Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2019

Open Access 01-12-2019 | Research

The convergence of \((p,q)\)-Bernstein operators for the Cauchy kernel with a pole via divided difference

Authors: Faisal Khan, Mohd Saif, Aiman Mukheimer, M. Mursaleen

Published in: Journal of Inequalities and Applications | Issue 1/2019

Activate our intelligent search to find suitable subject content or patents.

search-config
download
DOWNLOAD
print
PRINT
insite
SEARCH
loading …

Abstract

In this paper, some qualitative approximation results for the \((p,q)\)-Bernstein operators \(B_{p,q}^{n}(f;x)\) are obtained for the Cauchy kernel \(\frac{1}{x-\alpha }\) with a pole \(\alpha \in {}[ 0,1]\) for \(q>p>1\). The main focus lies in the study of behavior of operators \(B_{p,q}^{n}(f;x)\) for the function \(f_{m}(x)=\frac{1}{x-p^{m}q^{-m}}\), \(x\neq p^{m}q^{-m}\) and \(f_{m}(p^{m}q ^{-m})=a\), \(a\in \mathbb{R}\) and the extra parameter p provides flexibility for the approximation.
Notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction and preliminaries

The uniform convergence of a sequence of operators to a continuous function was introduced by Bohman [9] and Korovkin [16]. Through q-calculus various modifications of Bernstein operators [7] have been studied so far [10, 18, 31]. The \((p,q)\)-integers are the generalization of the q-integers, which has an important role in the representation theory of quantum calculus in the physics literature. Recently, the approximation by the \((p,q)\)-analog of a positive linear operator has become an active area of research. For the theory and numerical implementations of the \((p,q)\)-analog of Bernstein operators introduced by Mursaleen et al. [22] and other \((p,q)\)-analogs, the reader may refer to [15, 1115, 1921] and [32]. For most recent work on the \((p,q)\)-approximation we refer to [8, 24, 26].
The \((p,q)\)-integer, \((p,q)\)-binomial expansion and the \((p,q)\)-binomial coefficients are defined by
[ m ] p , q : = p m q m p q , m = 0 , 1 , 2 , , p > q 1 , ( a + b ) p , q m : = ( a + b ) ( p a + q b ) ( p 2 a + q 2 b ) ( p m 1 a + q m 1 b ) ( a + b ) p , q m = r = 0 k p ( m r ) ( m r 1 ) 2 q r ( r 1 ) 2 [ m r ] p , q a r , [ m r ] p , q : = [ m ] p , q ! [ r ] p , q ! [ m r ] p , q ! .
It can easily be verified by induction that
( 1 + a ) ( p + q a ) ( p 2 + q 2 a ) ( p n 1 + q n 1 a ) = r = 0 k p ( m r ) ( m r 1 ) 2 q r ( r 1 ) 2 [ m r ] p , q a r .
The \((p,q)\)-analog of Euler’s identity is defined by
s = 0 m 1 ( p s q s a ) : = k = 0 m p ( m k ) ( m k 1 ) 2 q k ( k 1 ) 2 [ m k ] p , q a k .
Let \(f:[0,1]\longrightarrow \mathbb{R}\) and \(q>p>1\). The \((p,q)\)-Bernstein operators [22] of f is defined as
$$ B_{p,q}^{n}(f;x):=\sum_{k=0}^{n}f \biggl( \frac{[k]_{p,q}}{p^{k-n}[n]_{p,q}} \biggr) p_{n,k}(p,q;x),\quad n \in \mathbb{N}, $$
(1.1)
where the polynomial \(p_{n,k}(p,q;x)\) is given by
p n , k ( p , q ; x ) = 1 p n ( n 1 ) 2 [ n k ] p , q p k ( k 1 ) 2 x k s = 0 n k 1 ( p s q s x ) , x [ 0 , 1 ] , 0 < q < p < 1 .
(1.2)
For \(p=1\), \(B_{p,q}^{n} (f;x)\) turns into the q-Bernstein operator. We have
$$ B_{p,q}^{n}(f;0)=f(0), \qquad B_{p,q}^{n}(f;1)=f(1), \quad n \in \mathbb{N}. $$
(1.3)
The following \((p,q)\)-difference form of Bernstein operators [25] is given by
$$ B_{p,q}^{n}(f;x):=\sum_{r=0}^{n} \lambda _{p,q}^{n} f \biggl[ 0,\frac{p ^{n-1}[1]_{p,q}}{[n]_{p,q}},\ldots, \frac{p^{n-r}[r]_{p,q}}{[n]_{p,q}} \biggr] x^{r}, $$
(1.4)
where \(f[x_{0},x_{1},\ldots,x_{n}]\) indicates the nth order divided difference of f with pairwise distinct node, that is,
$$\begin{aligned}& f[x_{0}]=f(x_{0}), \qquad f[x_{0},x_{1}]= \frac{f(x_{1})-f(x_{0})}{x_{1}-x_{0}}, \\& f[x_{0},x_{1},\ldots,x_{n}]=\frac{f[x_{1},\ldots,x_{n}]-f[x_{0}, \ldots,x_{n-1}]}{[x_{n}-x_{0}]} \end{aligned}$$
and \(\lambda _{p,q}^{n}\) is given by
λ p , q n = [ n r ] p , q [ r ] p , q ! [ n ] p , q r p ( n r ) ( n r 1 ) 2 q r ( r 1 ) 2 = ( 1 p n 1 [ 1 ] p , q [ n ] p , q ) ( 1 p n 2 [ 2 ] p , q [ n ] p , q ) ( 1 p n r + 1 [ r 1 ] p , q [ n ] p , q ) ,
(1.5)
and \(\lambda _{p,q}^{0}=\lambda _{p,q}^{1}=1\), \(0\leq \lambda _{p,q} ^{n}\leq 1\), \(r=0,1,\ldots,n\).
In this paper, some qualitative approximation results for the \((p,q)\)-Bernstein operators \(B_{p,q}^{n}(f;x)\) have been obtained for the Cauchy kernel \(\frac{1}{x-\alpha }\) with a pole \(\alpha \in {}[ 0,1]\) for \(q>p>1 \). The main focus lies in the study of behavior of operators \(B_{p,q}^{n}(f;x)\) for the function \(f_{m}(x)=\frac{1}{x-p ^{m}q^{-m}}\), \(x\neq p^{m}q^{-m}\) and \(f_{m}(p^{m}q^{-m})=a\), \(a\in \mathbb{R}\) and the extra parameter p provides flexibility for the approximation.
The time scale \(\mathbb{J}_{p,q}\) for \(q>p>1\) is denoted and defined as
$$ \mathbb{J}_{p,q}=\{0\}\cup \bigl\{ p^{k}q^{-k}\bigr\} _{k=0}^{\infty }. $$
(1.6)
Here, we consider the \((p,q)\)-Bernstein operators with the Cauchy kernel \(\frac{1}{x-\alpha }\), \(\alpha \in [ 0,1]\). The previously obtained results [2730] lead to the following conclusions.
  • If \(\alpha =0\), that is, \(f(x)=\frac{1}{x}\), \(x\neq 0\) and \(f(0)=a\), then, for \(q\geq 2\),
    $$ \lim_{n\rightarrow \infty }B_{p,q}^{n}(f;x)= \textstyle\begin{cases} f(x),& x\in \mathbb{J}_{p,q}, \\ \infty ,& x\notin \mathbb{J}_{p,q}. \end{cases} $$
    (1.7)
  • If \(\alpha \in \mathbb{J}_{p,q}\setminus [0,1]\) that is \(f(x)=\frac{1}{(x- \alpha)}\) if \(x\neq \alpha \) and \(f(\alpha) = a \), then
    $$ \lim_{n\rightarrow \infty } B^{n}_{p,q}(f;x) = f(x),\quad x \in \mathbb{J}_{p,q}. $$
Furthermore, as \(n\rightarrow \infty \), \(B_{p,q}^{n}(f;x)\rightarrow f(x)\) uniformly on any compact subset of \((-\alpha,\alpha)\) and \(B_{p,q}^{n}(f;x)\rightarrow \infty \) for \(\vert x \vert > \alpha \), \(x\notin \mathbb{J}_{p,q}\). Therefore, it is left to examine the case \(\alpha \in \mathbb{J}_{p,q} \setminus \{0\}\) which is exactly the subject of the present paper. Let the function \(f_{m}:\mathbb{R}\rightarrow \mathbb{R}\) be defined by
$$ f_{m}(x)= \textstyle\begin{cases} \frac{1}{(x-p^{m}q^{-m})^{j}},& x\in \mathbb{R}\setminus \{p^{m}q^{-m}\}, \\ a,& x=p^{m}q^{-m}, \end{cases}\displaystyle m\in \mathbb{N}_{0}, a \in \mathbb{R}. $$
(1.8)

