Skip to main content
Top

2018 | OriginalPaper | Chapter

9. The Cohesive Model

Author : Wolfgang Brocks

Published in: Plasticity and Fracture

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A phenomenological approach which has found numerous applications for all kinds of decohesion and separation processes is based on Barenblatt’s idea of a cohesive zone. The basic concept and numerical realisation in the framework of finite elements are described. A number of proposed traction-separation laws for various applications including mixed mode and the physical significance of the cohesive parameters are discussed. Recent approaches to relate decohesion laws to damage mechanics are critically reviewed. Examples of applications to the simulation of crack extension in thin panels and shells are presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abaqus (2014) User’s Manual, Version 6.12. Dassault Systèmes Simulia Corp, Providence, RI, USA Abaqus (2014) User’s Manual, Version 6.12. Dassault Systèmes Simulia Corp, Providence, RI, USA
2.
go back to reference Allix O, Ladevéze P, Corigliano A (1995) Damage analysis of interlaminar fracture specimens. Compos Struct 31:61–74CrossRef Allix O, Ladevéze P, Corigliano A (1995) Damage analysis of interlaminar fracture specimens. Compos Struct 31:61–74CrossRef
3.
go back to reference Anvari M, Liu J, Thaulow C (2007) Dynamic ductile fracture in aluminum round bars: experiments and simulations. Int J Fract 143:317–332CrossRef Anvari M, Liu J, Thaulow C (2007) Dynamic ductile fracture in aluminum round bars: experiments and simulations. Int J Fract 143:317–332CrossRef
4.
go back to reference Barenblatt GI (1959) The formation of equilibrium cracks during brittle fracture: general ideas and hypothesis, axially symmetric cracks. Appl Math Mech 23:623–636MATH Barenblatt GI (1959) The formation of equilibrium cracks during brittle fracture: general ideas and hypothesis, axially symmetric cracks. Appl Math Mech 23:623–636MATH
5.
6.
go back to reference Bažant ZP (1993) Current status and advances in the theory of creep and interaction with fracture. In: Bažant ZP, Carol I (eds) Proc. 5th Int. RILEM Symp on Creep and Shrinkage of Concrete, E & FN Spon, London and New York, pp 291–307 Bažant ZP (1993) Current status and advances in the theory of creep and interaction with fracture. In: Bažant ZP, Carol I (eds) Proc. 5th Int. RILEM Symp on Creep and Shrinkage of Concrete, E & FN Spon, London and New York, pp 291–307
7.
go back to reference Bažant ZP (2003) Concrete fracture models: testing and practice. Eng Fract Mech 69:165–205 Bažant ZP (2003) Concrete fracture models: testing and practice. Eng Fract Mech 69:165–205
8.
go back to reference Besson J, Steglich D, Brocks W (2001) Modeling of crack growth in round bars and plane strain specimens. Int J Solids Struct 38:8259–8284CrossRefMATH Besson J, Steglich D, Brocks W (2001) Modeling of crack growth in round bars and plane strain specimens. Int J Solids Struct 38:8259–8284CrossRefMATH
9.
go back to reference Brocks W (2005) Cohesive strength and separation energy as characteristic parameters of fracture toughness and their relation to micromechanics. Struct Integr Durab 1:233–243 Brocks W (2005) Cohesive strength and separation energy as characteristic parameters of fracture toughness and their relation to micromechanics. Struct Integr Durab 1:233–243
10.
go back to reference Brocks W, Rabbolini S (2015) Computational fracture mechanics. Report Students Project, Dipartimento di Meccanica, Politecnico di Milano Brocks W, Rabbolini S (2015) Computational fracture mechanics. Report Students Project, Dipartimento di Meccanica, Politecnico di Milano
11.
go back to reference Brocks W, Anuschewski A, Scheider I (2010) Ductile tearing resistance of metal sheets. Eng Fail Anal 17:607–616CrossRef Brocks W, Anuschewski A, Scheider I (2010) Ductile tearing resistance of metal sheets. Eng Fail Anal 17:607–616CrossRef
12.
go back to reference Brocks W, Cornec A, Scheider I (2003) Computational aspects of nonlinear fracture mechanics. In: Milne I, Ritchie RO, Karihaloo B (eds) Comprehensive structural integrity, Vol. 3, Elsevier, pp 127–209 Brocks W, Cornec A, Scheider I (2003) Computational aspects of nonlinear fracture mechanics. In: Milne I, Ritchie RO, Karihaloo B (eds) Comprehensive structural integrity, Vol. 3, Elsevier, pp 127–209
13.
