Skip to main content
Top

2019 | OriginalPaper | Chapter

4. The Economic and Business Challenges to V2G

Authors : Lance Noel, Gerardo Zarazua de Rubens, Johannes Kester, Benjamin K. Sovacool

Published in: Vehicle-to-Grid

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Building on the idea that the technical barriers of vehicle-to-grid form the basis of the other sociotechnical barriers, this chapter discusses how the technical elements of vehicle-to-grid impact its economic effectiveness. To do so, the chapter employs a cost-benefit perspective, building upon a comparison between an electric vehicle and a traditional gasoline car, later adding the costs and benefits of vehicle-to-grid. Next, recognizing the evolving nature of electricity markets, the future sources and magnitude of revenues are explored. Finally, while there are substantial economic benefits, the chapter then discusses how these costs and revenues can feasibly be translated into a viable business model. Challenges from a business model perspective include the pricing and revenue schemes, ownership structures, and the integration with other technologies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Al-Alawi BM, Bradley TH. Total cost of ownership, payback, and consumer preference modeling of plug-in hybrid electric vehicles. Appl Energy. 2013;103:488–506.CrossRef Al-Alawi BM, Bradley TH. Total cost of ownership, payback, and consumer preference modeling of plug-in hybrid electric vehicles. Appl Energy. 2013;103:488–506.CrossRef
2.
go back to reference Mitropoulos LK, Prevedouros PD, Kopelias P. Total cost of ownership and externalities of conventional, hybrid and electric vehicle. Transp Res Procedia. 2017;24:267–74.CrossRef Mitropoulos LK, Prevedouros PD, Kopelias P. Total cost of ownership and externalities of conventional, hybrid and electric vehicle. Transp Res Procedia. 2017;24:267–74.CrossRef
3.
go back to reference Hagman J, Ritzén S, Stier JJ, Susilo Y. Total cost of ownership and its potential implications for battery electric vehicle diffusion. Res Transp Bus Manag. 2016;18:11–17.CrossRef Hagman J, Ritzén S, Stier JJ, Susilo Y. Total cost of ownership and its potential implications for battery electric vehicle diffusion. Res Transp Bus Manag. 2016;18:11–17.CrossRef
4.
go back to reference Wu G, Inderbitzin A, Bening C. Total cost of ownership of electric vehicles compared to conventional vehicles: a probabilistic analysis and projection across market segments. Energy Policy. 2015;80:196–214.CrossRef Wu G, Inderbitzin A, Bening C. Total cost of ownership of electric vehicles compared to conventional vehicles: a probabilistic analysis and projection across market segments. Energy Policy. 2015;80:196–214.CrossRef
5.
go back to reference Weldon P, Morrissey P, O’Mahony M. Long-term cost of ownership comparative analysis between electric vehicles and internal combustion engine vehicles. Sustain Cities Soc. 2018;39:578–91.CrossRef Weldon P, Morrissey P, O’Mahony M. Long-term cost of ownership comparative analysis between electric vehicles and internal combustion engine vehicles. Sustain Cities Soc. 2018;39:578–91.CrossRef
7.
go back to reference Nykvist B, Nilsson M. Rapidly falling costs of battery packs for electric vehicles. Nat Clim Change. 2015;23(5):329.CrossRef Nykvist B, Nilsson M. Rapidly falling costs of battery packs for electric vehicles. Nat Clim Change. 2015;23(5):329.CrossRef
8.
go back to reference Noel L, Zarazua de Rubens G, Sovacool BK. Optimizing innovation, carbon and health in transport: assessing socially optimal electric mobility and vehicle-to-grid pathways in Denmark. Energy. 2018;153:628–37.CrossRef Noel L, Zarazua de Rubens G, Sovacool BK. Optimizing innovation, carbon and health in transport: assessing socially optimal electric mobility and vehicle-to-grid pathways in Denmark. Energy. 2018;153:628–37.CrossRef