2 Some auxiliary results

In this section, we prove some important lemmas.
Lemma 2.1
For the function \(f_{m}\) defined by (1.8), we have
(a)
for \(m\in \mathbb{N}\),
$$ \lim_{n\rightarrow \infty }B_{p,q}^{n}\bigl(f_{m};p^{j}q^{-j} \bigr)=f _{m}\bigl(p^{j}q^{-j}\bigr),\quad j\in \mathbb{N}_{0}\setminus \{m,m+1\}. $$
Besides,
$$\begin{aligned}& \lim_{n\rightarrow \infty }B_{p,q}^{n}\bigl(f_{m};p^{m}q^{-m} \bigr)=- \infty, \quad \textit{and} \\& \lim_{n\rightarrow \infty }B_{p,q}^{n}\bigl(f_{m};p ^{-(m+1)}q^{-(m+1)}\bigr) =f_{m}\bigl(p^{m+1}q^{-(m+1)}\bigr)- \frac{p^{-m}q^{m}[m+1]_{p,q}}{{p^{-1}(q-1)}[m]_{p,q}}. \end{aligned}$$
 
(b)
For \(m=0\),
$$ \lim_{n\rightarrow \infty }B_{p,q}^{n}\bigl(f_{0};p^{j}q^{-j} \bigr)=f _{0}\bigl(p^{j}q^{-j}\bigr), \quad j\in \mathbb{N}_{0} $$
i.e., \(B_{p,q}^{n}(f_{0};\cdot)\) approximates \(f_{0}\) on \(\mathbb{J}_{p,q}\).
 