go back to reference Brocks W, Scheider I (2008) Prediction of crack path bifurcation under quasi-static loading by the cohesive model. Struct Durab Health Monit 70:1–11 Brocks W, Scheider I (2008) Prediction of crack path bifurcation under quasi-static loading by the cohesive model. Struct Durab Health Monit 70:1–11
14.
go back to reference Brocks W, Scheider I (2010) Identification of material parameters for structural analyses. Struct Durab Health Monit 161:1–24 Brocks W, Scheider I (2010) Identification of material parameters for structural analyses. Struct Durab Health Monit 161:1–24
15.
go back to reference Brocks, W, Steglich, D (2007) Hybrid methods. In: Milne I, Ritchie RO, Karihaloo B (eds) Comprehensive structural integrity, Online Update Vol. 11, Elsevier, pp 107–136 Brocks, W, Steglich, D (2007) Hybrid methods. In: Milne I, Ritchie RO, Karihaloo B (eds) Comprehensive structural integrity, Online Update Vol. 11, Elsevier, pp 107–136
16.
go back to reference Camacho GT, Ortiz M (1996) Computational modelling of impact damage in brittle materials. Int J Solids Struct 33:2899–2938CrossRefMATH Camacho GT, Ortiz M (1996) Computational modelling of impact damage in brittle materials. Int J Solids Struct 33:2899–2938CrossRefMATH
17.
go back to reference Camanho PP, Davila CG, de Moura MF (2003) Numerical simulation of mixed-mode progressive delamination in composite materials. J Compos Mater 37:1415–1438CrossRef Camanho PP, Davila CG, de Moura MF (2003) Numerical simulation of mixed-mode progressive delamination in composite materials. J Compos Mater 37:1415–1438CrossRef
18.
go back to reference Corigliano A, Ricci M (2001) Rate-dependent interface models: formulation and numerical applications. Int J Solids Struct 38:547–576MathSciNetCrossRefMATH Corigliano A, Ricci M (2001) Rate-dependent interface models: formulation and numerical applications. Int J Solids Struct 38:547–576MathSciNetCrossRefMATH
19.
go back to reference Cornec A, Scheider I, Schwalbe KH (2003) On the practical application of the cohesive model. Eng Fract Mech 70:1963–1987CrossRef Cornec A, Scheider I, Schwalbe KH (2003) On the practical application of the cohesive model. Eng Fract Mech 70:1963–1987CrossRef
20.
go back to reference Cornec A, Schönfeld W, Schwalbe KH, Scheider I (2009) Application of the cohesive model for predicting the residual strength of a large scale fuselage structure with a two-bay crack. Eng Fail Anal 16:2541–2558CrossRef Cornec A, Schönfeld W, Schwalbe KH, Scheider I (2009) Application of the cohesive model for predicting the residual strength of a large scale fuselage structure with a two-bay crack. Eng Fail Anal 16:2541–2558CrossRef
21.
go back to reference Costanzo F, Walton JR (1997) A study of dynamic crack growth in elastic materials using a cohesive zone model. Int J Eng Sci 35:1085–1114MathSciNetCrossRefMATH Costanzo F, Walton JR (1997) A study of dynamic crack growth in elastic materials using a cohesive zone model. Int J Eng Sci 35:1085–1114MathSciNetCrossRefMATH
22.
go back to reference Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100–104CrossRef Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100–104CrossRef
23.
go back to reference Elices M, Guinea GV, Gómez J, Planas J (2002) The cohesive zone model: advantages, limitations and challenges. Eng Fract Mech 69:137–163CrossRef Elices M, Guinea GV, Gómez J, Planas J (2002) The cohesive zone model: advantages, limitations and challenges. Eng Fract Mech 69:137–163CrossRef
24.
go back to reference Falkenberg R, Brocks W, Dietzel W, Scheider I (2010) Modelling the effect of hydrogen on ductile tearing resistance of steels. Int J Mat Res 101:989–996CrossRef Falkenberg R, Brocks W, Dietzel W, Scheider I (2010) Modelling the effect of hydrogen on ductile tearing resistance of steels. Int J Mat Res 101:989–996CrossRef
25.
go back to reference Griffith AA (1920) The phenomena of rupture and flow in solids. Philos Trans R Soc London A211:163–198 Griffith AA (1920) The phenomena of rupture and flow in solids. Philos Trans R Soc London A211:163–198
26.
go back to reference Hillerborg A, Modeer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6:773–778CrossRef Hillerborg A, Modeer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6:773–778CrossRef
27.