9.
go back to reference Gough R, Dickerson C, Rowley P, Walsh C. Vehicle-to-grid feasibility: a techno-economic analysis of EV-based energy storage. Appl Energy. 2017;192:12–23.CrossRef Gough R, Dickerson C, Rowley P, Walsh C. Vehicle-to-grid feasibility: a techno-economic analysis of EV-based energy storage. Appl Energy. 2017;192:12–23.CrossRef
10.
go back to reference Noel L, McCormack R. A cost benefit analysis of a V2G-capable electric school bus compared to a traditional diesel school bus. Appl Energy. 2014;126:246–55.CrossRef Noel L, McCormack R. A cost benefit analysis of a V2G-capable electric school bus compared to a traditional diesel school bus. Appl Energy. 2014;126:246–55.CrossRef
11.
go back to reference Wang D, Coignard J, Zeng T, Zhang C, Saxena S. Quantifying electric vehicle battery degradation from driving vs. vehicle-to-grid services. J Power Sources. 2016;332:193–203.CrossRef Wang D, Coignard J, Zeng T, Zhang C, Saxena S. Quantifying electric vehicle battery degradation from driving vs. vehicle-to-grid services. J Power Sources. 2016;332:193–203.CrossRef
13.
go back to reference Lunz B, Yan Z, Gerschler JB, Sauer DU. Influence of plug-in hybrid electric vehicle charging strategies on charging and battery degradation costs. Energy Policy. 2012;46:511–19.CrossRef Lunz B, Yan Z, Gerschler JB, Sauer DU. Influence of plug-in hybrid electric vehicle charging strategies on charging and battery degradation costs. Energy Policy. 2012;46:511–19.CrossRef
14.
go back to reference Saxena S, Le Floch C, MacDonald J, Moura S. Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models. J Power Sources. 2015;282:265–76.CrossRef Saxena S, Le Floch C, MacDonald J, Moura S. Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models. J Power Sources. 2015;282:265–76.CrossRef
16.
go back to reference Pearre NS, Kempton W, Guensler RL, Elango VV. Electric vehicles: How much range is required for a day’s driving? Transp Res Part C: Emerg Technol. 2011;19(6):1171–184.CrossRef Pearre NS, Kempton W, Guensler RL, Elango VV. Electric vehicles: How much range is required for a day’s driving? Transp Res Part C: Emerg Technol. 2011;19(6):1171–184.CrossRef
18.
go back to reference Noori M, Zhao Y, Onat NC, Gardner S, Tatari O. Light-duty electric vehicles to improve the integrity of the electricity grid through vehicle-to-grid technology: analysis of regional net revenue and emissions savings. Appl Energy. 2016;168:146–58.CrossRef Noori M, Zhao Y, Onat NC, Gardner S, Tatari O. Light-duty electric vehicles to improve the integrity of the electricity grid through vehicle-to-grid technology: analysis of regional net revenue and emissions savings. Appl Energy. 2016;168:146–58.CrossRef
19.
go back to reference Bhandari V, Sun K, Homans F. The profitability of vehicle to grid for system participants—a case study from the Electricity Reliability Council of Texas. Energy. 2018;153:278–86.CrossRef Bhandari V, Sun K, Homans F. The profitability of vehicle to grid for system participants—a case study from the Electricity Reliability Council of Texas. Energy. 2018;153:278–86.CrossRef
20.
go back to reference Christensen B, Trahand M, Andersen PB, Olesen OJ, Thingvad A. Integration of new technology in the ancillary service markets [Internet]. Parker Project; 2018 Mar (Public Project Report). Available from: http://parker-project.com/. Christensen B, Trahand M, Andersen PB, Olesen OJ, Thingvad A. Integration of new technology in the ancillary service markets [Internet]. Parker Project; 2018 Mar (Public Project Report). Available from: http://​parker-project.​com/​.
22.
go back to reference Apostolaki-Iosifidou E, Codani P, Kempton W. Measurement of power loss during electric vehicle charging and discharging. Energy. 2017;127:730–42. Apostolaki-Iosifidou E, Codani P, Kempton W. Measurement of power loss during electric vehicle charging and discharging. Energy. 2017;127:730–42.