This describes the behavior of \(B_{p,q}^{n}(f_{m};\cdot)\) on the time scale \(\mathbb{J}_{p,q}\).
Proof
(a) From (1.2), we can easily see that \(p_{n,n-k}(p,q;p^{j}q^{-j})=0\) for \(k>j\), whence
$$ B_{p,q}^{n}\bigl(f;p^{-j}q^{j}\bigr)= \sum_{k=0}^{\min \{k,j\}}f \biggl( \frac{[n-k]_{p,q}}{[n]_{p,q}} \biggr) p_{n,n-k} \bigl(p,q;p^{j}q^{-j}\bigr). $$
(2.1)
Besides
$$ \lim_{n\rightarrow \infty }p_{n,n-k} \bigl(p,q;p^{j}q^{-j} \bigr)= \delta _{k,j} \quad \mbox{and} \quad \lim_{n\rightarrow \infty } \frac{[n-k]_{p,q}}{[n]_{p,q}}=p^{k}q^{-k} . $$
(2.2)
Thus, \(\lim_{n\rightarrow \infty }f_{m} ( \frac{[n-k]_{p,q}}{[n]_{p,q}} ) p_{n,n-k} (p,q;p^{j}q^{-j})=f _{m} (p^{k}q^{-k}) \delta _{j,k}\) for all \(k\neq m\).
Now by easy calculation, we have
$$ \lim_{n\rightarrow \infty }f \biggl( \frac{[n-k]_{p,q}}{[n]_{p,q}} \biggr) p_{n,n-k}\bigl(p,q;p^{j}q^{-j}\bigr)= \textstyle\begin{cases} -\infty ,& j=m, \\ -\frac{p^{-m}q^{m}[m+1]_{p,q}}{{p^{-1}(q-1)} [m]_{p,q}},& j=m+1, \\ 0,& \geq m+2, \end{cases} $$
and combining with (2.1) and (2.2) yields the result.
(b) It can be obtained easily from (1.3) and (2.2) as \(f_{0}\) is continuous at all points \(p^{j}q^{-j}\), \(j\in \mathbb{N}\). □
The next lemma is related to the coefficient of \(B^{n}_{p,q}(f_{0};\cdot)\).
Lemma 2.2
Let \(f_{m}\) be a function as in (1.8). If \(B_{p,q}^{n}(f_{m};x)=\sum_{k=0}^{n}C_{k,n}^{p,q}x^{k}\) and \(\frac{[k]_{p,q}}{[n]_{p,q}}\neq p^{m}q^{-m}\) for \(k=0,1,2,\ldots,n\), then
$$ C_{k,n}^{p,q}=-\frac{\lambda _{k,n}^{p,q}p^{-m(k+1)}q^{m(k+1)}}{ ( 1-\frac{p^{n-m-1}q^{m}[1]_{p,q}}{[n]_{p,q}} ) ( 1-\frac{p ^{n-m-2}q^{m}[2]_{p,q}}{[n]_{p,q}} ) \cdots ( 1-\frac{p ^{n-m-k}q^{m}[k]_{p,q}}{[n]_{p,q}} ) }, $$
(2.3)
where \(\lambda _{k,n}^{p,q}\) are given by (1.5).
Proof
Consider \(f_{m} (z)=\frac{1}{z-p^{m}q^{-m}}\), which is analytic function in \(\mathbb{C}\setminus \{p^{m}q^{-m}\}\). It is well known that [17] the kth order divided difference of f can be expressed as
$$ f[x_{0},x_{1},\ldots,x_{k}]=\frac{1}{2\pi i} \oint _{\mathcal{L}}\frac{f( \zeta)\,d\zeta }{(\zeta -x_{0})(\zeta -x_{1})\cdots (\zeta -x_{k})}, $$
where \(\mathcal{L}\) is contour encircling \(x_{0},\ldots,x_{k}\) and f is assumed to be analytic on and within \(\mathcal{L}\). Hence, when the nodes \(0,\frac{[1]_{p,q}}{[n]_{p,q}},\frac{[2]_{p,q}}{[n]_{p,q}}, \ldots,\frac{[k]_{p,q}}{[n]_{p,q}}\) are inside \(\mathcal{L}\) and the pole \(\alpha =p^{m}q^{-m}\) is outside, one has
$$ f \biggl[ 0,\frac{p^{n-1}[1]_{p,q}}{[n]_{p,q}},\ldots, \frac{p^{n-r}[r]_{p,q}}{[n]_{p,q}} \biggr] = \frac{1}{2\pi i} \oint _{\mathcal{L}}\frac{f_{m} (\zeta)\,d\zeta }{\zeta (\zeta -\frac{p ^{n-1}[1]_{p,q}}{[n]_{p,q}})\cdots (\zeta - \frac{p^{n-r}[r]_{p,q}}{[n]_{p,q}})}. $$
(2.4)
By the residue theorem
$$\begin{aligned} f \biggl[ 0,\frac{p^{n-1}[1]_{p,q}}{[n]_{p,q}},\ldots, \frac{p^{n-r}[r]_{p,q}}{[n]_{p,q}} \biggr] =&\sum _{j=0}^{k}\operatorname{Res}_{z=p ^{n-j}\frac{[j]_{p,q}}{[n]_{p,q}}} \frac{f_{m} (z)}{\prod_{j=0}^{k} ( z-p^{n-j}\frac{[j]_{p,q}}{[n]_{p,q}} ) } \\ =&-\operatorname{Res}_{z=p^{m}q^{-m}}\frac{f_{m} (z)}{\prod_{j=0}^{k} ( z-p^{n-j}\frac{[j]_{p,q}}{[n]_{p,q}} ) } \\ =&-\frac{p^{-m(k+1)} q^{m(k+1)}}{\prod_{j=1}^{k} ( 1-p^{n-m-j}\frac{[j]_{p,q}}{[n]_{p,q}} ) }. \end{aligned}$$
Since \(f_{m} (z)=f_{m} (x)\) for \(z=x\in {}[ 0,1]\), the statement follows from the divided difference representation (1.4). □
Now, we find the asymptotic estimates for the coefficient \(C_{k,n} ^{p,q}\) in the next lemma.
Lemma 2.3
We have
$$ \lim_{n\rightarrow \infty }\prod_{k=1}^{n-j} \biggl( 1-p^{n-m-j} q^{m}\frac{[k]_{p,q}}{[n]_{p,q}} \biggr) = \biggl( \frac{p^{2j-m}}{q ^{j-m}};\frac{p}{q} \biggr) _{\infty } $$
for \(j>m\), \(q>p>1\).
Proof
It is clear that
$$ \log \prod_{k=1}^{n-j} \biggl( 1-p^{n-m-j} q^{m} \frac{[k]_{p,q}}{[n]_{p,q}} \biggr) =\sum _{k=j}^{n-1}\log \biggl( 1-p ^{n-m-j} q^{m}\frac{[n-k]_{p,q}}{[n]_{p,q}} \biggr) =\sum_{k=j}^{ \infty }a_{k,n}^{p,q}, $$
where
$$ a_{k,n}^{p,q}= \textstyle\begin{cases} \log ( 1-p^{n-m-j} q^{m}\frac{[n-k]_{p,q}}{[n]_{p,q}} ),& k< n, \\ 0,& k\geq n. \end{cases} $$
Since
$$\begin{aligned} \bigl\vert a_{k,n}^{p,q} \bigr\vert \leq& \biggl\vert \log \biggl( 1-p ^{n-m-j} q^{m}\frac{[n-k]_{p,q}}{[n]_{p,q}} \biggr) \biggr\vert \\ \leq& \frac{q}{q-p}\frac{p^{n-m-k} q^{m} [n-k]_{p,q}}{[n]_{p,q}} \leq \frac{q}{q-p}p^{n-k-m} q^{m}, \end{aligned}$$