go back to reference Jha D, Banerjee A (2012) A cohesive model for fatigue failure in complex stress-states. Int J Fatigue 36:155–162 Jha D, Banerjee A (2012) A cohesive model for fatigue failure in complex stress-states. Int J Fatigue 36:155–162
28.
go back to reference Koplik J, Needleman A (1988) Void growth and coalescence in porous plastic solids. Int J Solids Struct 24:835–853CrossRef Koplik J, Needleman A (1988) Void growth and coalescence in porous plastic solids. Int J Solids Struct 24:835–853CrossRef
29.
go back to reference Krull H, Yuan H (2011) Suggestions to the cohesive traction–separation law from atomistic simulations. Eng Fract Mech 78:525–533CrossRef Krull H, Yuan H (2011) Suggestions to the cohesive traction–separation law from atomistic simulations. Eng Fract Mech 78:525–533CrossRef
30.
go back to reference Lin G, Cornec A, Schwalbe K-H (1998) Three-dimensional finite element simulation of crack extension in aluminium alloy 2024 FC. Fatigue Fract Eng Mater Struct 21:1159–1173CrossRef Lin G, Cornec A, Schwalbe K-H (1998) Three-dimensional finite element simulation of crack extension in aluminium alloy 2024 FC. Fatigue Fract Eng Mater Struct 21:1159–1173CrossRef
31.
go back to reference Maier G, Bocciarelli M, Bolzon G, Fedele R (2006) Inverse analyses in fracture mechanics. Int J Fract 138:47–73CrossRefMATH Maier G, Bocciarelli M, Bolzon G, Fedele R (2006) Inverse analyses in fracture mechanics. Int J Fract 138:47–73CrossRefMATH
32.
go back to reference McClintock FA (1968) A criterion for ductile fracture by the growth of holes. Trans ASME, J Appl Mech 35:363–371CrossRef McClintock FA (1968) A criterion for ductile fracture by the growth of holes. Trans ASME, J Appl Mech 35:363–371CrossRef
33.
go back to reference Mosler J, Scheider I (2011) A thermodynamically and variationally consistent class of damage-type cohesive models. J Mech Phys Solids 59:1647–1668MathSciNetCrossRefMATH Mosler J, Scheider I (2011) A thermodynamically and variationally consistent class of damage-type cohesive models. J Mech Phys Solids 59:1647–1668MathSciNetCrossRefMATH
34.
go back to reference Needleman (1987) A continuum model for void nucleation by inclusion debonding. J Appl Mech 54:525–531CrossRefMATH Needleman (1987) A continuum model for void nucleation by inclusion debonding. J Appl Mech 54:525–531CrossRefMATH
35.
go back to reference Needleman A (1990) An analysis of decohesion along an imperfect interface. Int J Fract 42:21–40CrossRef Needleman A (1990) An analysis of decohesion along an imperfect interface. Int J Fract 42:21–40CrossRef
36.
go back to reference Nègre P, Steglich D, Brocks W (2005) Crack extension at an interface: prediction of fracture toughness and simulation of crack path deviation. Int J Fract 134:209–229CrossRef Nègre P, Steglich D, Brocks W (2005) Crack extension at an interface: prediction of fracture toughness and simulation of crack path deviation. Int J Fract 134:209–229CrossRef
37.
go back to reference Ottosen NS, Ristinmaa M, Mosler J (2015) Fundamental physical principles and cohesive zone models at finite displacements—limitations and possibilities. Int J Solids Struct 53:70–79CrossRef Ottosen NS, Ristinmaa M, Mosler J (2015) Fundamental physical principles and cohesive zone models at finite displacements—limitations and possibilities. Int J Solids Struct 53:70–79CrossRef
38.
go back to reference Park K, Paulino GH, Roesler JR (2009) A unified potential-based cohesive model of mixed-mode fracture. J Mech Phys Solids 57:891–908CrossRef Park K, Paulino GH, Roesler JR (2009) A unified potential-based cohesive model of mixed-mode fracture. J Mech Phys Solids 57:891–908CrossRef
39.
go back to reference Rice JR, Tracey DM (1969) On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids 17:201–217CrossRef Rice JR, Tracey DM (1969) On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids 17:201–217CrossRef
40.
go back to reference Roe RL, Siegmund T (2003) An irreversible cohesive zone model for interface fatigue crack growth simulation. Eng Fract Mech 70:209–232 Roe RL, Siegmund T (2003) An irreversible cohesive zone model for interface fatigue crack growth simulation. Eng Fract Mech 70:209–232
41.
