ drug delivery systems. Nanotechnology 20(43), 434006 (2009)
132.
go back to reference X.H. Zhao, J. Kim, C.A. Cezar, N. Huebsch, K. Lee, K. Bouhadir, D.J. Mooney, Active scaffolds for on-demand drug and cell delivery. Proc. Natl. Acad. Sci. USA 108(1), 67–72 (2011) X.H. Zhao, J. Kim, C.A. Cezar, N. Huebsch, K. Lee, K. Bouhadir, D.J. Mooney, Active scaffolds for on-demand drug and cell delivery. Proc. Natl. Acad. Sci. USA 108(1), 67–72 (2011)
133.
go back to reference C.L. Ren, R.J. Nap, I. Szleifer, The role of hydrogen bonding in tethered polymer layers. J. Phys. Chem. B 112(50), 16238–16248 (2008) C.L. Ren, R.J. Nap, I. Szleifer, The role of hydrogen bonding in tethered polymer layers. J. Phys. Chem. B 112(50), 16238–16248 (2008)
134.
go back to reference M. Tagliazucchi, E.J. Calvo, I. Szleifer, Redox and acid base coupling in, ultrathin polyelectrolyte films. Langmuir 24(6), 2869–2877 (2008) M. Tagliazucchi, E.J. Calvo, I. Szleifer, Redox and acid base coupling in, ultrathin polyelectrolyte films. Langmuir 24(6), 2869–2877 (2008)
135.
go back to reference T. Scheibel, R. Parthasarathy, G. Sawicki, X.M. Lin, H. Jaeger, S.L. Lindquist, Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc. Natl. Acad. Sci. USA 100(8), 4527–4532 (2003) T. Scheibel, R. Parthasarathy, G. Sawicki, X.M. Lin, H. Jaeger, S.L. Lindquist, Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc. Natl. Acad. Sci. USA 100(8), 4527–4532 (2003)
Metadata
Title
The Challenges of Biological Materials
Authors
Steven W. Cranford
Markus J. Buehler
Copyright Year
2012
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-1611-7_3

Premium Partners