which gives \(\sum_{k=j}^{\infty } \vert a_{k,n}^{p,q} \vert < \infty \), and by the Lebesgue dominated convergence theorem, we have
$$\begin{aligned} \lim_{n\rightarrow \infty }\sum_{k=j}^{n-1} \log \biggl( 1-p ^{n-m-j}q^{m}\frac{[n-k]_{p,q}}{[n]_{p,q}} \biggr) =&\sum _{k=j}^{ \infty } \biggl( \lim_{n\rightarrow \infty } \log \biggl( 1-p ^{n-m-j}q^{m}\frac{[n-k]_{p,q}}{[n]_{p,q}} \biggr) \biggr) \\ =&\sum_{k=j}^{\infty }\lim_{n\rightarrow \infty } \biggl( 1-p ^{n-k-m} \frac{q^{m}}{q^{k}} \biggr), \end{aligned}$$
as a result
$$ \lim_{n\rightarrow \infty }\log \prod_{k=1}^{n-j} \biggl( 1-p ^{n-m-j} q^{m} \frac{[n-k]_{p,q}}{[n]_{p,q}} \biggr) =\log \prod_{k=j}^{\infty } \biggl( 1-p^{n-k-m} \frac{q^{m}}{p^{k}} \biggr), $$
which completes the proof. □
The following lemma gives an upper bound for \(n-m-1\).
Lemma 2.4
If \(m\in \mathbb{N}\), \(k=0,1,2,\ldots,n-m-1\), then
$$ \bigl\vert C_{k,n}^{p,q} \bigr\vert \leq \mathcal{C}_{m,p,q} p^{-mn} q^{mn}, $$
where \(\mathcal{C}\) in RHS is a positive constant, whose value need not to be addressed.
Proof
For \(n>m+1\) and from (2.3), we have
$$\begin{aligned}& \bigl\vert C_{k,n}^{p,q} \bigr\vert \leq \frac{p^{-m(k+1)}q^{m(k+1)}}{ ( 1-\frac{p^{n-m-1}q^{m}[1]_{p,q}}{[n]_{p,q}} ) ( 1-\frac{p ^{n-m-2}q^{m}[2]_{p,q}}{[n]_{p,q}} ) \cdots ( 1-\frac{p ^{n-m-k}q^{m}[k]_{p,q}}{[n]_{p,q}} ) } \\& \hphantom{ \big\vert C_{k,n}^{p,q}\big\vert } \leq \frac{p^{-m(n-m)}q^{m(n-m)}}{ ( 1-\frac{p^{2(n-m-1)}q ^{m}}{q^{n-1}} ) ( 1- \frac{p^{2(n-m-2)}q^{m}[2]_{p,q}}{[n]_{p,q}} ) \cdots ( 1-\frac{p ^{n-m-k}q^{m}[k]_{p,q}}{[n]_{p,q}} ) }, \\& \bigl\vert C_{k,n}^{p,q} \bigr\vert \leq \frac{p^{-mn}q^{mn}}{p^{2m}q ^{2m}(\frac{p}{q};\frac{p}{q})_{\infty }}. \end{aligned}$$
Further, we discuss the nature of \(C_{n-m+1,n},\ldots,C_{n,n}\) as follows. □
Lemma 2.5
For \(m\in \mathbb{N}\), \(q>p>1\),
$$ \bigl\vert C_{n-m,n}^{p,q} \bigr\vert \sim \mathcal{C}_{p,q,m} p ^{-(m+1)n}q^{(m+1)n}, \quad n\rightarrow \infty. $$
Proof
Using (2.3), we obtain the following
$$ \bigl\vert C_{n-m}^{p,q} \bigr\vert =\lambda _{n-m,n}^{p,q}\frac{p ^{-m(n-m+1)} q^{m(n-m+1)}}{ ( 1- \frac{p^{n-m-1}q^{m}[1]_{p,q}}{[n]_{p,q}} ) ( 1-\frac{p ^{n-m-2}q^{m}[2]_{p,q}}{[n]_{p,q}} ) \cdots ( 1-\frac{p ^{n-m-(n-m)}q^{m}[n-m]_{p,q}}{[n]_{p,q}} ) }. $$
From Lemma 2.3, we have
$$\begin{aligned}& \begin{aligned}& \bigl\vert C_{n-m}^{p,q} \bigr\vert \sim \frac{ ( \frac{p^{m+1}}{q ^{m+1}};\frac{p}{q} ) _{\infty }q^{m(n-m+1)} p^{-m(n-m+1)} p ^{m}(p^{n}-q^{n})}{ ( \frac{p}{q};\frac{p}{q} ) _{\infty }p ^{n} (p^{m}-q^{m})} \\ &\hphantom{ \vert C_{n-m}^{p,q} \vert }\sim \frac{ ( \frac{p^{m+1}}{q^{m+1}};\frac{p}{q} ) _{ \infty }q^{mn} p^{-mn}p^{m} (p^{n}-q^{n})}{ ( \frac{p}{q}; \frac{p}{q} ) _{\infty }q^{m(m-1)}p^{m(m-1)}(p^{m}-q^{m})}, \\ &C_{n-m,n}^{p,q}=\mathcal{C}_{m}^{p,q} p^{-n(m+1)}q^{n(m+1)}. \end{aligned} \end{aligned}$$
(2.5)
The nature of the remaining coefficients \(C_{n-m+1,n},\ldots,C_{n,n}\) is given as follows. □
Lemma 2.6
For \(j=1,2,\ldots,m\), we have
lim n C n m + j , n p , q C n m , n p , q = ( 1 ) j [ m j ] p , q p ( n j ) ( n j 1 ) 2 q j ( j 1 ) 2 .
Proof
Using (2.3) and (1.5), we get
C n m + j , n p , q = C n m , n p , q ( 1 p m [ n m ] p , q [ n ] p , q ) ( 1 p m j + 1 [ n m + j 1 ] p , q [ n ] p , q ) ( 1 p 1 q m [ n m + 1 ] [ n ] p , q ) ( 1 p j q m [ n m + j ] p , q [ n ] p , q ) , lim n C n m + j , n p , q C n m , n p , q = ( 1 p m q m ) ( 1 p m j + 1 q m j + 1 ) ( 1 q p ) ( 1 q j p j ) , lim n C n m + j , n p , q C n m , n p , q = ( 1 ) j [ m j ] p , q p ( n j ) ( n j 1 ) 2 q j ( j 1 ) 2 .
 □
Corollary 2.7
The following estimate holds:
$$ \bigl\vert C_{k,n}^{p,q} \bigr\vert \leq \mathcal{C}_{p,q,m} p^{-(m+1)n}q ^{(m+1)n},\quad k=0,1,2, \ldots,n, $$
(2.6)
and \(\mathcal{C}_{p,q,m}\) is independent of both k and n.
Corollary 2.8
We have the following:
$$ \lim_{n\rightarrow \infty }\frac{C_{n-m,n}+\cdots +C_{n-m+j,n}x ^{j}+\cdots +C_{n,n}x^{n}}{C_{n-m,n}}=(x;p,q)_{m}. $$
(2.7)
Proof
The statement follows from Rothe’s identity [6],
( x ; p , q ) m = j = 0 m ( 1 ) j [ m j ] p , q p ( n j ) ( n j 1 ) 2 q j ( j 1 ) 2 .
 □