go back to reference Rose J, Ferrante J, Smith J (1981) Universal binding energy curves for metals and bimetallic interfaces. Phys Rev Lett 75:675–678CrossRef Rose J, Ferrante J, Smith J (1981) Universal binding energy curves for metals and bimetallic interfaces. Phys Rev Lett 75:675–678CrossRef
42.
go back to reference Scheider I (2001) Bruchmechanische Bewertung von Laserschweißverbindungen durch numerische Rißfortschrittsanalysen mit dem Kohäsivzonenmodell. Ph.D. thesis, Technical University Hamburg-Harburg, Report GKSS 2001/3, GKSS-Research Centre, Geesthacht, Germany Scheider I (2001) Bruchmechanische Bewertung von Laserschweißverbindungen durch numerische Rißfortschrittsanalysen mit dem Kohäsivzonenmodell. Ph.D. thesis, Technical University Hamburg-Harburg, Report GKSS 2001/3, GKSS-Research Centre, Geesthacht, Germany
43.
go back to reference Scheider I (2009) Derivation of separation laws for cohesive models in the course of ductile fracture. Eng Fract Mech 76:1450–1459CrossRef Scheider I (2009) Derivation of separation laws for cohesive models in the course of ductile fracture. Eng Fract Mech 76:1450–1459CrossRef
44.
go back to reference Scheider I, Brocks W (2003) Simulation of cup-cone fracture using the cohesive model. Eng Fract Mech 70:1943–1961CrossRef Scheider I, Brocks W (2003) Simulation of cup-cone fracture using the cohesive model. Eng Fract Mech 70:1943–1961CrossRef
45.
go back to reference Scheider I, Brocks W (2003) The effect of the traction separation law on the results of cohesive zone crack propagation analyses. Key Eng Mater 251–252:313–318CrossRef Scheider I, Brocks W (2003) The effect of the traction separation law on the results of cohesive zone crack propagation analyses. Key Eng Mater 251–252:313–318CrossRef
46.
go back to reference Scheider I, Brocks W (2003) Cohesive elements for thin-walled structures. Comput Mater Sci 37:101–109CrossRef Scheider I, Brocks W (2003) Cohesive elements for thin-walled structures. Comput Mater Sci 37:101–109CrossRef
47.
go back to reference Scheider I, Brocks W (2008) Residual strength prediction of a complex structure using crack extension analyses. Eng Fract Mech 75:4001–4017CrossRef Scheider I, Brocks W (2008) Residual strength prediction of a complex structure using crack extension analyses. Eng Fract Mech 75:4001–4017CrossRef
48.
go back to reference Scheider I, Schödel M, Brocks W, Schönfeld W (2006) Crack propagation analysis with CTOA and cohesive model: Comparison and experimental validation. Eng Fract Mech 73:252–263CrossRef Scheider I, Schödel M, Brocks W, Schönfeld W (2006) Crack propagation analysis with CTOA and cohesive model: Comparison and experimental validation. Eng Fract Mech 73:252–263CrossRef
49.
go back to reference Schwalbe KH, Scheider I, Cornec A (2009): SIAM CM09 – The SIAM method for applying cohesive models to the damage behaviour of engineering materials and structures. Report GKSS 2009/1, GKSS-Reseach Centre, Geesthacht, Germany Schwalbe KH, Scheider I, Cornec A (2009): SIAM CM09 – The SIAM method for applying cohesive models to the damage behaviour of engineering materials and structures. Report GKSS 2009/1, GKSS-Reseach Centre, Geesthacht, Germany
50.
go back to reference Serebrinsky S, Ortiz M (2005) A hysteretic cohesive-law model of fatigue-crack nucleation. Scripta Mater 53:1193–1196 Serebrinsky S, Ortiz M (2005) A hysteretic cohesive-law model of fatigue-crack nucleation. Scripta Mater 53:1193–1196
51.
go back to reference Siegmund T, Brocks W (1999) Prediction of the work of separation and implications to modeling. Int J Fract 99:97–116CrossRef Siegmund T, Brocks W (1999) Prediction of the work of separation and implications to modeling. Int J Fract 99:97–116CrossRef
52.
go back to reference Siegmund T, Brocks W (2000) The role of cohesive strength and separation energy for modeling of ductile fracture. In: Jerina KL, Paris PC (eds) Fatigue Fracture Mechanics, vol 30. ASTM STP 1360. American Society for Testing and Materials, Philadelphia, pp 139–151CrossRef Siegmund T, Brocks W (2000) The role of cohesive strength and separation energy for modeling of ductile fracture. In: Jerina KL, Paris PC (eds) Fatigue Fracture Mechanics, vol 30. ASTM STP 1360. American Society for Testing and Materials, Philadelphia, pp 139–151CrossRef
53.