23.
go back to reference Zakeri B, Syri S. Electrical energy storage systems: a comparative life cycle cost analysis. Renew Sustain Energy Rev. 2015;42:569–96. Zakeri B, Syri S. Electrical energy storage systems: a comparative life cycle cost analysis. Renew Sustain Energy Rev. 2015;42:569–96.
24.
go back to reference Allcott H, Wozny N. Gasoline prices, fuel economy, and the energy paradox. Rev Econ Stat. 2014;96(5):779–95. Allcott H, Wozny N. Gasoline prices, fuel economy, and the energy paradox. Rev Econ Stat. 2014;96(5):779–95.
25.
go back to reference Hausman JA. Individual discount rates and the purchase and utilization of energy-using durables. Bell J Econ. 1979;10(1):33.MathSciNetCrossRef Hausman JA. Individual discount rates and the purchase and utilization of energy-using durables. Bell J Econ. 1979;10(1):33.MathSciNetCrossRef
26.
go back to reference Noel L, Brodie JF, Kempton W, Archer CL, Budischak C. Cost minimization of generation, storage, and new loads, comparing costs with and without externalities. Appl Energy. 2017;189:110–21.CrossRef Noel L, Brodie JF, Kempton W, Archer CL, Budischak C. Cost minimization of generation, storage, and new loads, comparing costs with and without externalities. Appl Energy. 2017;189:110–21.CrossRef
27.
go back to reference Budischak C, Sewell D, Thomson H, Mach L, Veron DE, Kempton W. Cost-minimized combinations of wind power, solar power and electrochemical storage, powering the grid up to 99.9% of the time. J Power Sources. 2013;225:60–74. Budischak C, Sewell D, Thomson H, Mach L, Veron DE, Kempton W. Cost-minimized combinations of wind power, solar power and electrochemical storage, powering the grid up to 99.9% of the time. J Power Sources. 2013;225:60–74.
31.
go back to reference Prateek R. A V2G-repository: 18 European vehicle2grid-projects. 2018;18. Prateek R. A V2G-repository: 18 European vehicle2grid-projects. 2018;18.
33.
go back to reference Beeton D, Meyer G. Electric vehicle business models. 2014. 266 p. Beeton D, Meyer G. Electric vehicle business models. 2014. 266 p.
35.
go back to reference Yamagata Y, Seya H, Kuroda S. Energy resilient smart community: sharing green electricity using V2C technology. Energy Procedia. 2014;61:84–87.CrossRef Yamagata Y, Seya H, Kuroda S. Energy resilient smart community: sharing green electricity using V2C technology. Energy Procedia. 2014;61:84–87.CrossRef
36.
go back to reference Tanguy K, Dubois MR, Lopez KL, Gagné C. Optimization model and economic assessment of collaborative charging using vehicle-to-building. Sustain Cities Soc. 2016;26:496–506.CrossRef Tanguy K, Dubois MR, Lopez KL, Gagné C. Optimization model and economic assessment of collaborative charging using vehicle-to-building. Sustain Cities Soc. 2016;26:496–506.CrossRef
37.
go back to reference Andersen PB, Hashemi S, Sousa T, Soerensen TM, Noel L, Christiensen B. Cross-brand validation of grid services using V2G-enabled in the Parker Project. In: Kobe, Japan; 2018. Andersen PB, Hashemi S, Sousa T, Soerensen TM, Noel L, Christiensen B. Cross-brand validation of grid services using V2G-enabled in the Parker Project. In: Kobe, Japan; 2018.
38.
go back to reference Sovacool BK, Noel L, Axsen J, Kempton W. The neglected social dimensions to a vehicle-to-grid (V2G) transition: a critical and systematic review. Environ Res Lett. 2018;13(1).CrossRef Sovacool BK, Noel L, Axsen J, Kempton W. The neglected social dimensions to a vehicle-to-grid (V2G) transition: a critical and systematic review. Environ Res Lett. 2018;13(1).CrossRef
Metadata
Title
The Economic and Business Challenges to V2G
Authors
Lance Noel
Gerardo Zarazua de Rubens
Johannes Kester
Benjamin K. Sovacool
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-04864-8_4

Premium Partner