3 Main results

  • First we consider the case when pole \(\alpha \in \mathbb{J}_{p,q} \setminus \{0,1\}\).
Now, we obtain the results that concern with the uniform approximation of \(f_{m}(x)\), \(m\in \mathbb{N}\) by its \((p,q)\)-Bernstein operators. It may be noted that, while the case when \(\alpha \in {}[ 0,1]\setminus \mathbb{J}_{p,q}\) can easily be examined by using the result and method of [27], the condition \(\alpha \in \mathbb{J}_{p,q}\) requires a different approach.
Theorem 3.1
If \(m\in \mathbb{N}\), then \(B_{p,q}^{n}(f_{m};x) \rightarrow f_{m}(x)\) as \(n\rightarrow \infty \) uniformly on any compact subset of \((-p^{(m+1)}{q^{(m+1)}},p^{(m+1)}{q^{(m+1)}})\).
Proof
We consider the complex \((p,q)\)-Bernstein operators given by
$$ B_{p,q}^{n}(f;x)=\sum_{k=0}^{n}f \biggl( \frac{[k]_{p,q}}{p^{k-n}[n]_{p,q}} \biggr) p_{n,k} (p, q;x),\quad n\in \mathbb{N},z \in \mathbb{C}, $$
(3.1)
and the function \(f_{m}(z)=\frac{1}{(z-p^{m}q^{-m})}\), \(z\in \mathbb{C}\). Let n be large enough to satisfy the condition \(\frac{[k]_{p,q}}{[n]_{p,q}}\neq p^{m}q^{-m}\). Then
$$ B_{p,q}^{n}(f_{m};z)=\sum _{k=0}^{n}C_{k,n}^{p,q}z^{k}, $$
where \(C_{k,n}^{p,q}\) is given by (2.3). Let \(\rho \in (0, p ^{(m+1)}q^{-(m+1)})\). Therefore for \(\vert z \vert \leq \rho \) the following estimate is valid by Corollary 2.7:
$$ \bigl\vert B_{p,q}^{n}(f_{m};z) \bigr\vert \leq \sum_{k=0}^{n} \bigl\vert C _{k,n}^{p,q}\rho ^{k} \bigr\vert \leq \mathcal{C}_{p,q,m}\sum_{k=0} ^{n} \bigl(p^{-(m+1)}q^{(m+1)}\rho\bigr)^{k}\leq \mathcal{C}_{p,q,m}\frac{1}{(1-p ^{-(m+1)}q^{(m+1)}\rho)}. $$
Hence it follows that the operators \(\{B_{p,q}^{n}(f_{m},z)\}\) are uniformly bounded in the disk \(\{z: \vert z \vert \leq \rho \}\) and convergent on the sequence \(\{p^{j}q^{-j}\}_{j=m+2}^{ \infty }\) having an accumulation point at 0 to the function \(f_{m}(z)\) analytic in this disc. Using Vitali’s convergence theorem, we have \(B_{p,q}^{n}(f_{m};z)\rightarrow f_{m}(z)\) (\(n\rightarrow \infty\)) uniformly on any compact set in \(\{z: \vert z \vert \leq \rho \}\) as \(\rho \in (0,p^{(m+1)}q^{-(m+1)})\) was arbitrary. This completes the proof. □
Next we demonstrate that, outside of the interval, operators diverge everywhere except a finite number of points.
Theorem 3.2
If \(m \in \mathbb{N}\), then \(\lim_{n\rightarrow \infty }B^{n}_{p,q} (f_{m};x)=\infty \) for \(\vert x \vert > p^{(m+1)}q^{-(m+1)}\), \(x \neq p^{(m+1)} q^{-(m+1)}\), \(x \neq p^{(m-1)}q^{-(m-1)}\), \(x \neq p^{(m-2)}q^{-(m-2)},\ldots,1\).
Proof
For exceptional points \(p^{(m-1)}q^{-(m-1)},p^{(m-2)}q ^{-(m-2)},\ldots,1\), the situation has been analyzed in Lemma 2.1(a). We take x satisfying \(\vert x \vert >p ^{(m-1)}q^{-(m-1)}\) different from these values. Let \(n>m\) be sufficiently large such that (2.3) holds. By Lemma 2.4, we obtain
$$\begin{aligned} \Biggl\vert \sum_{k=0}^{\infty }C_{k,n}^{p,q}x^{k} \Biggr\vert \leq& \mathcal{C}_{m,p,q} \sum _{k=0}^{n-m-1}p^{-mk}q^{mk}x^{k}= \mathcal{C} _{m,p,q}\frac{(p^{-m}q^{m}x)^{n-m}-1}{p^{-m}q^{m}x-1} \\ =&o \bigl( \bigl(p^{-(m+1)}q^{(m+1)}x\bigr)^{n} \bigr), \quad n\rightarrow \infty. \end{aligned}$$
Hence
$$\begin{aligned} B_{p,q}^{n}(f_{m};x) =&\sum _{k=n-m}^{n}C_{k,n}^{p,q}x^{k}+o \bigl( \bigl(p ^{-(m+1)}q^{(m+1)}x\bigr)^{n} \bigr) \\ =&C_{n-m}^{p,q}x^{n-m}g_{n}(x)+o \bigl( \bigl(p^{-(m+1)}q^{(m+1)}x\bigr)^{n} \bigr),\quad n \rightarrow \infty. \end{aligned}$$
By Lemma 2.5, \(\vert C_{n-m}^{p,q} \vert \sim \mathcal{C} _{p,q,m}(x) (p^{-(m+1)}q^{(m+1)}x)^{n}\) as \(n\rightarrow \infty \) whenever \(\vert x \vert >p^{(m+1)}q^{-(m+1)}\), since \(\lim_{n\rightarrow \infty }g_{n} (x)=(x;p,q)_{m}\neq 0\), when \(x\notin \{ p^{(m+1)}q^{-(m+1)},\ldots,1 \} \). □
Lemma 3.1
Let \(f_{0}\) be given by putting \(m=0\) in (1.8). If \(B_{p,q}^{n}(f_{0};x)=\sum_{k=0}^{n}C_{k,n}^{p,q}x ^{k}\) then
$$ C_{k,n}^{p,q}=\frac{-1}{(1-p^{n-k}\frac{[k]_{p,q}}{[n]_{p,q}})},\quad k=0,1,2, \ldots,n-1, \qquad C_{n,n}^{p,q}=a+\sum_{k=0}^{n-1} \frac{1}{(1-p^{n-k} \frac{[k]_{p,q}}{[n]_{p,q}})}. $$
Proof
For \(k=0,1,\ldots,n-1\), on a specific choice of the contour \(\mathcal{L}\), such that the nodes \(0, \frac{[1]_{p,q}}{[n]_{p,q}},\ldots,\frac{[k]_{p,q}}{[n]_{p,q}}\) are inside \(\mathcal{L}\) while the pole \(\alpha =1\) is outside, formula (2.4) implies
$$ C_{k,n}^{p,q}=\frac{-\lambda _{k,n}^{p,q}}{\prod_{j=0}^{k} ( 1-p ^{n-j}\frac{[j]_{p,q}}{[n]} ) }=\frac{-1}{ ( 1-p^{n-k} \frac{[k]_{p,q}}{[n]_{p,q}} ) }, $$
since by (1.3), \(B_{p,q}^{n}(f_{0};1)=f_{0}(1)=a\) and the statement is proved. □
Corollary 3.2
For \(k = 0 , 1, 2, \ldots, n-1\) with \(q > p > 1 \) we have the following result:
$$ \bigl\vert C^{p,q}_{k,n} \bigr\vert \leq \frac{q}{q-p}. $$
  • Now, we consider the case when pole \(\alpha =1\).
Here the point of singularity \(x=1\) is one of the nodes \(\frac{[k]_{p,q}}{[n]_{p,q}}\). Consider the function \(f_{0}\)
$$ f_{0}(x)= \textstyle\begin{cases} \frac{1}{x-1}, & x\in \mathbb{R}\setminus \{1\}, \\ a,& x=1. \end{cases} $$
(3.2)
Theorem 3.3
If \(f_{0}\) is given by (3.2), then the following holds:
(1)
For all \(x\in (-1,1]\),
$$ \lim_{n\rightarrow \infty } B^{n}_{p,q}(f_{0};x)= f_{0}(x) $$
and the convergence is uniform on any compact subset of \((-1,1)\).
 