go back to reference Siegmund T, Brocks W, Heerens J, Tempus G, Zink W (1999) Modeling of crack growth in thin sheet aluminium. In: ASME Int. Mechanical Engineering Congress and Exposition: Recent Advances in Solids and Structures, ASME PVP 398, Nashville, pp 15–22 Siegmund T, Brocks W, Heerens J, Tempus G, Zink W (1999) Modeling of crack growth in thin sheet aluminium. In: ASME Int. Mechanical Engineering Congress and Exposition: Recent Advances in Solids and Structures, ASME PVP 398, Nashville, pp 15–22
54.
go back to reference Siegmund T, Needleman A (1997) A numerical study of dynamic crack growth in elastic–viscoplastic solids. Int J Solids Struct 34:769–787CrossRefMATH Siegmund T, Needleman A (1997) A numerical study of dynamic crack growth in elastic–viscoplastic solids. Int J Solids Struct 34:769–787CrossRefMATH
55.
go back to reference Song SH, Paulino Glaucio H, Buttlar GH (2006) A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material. Eng Fract Mech 73:2829–2848CrossRef Song SH, Paulino Glaucio H, Buttlar GH (2006) A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material. Eng Fract Mech 73:2829–2848CrossRef
56.
go back to reference Su C, Wei YJ, Anand L (2004) An elastic-plastic interface constitutive model: Application to adhesive joints. Int J Plasticity 20:2063–2081CrossRefMATH Su C, Wei YJ, Anand L (2004) An elastic-plastic interface constitutive model: Application to adhesive joints. Int J Plasticity 20:2063–2081CrossRefMATH
57.
go back to reference Tijssens A, van der Giessen E, Sluys LJ (2001) Modeling quasi-static fracture of heterogeneous materials with the cohesive surface methodology. In: Bathe KJ (ed) Computational Fluid and Solid Mechanics (1st MIT Conf), vol 1. Elsevier, Amsterdam and London, pp 509–512CrossRef Tijssens A, van der Giessen E, Sluys LJ (2001) Modeling quasi-static fracture of heterogeneous materials with the cohesive surface methodology. In: Bathe KJ (ed) Computational Fluid and Solid Mechanics (1st MIT Conf), vol 1. Elsevier, Amsterdam and London, pp 509–512CrossRef
58.
go back to reference Tvergaard V (1990) Effect of fibre debonding in a whisker-reinforced metal. Mater Sci Eng, A 190:203–213CrossRef Tvergaard V (1990) Effect of fibre debonding in a whisker-reinforced metal. Mater Sci Eng, A 190:203–213CrossRef
59.
go back to reference Tvergaard V, Hutchinson JW (1992) The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J Mech Phys Solids 40:1377–1397CrossRefMATH Tvergaard V, Hutchinson JW (1992) The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J Mech Phys Solids 40:1377–1397CrossRefMATH
60.
go back to reference Tvergaard V, Hutchinson JW (1993) The influence of plasticity on mixed mode interface toughness. J Mech Phys Solids 41:1119–1135CrossRefMATH Tvergaard V, Hutchinson JW (1993) The influence of plasticity on mixed mode interface toughness. J Mech Phys Solids 41:1119–1135CrossRefMATH
61.
go back to reference Xu Q, Lu Z (2013) An elastic–plastic cohesive zone model for metal–ceramic interfaces at finite deformations. Int J Plasticity 41:147–164CrossRef Xu Q, Lu Z (2013) An elastic–plastic cohesive zone model for metal–ceramic interfaces at finite deformations. Int J Plasticity 41:147–164CrossRef
62.
go back to reference Xu X, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434CrossRefMATH Xu X, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434CrossRefMATH
63.
go back to reference Xu XP, Needleman A (1996) Numerical simulations of dynamic crack growth along an interface. Int J Fract 74:289–324CrossRef Xu XP, Needleman A (1996) Numerical simulations of dynamic crack growth along an interface. Int J Fract 74:289–324CrossRef
64.
go back to reference Xu DB, Hui CY, Kramer EJ, Creton C (1991) A micromechanical model of crack growth along polymer interfaces. Mech Mater 11:257–268CrossRef Xu DB, Hui CY, Kramer EJ, Creton C (1991) A micromechanical model of crack growth along polymer interfaces. Mech Mater 11:257–268CrossRef
Metadata
Title
The Cohesive Model
Author
Wolfgang Brocks
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-62752-6_9

Premium Partners