(2)
For all \(x\in \mathbb{R}\setminus (-1,1]\),
$$ \lim_{n\rightarrow \infty } B^{n}_{p,q}(f_{0};x)= \infty. $$
 
Proof
(1) Since \(B_{p,q}^{n}(f_{0};1)=f_{0}(1)\), we need to prove only the uniform convergence of the compact subset of \((-1,1)\). For any \(\rho \in (0,1)\) and \(\vert z \vert \leq \rho \). From Corollary 3.2, we have
$$ \Biggl\vert \sum_{k=0}^{n-1}C_{k,n}^{p,q}z^{k} \Biggr\vert \leq \frac{ \mathcal{C}_{p,q}}{1-\rho }. $$
Apart from that,
$$ \bigl\vert C_{n,n}^{p,q}z^{k} \bigr\vert \leq \vert a \vert + \sum_{k=0}^{n-1} \frac{1}{1-p^{n-k}\frac{[k]_{p,q}}{[n]_{p,q}}}\leq \vert a \vert +n \bigl\vert C_{k,n}^{p,q} \bigr\vert \leq \vert a \vert +\frac{nq}{q-p}, $$
whence
$$ \bigl\vert C_{n,n}^{p,q}z^{n} \bigr\vert \leq \vert a \vert \rho ^{n}+\rho ^{n}\frac{nq}{q-p}\leq \mathcal{C}_{p,q,\rho }. $$
Therefore, we conclude that the operators \(B_{p,q}^{n}(f;z)\) are uniformly bounded in any disk \(\{ z: \vert z \vert \leq \rho \} \) where \(\rho \in (0,1)\). From Lemma 2.1(b) and Vitali’s convergence theorem we arrive at our result.
(2) Given that x satisfies \(\vert x \vert >1\), by Able’s inequality, we have
$$ \Biggl\vert \sum_{k=0}^{n-1}C_{k,n}^{p,q}x^{k} \Biggr\vert \leq \frac{ \vert x \vert ^{n}-1}{ \vert x \vert -1}\bigl( \bigl\vert C _{0,n}^{p,q} \bigr\vert +2 \bigl\vert C_{n-1,n}^{p,q} \bigr\vert \bigr) \leq \frac{ \vert x \vert ^{n}}{ \vert x \vert -1} \biggl( 1+\frac{2p}{p-q} \biggr) = \mathcal{C}_{p,q,x} \vert x \vert ^{n}. $$
Meanwhile,
$$ \bigl\vert C_{n,n}^{p,q}x^{n} \bigr\vert \geq \Biggl( \sum_{k=0} ^{n-1}\frac{1}{1-p^{n-k}\frac{[k]_{p,q}}{[n]_{p,q}}} \Biggr) \vert x \vert ^{n}- \vert a \vert \cdot \vert x \vert ^{n}\geq \bigl(n- \vert a \vert \bigr) \vert x \vert ^{n}. $$
Thus, \(\vert B_{p,q}^{n}(f_{0};x) \vert \geq n \vert x \vert ^{n}-(\mathcal{C}_{p,q,x}+ \vert a \vert ) \vert x \vert ^{n}\rightarrow \infty \) as \(n\rightarrow \infty \).
At \(x=-1\), we have
$$ B_{p,q}^{n}(f_{0};-1)=\sum _{k=0}^{n-1}C_{k,n}^{p,q}(-1)^{k}+ \Biggl( a+ \sum_{k=0}^{n-1}\frac{1}{1-p^{n-k}\frac{[k]_{p,q}}{[n]_{p,q}}} \Biggr) (-1)^{n}, $$
and again applying Able’s inequality,
$$ \Biggl\vert \sum_{k=0}^{n-1}C_{k,n,}^{p,q}(-1)^{k} \Biggr\vert \leq \vert C_{0,n} \vert +2 \vert C_{n-1,n} \vert \leq 1+\frac{2p}{p-q}. $$
On the other hand
$$ \Biggl\vert \Biggl( a+\sum_{k=0}^{n-1} \frac{1}{1-p^{n-k} \frac{[k]_{p,q}}{[n]_{p,q}}} \Biggr) (-1)^{n} \Biggr\vert \geq n- \vert a \vert , $$
which implies that
$$ \bigl\vert B_{p,q}^{n}(f_{0};-1) \bigr\vert \geq n- \vert a \vert - \biggl( 1+\frac{2p}{p-q} \biggr) \rightarrow \infty,\quad n\rightarrow \infty. $$
 □
Remark
For justification of the statement that the extra parameter p provides flexibility for approximation, one can see Remark 1 of [23].
Moreover, since for \(q>p=1\) we recapture the q-Bernstein operators studied in [30], it is clear that the interval of uniform convergence for \(B_{p,q}^{n}\) in Theorem 3.1, i.e. \((-p^{m+1}q ^{m+1},p^{m+1}q^{m+1})\), is larger than the interval of uniform convergence \((-q^{m+1},q^{m+1})\), obtained by Theorem 2.1 in [30].

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
1.
go back to reference Acar, T., Aral, A., Mohiuddine, S.A.: On Kantorovich modification of \((p,q)\)-Baskakov operators. J. Inequal. Appl. 2016, 98 (2016) MathSciNetCrossRef Acar, T., Aral, A., Mohiuddine, S.A.: On Kantorovich modification of \((p,q)\)-Baskakov operators. J. Inequal. Appl. 2016, 98 (2016) MathSciNetCrossRef
2.
go back to reference Acar, T., Aral, A., Mohiuddine, S.A.: Approximation by bivariate \((p,q)\)-Bernstein–Kantorovich operators. Iran. J. Sci. Technol., Trans. A, Sci. 42(2), 655–662 (2018) MathSciNetCrossRef Acar, T., Aral, A., Mohiuddine, S.A.: Approximation by bivariate \((p,q)\)-Bernstein–Kantorovich operators. Iran. J. Sci. Technol., Trans. A, Sci. 42(2), 655–662 (2018) MathSciNetCrossRef
3.
go back to reference Acar, T., Aral, A., Mohiuddine, S.A.: On Kantorovich modification of \((p,q)\)-Bernstein operators. Iran. J. Sci. Technol., Trans. Sci. 42, 1459–1464 (2018) MathSciNetCrossRef Acar, T., Aral, A., Mohiuddine, S.A.: On Kantorovich modification of \((p,q)\)-Bernstein operators. Iran. J. Sci. Technol., Trans. Sci. 42, 1459–1464 (2018) MathSciNetCrossRef
4.
go back to reference Acar, T., Aral, A., Mursaleen, M.: Approximation by Baskakov–Durrmeyer operators based on \((p,q)\)-integers. Math. Slovaca 68(4), 897–906 (2018) MathSciNetCrossRef Acar, T., Aral, A., Mursaleen, M.: Approximation by Baskakov–Durrmeyer operators based on \((p,q)\)-integers. Math. Slovaca 68(4), 897–906 (2018) MathSciNetCrossRef
5.
go back to reference Acar, T., Mohiuddine, S.A., Mursaleen, M.: Approximation by \((p,q)\)-Baskakov–Durrmeyer–Stancu operators. Complex Anal. Oper. Theory 12(6), 1453–1468 (2018) MathSciNetCrossRef Acar, T., Mohiuddine, S.A., Mursaleen, M.: Approximation by \((p,q)\)-Baskakov–Durrmeyer–Stancu operators. Complex Anal. Oper. Theory 12(6), 1453–1468 (2018) MathSciNetCrossRef
6.
go back to reference Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999) CrossRef Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999) CrossRef
7.
go back to reference Bernstein, S.N.: Démonstration du théoréme de Weierstrass fondeé sue la calcul des probabilités. Commun. Soc. Math. Charkaw 213, 1–2 (1992) Bernstein, S.N.: Démonstration du théoréme de Weierstrass fondeé sue la calcul des probabilités. Commun. Soc. Math. Charkaw 213, 1–2 (1992)
8.
go back to reference Bin Jebreen, H., Mursaleen, M., Naaz, A.: Approximation by quaternion \((p,q)\)-Bernstein polynomials and Voronovskaja type result on compact disk. Adv. Differ. Equ. 2018, 448 (2018) MathSciNetCrossRef Bin Jebreen, H., Mursaleen, M., Naaz, A.: Approximation by quaternion \((p,q)\)-Bernstein polynomials and Voronovskaja type result on compact disk. Adv. Differ. Equ. 2018, 448 (2018) MathSciNetCrossRef
10.
go back to reference Gal, S.G.: Approximation by complex q-Lorentz polynomial, \(q>1 \). Mathematica 54(77), 53–63 (2012) MathSciNetMATH Gal, S.G.: Approximation by complex q-Lorentz polynomial, \(q>1 \). Mathematica 54(77), 53–63 (2012) MathSciNetMATH
11.
go back to reference Kadak, U.: On weighted statistical convergence based on \((p,q)\)-integers and related approximation theorems for functions of two variables. J. Math. Anal. Appl. 443(2), 752–764 (2016) MathSciNetCrossRef Kadak, U.: On weighted statistical convergence based on \((p,q)\)-integers and related approximation theorems for functions of two variables. J. Math. Anal. Appl. 443(2), 752–764 (2016) MathSciNetCrossRef
12.
go back to reference Kadak, U.: Weighted statistical convergence based on generalized difference operator involving \((p,q)\)-Gamma function and its applications to approximation theorems. J. Math. Anal. Appl. 448(2), 1633–1650 (2017) MathSciNetCrossRef Kadak, U.: Weighted statistical convergence based on generalized difference operator involving \((p,q)\)-Gamma function and its applications to approximation theorems. J. Math. Anal. Appl. 448(2), 1633–1650 (2017) MathSciNetCrossRef
13.
go back to reference Kadak, U., Mishra, V.N., Pandey, S.: Chlodowsky type generalization of \((p,q)\)-Szász operators involving Brenke type polynomials. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 112(4), 1443–1462 (2018) MathSciNetCrossRef Kadak, U., Mishra, V.N., Pandey, S.: Chlodowsky type generalization of \((p,q)\)-Szász operators involving Brenke type polynomials. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 112(4), 1443–1462 (2018) MathSciNetCrossRef
14.
go back to reference Kadak, U., Mohiuddine, S.A.: Generalized statistically almost convergence based on the difference operator which includes the \((p,q) \)-gamma function and related approximation theorems. Results Math. 73, Article ID 9 (2018) MathSciNetCrossRef Kadak, U., Mohiuddine, S.A.: Generalized statistically almost convergence based on the difference operator which includes the \((p,q) \)-gamma function and related approximation theorems. Results Math. 73, Article ID 9 (2018) MathSciNetCrossRef
15.
go back to reference Khan, A., Sharma, V.: Statistical approximation by \((p,q)\)-analogue of Bernstein–Stancu operators. Azerb. J. Math. 8(2), 100–121 (2018) MathSciNetMATH Khan, A., Sharma, V.: Statistical approximation by \((p,q)\)-analogue of Bernstein–Stancu operators. Azerb. J. Math. 8(2), 100–121 (2018) MathSciNetMATH
16.
go back to reference Korovkin, P.P.: Convergence of linear positive operator in the space of continuous function. Dokl. Akad. Nauk SSSR 90, 961–964 (1953) MathSciNet Korovkin, P.P.: Convergence of linear positive operator in the space of continuous function. Dokl. Akad. Nauk SSSR 90, 961–964 (1953) MathSciNet
17.
go back to reference Lorentz, G.G.: Bernstein Polynomials, 2nd edn. Chelsea, New York (1986) MATH Lorentz, G.G.: Bernstein Polynomials, 2nd edn. Chelsea, New York (1986) MATH
18.
go back to reference Lupaş, A.: A q-analogue of the Bernstein operators. In: Seminar on Numerical and Statistical Calculus, pp. 85–92 (1987) Lupaş, A.: A q-analogue of the Bernstein operators. In: Seminar on Numerical and Statistical Calculus, pp. 85–92 (1987)
19.
go back to reference Mishra, V.N., Mursaleen, M., Pandey, S., Alotaibi, A.: Approximation properties of Chlodowsky variant of \((p,q)\)-Bernstein–Stancu–Schurer operators. J. Inequal. Appl. 2017, 176 (2017) MathSciNetCrossRef Mishra, V.N., Mursaleen, M., Pandey, S., Alotaibi, A.: Approximation properties of Chlodowsky variant of \((p,q)\)-Bernstein–Stancu–Schurer operators. J. Inequal. Appl. 2017, 176 (2017) MathSciNetCrossRef
20.
go back to reference Mishra, V.N., Pandey, S.: On \((p,q)\)-Baskakov–Durrmeyer–Stancu operators. Adv. Appl. Clifford Algebras 27(2), 1633–1646 (2017) MathSciNetCrossRef Mishra, V.N., Pandey, S.: On \((p,q)\)-Baskakov–Durrmeyer–Stancu operators. Adv. Appl. Clifford Algebras 27(2), 1633–1646 (2017) MathSciNetCrossRef
21.
go back to reference Mohiuddine, S.A., Acar, T., Alotaibi, A.: Durrmeyer type \((p,q) \)-Baskakov operators preserving linear functions. J. Math. Inequal. 12, 961–973 (2018) MathSciNetCrossRef Mohiuddine, S.A., Acar, T., Alotaibi, A.: Durrmeyer type \((p,q) \)-Baskakov operators preserving linear functions. J. Math. Inequal. 12, 961–973 (2018) MathSciNetCrossRef
22.
go back to reference Mursaleen, M., Ansari, K.J., Khan, A.: On \((p,q)\)-analogue of Bernstein operators. Appl. Math. Comput. 266, 874–882 (2015) [Erratum: Appl. Math. Comput., 278 (2016) 70–71] MathSciNetMATH Mursaleen, M., Ansari, K.J., Khan, A.: On \((p,q)\)-analogue of Bernstein operators. Appl. Math. Comput. 266, 874–882 (2015) [Erratum: Appl. Math. Comput., 278 (2016) 70–71] MathSciNetMATH
23.
go back to reference Mursaleen, M., Khan, F., Khan, A.: Approximation by \((p,q)\)-Lorentz polynomial on a compact disk. Complex Anal. Oper. Theory 10(8), 1725–1740 (2016) MathSciNetCrossRef Mursaleen, M., Khan, F., Khan, A.: Approximation by \((p,q)\)-Lorentz polynomial on a compact disk. Complex Anal. Oper. Theory 10(8), 1725–1740 (2016) MathSciNetCrossRef
24.
go back to reference Mursaleen, M., Naaz, A., Khan, A.: Improved approximation and error estimations by King type \((p,q)\)-Szasz–Mirakjan–Kantorovich operators. Appl. Math. Comput. 348, 175–185 (2019) MathSciNet Mursaleen, M., Naaz, A., Khan, A.: Improved approximation and error estimations by King type \((p,q)\)-Szasz–Mirakjan–Kantorovich operators. Appl. Math. Comput. 348, 175–185 (2019) MathSciNet
25.
go back to reference Mursaleen, M., Nasiruzzaman, Md., Khan, F., Khan, A.: \((p,q)\)-analogue of divided difference and Bernstein operators. J. Nonlinear Funct. Anal. 2017, Article ID 25 (2017) Mursaleen, M., Nasiruzzaman, Md., Khan, F., Khan, A.: \((p,q)\)-analogue of divided difference and Bernstein operators. J. Nonlinear Funct. Anal. 2017, Article ID 25 (2017)
26.
go back to reference Mursaleen, M., Rahman, S., Alkhaldi, A.H.: Convergence of iterates of q-Bernstein and \((p,q)\)-Bernstein operators and the Kelisky–Rivlin type theorem. Filomat 32(12), 4351–4364 (2018) MathSciNetCrossRef Mursaleen, M., Rahman, S., Alkhaldi, A.H.: Convergence of iterates of q-Bernstein and \((p,q)\)-Bernstein operators and the Kelisky–Rivlin type theorem. Filomat 32(12), 4351–4364 (2018) MathSciNetCrossRef
28.
go back to reference Ostrovska, S.: q-Bernstein polynomial of the Cauchy kernel. Appl. Math. Comput. 198(1), 261–270 (2008) MathSciNetMATH Ostrovska, S.: q-Bernstein polynomial of the Cauchy kernel. Appl. Math. Comput. 198(1), 261–270 (2008) MathSciNetMATH
29.
go back to reference Ostrovska, S., Özban, A.Y.: On the q-Bernstein polynomial of unbounded function with \(q>1\). Abstr. Appl. Anal. 2013, Article ID 349156 (2013) MathSciNetCrossRef Ostrovska, S., Özban, A.Y.: On the q-Bernstein polynomial of unbounded function with \(q>1\). Abstr. Appl. Anal. 2013, Article ID 349156 (2013) MathSciNetCrossRef
30.
go back to reference Ostrovska, S., Özban, A.Y.: The q-Bernstein polynomials of the Cauchy kernel with a pole on \([0,1]\) in the case \(q>1\). Appl. Math. Comput. 220, 735–747 (2013) MathSciNetMATH Ostrovska, S., Özban, A.Y.: The q-Bernstein polynomials of the Cauchy kernel with a pole on \([0,1]\) in the case \(q>1\). Appl. Math. Comput. 220, 735–747 (2013) MathSciNetMATH
31.
go back to reference Phillips, G.M.: Bernstein polynomials based on the q-integers. Ann. Numer. Math. 4, 511–518 (1997) MathSciNetMATH Phillips, G.M.: Bernstein polynomials based on the q-integers. Ann. Numer. Math. 4, 511–518 (1997) MathSciNetMATH
32.
go back to reference Srivastava, H.M., Ozer, F., Mohiuddine, S.A.: Construction of Stancu-type Bernstein operators based on Bézier bases with shape parameter λ. Symmetry 11(3), Article ID 316 (2019) CrossRef Srivastava, H.M., Ozer, F., Mohiuddine, S.A.: Construction of Stancu-type Bernstein operators based on Bézier bases with shape parameter λ. Symmetry 11(3), Article ID 316 (2019) CrossRef
Metadata
Title
The convergence of -Bernstein operators for the Cauchy kernel with a pole via divided difference
Authors
Faisal Khan
Mohd Saif
Aiman Mukheimer
M. Mursaleen
Publication date
01-12-2019
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2019
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-019-2090-y

Other articles of this Issue 1/2019

Journal of Inequalities and Applications 1/2019 Go to the issue

Premium Partner