Skip to main content
Top
Published in: Journal of Materials Science 1/2019

29-08-2018 | Energy materials

The effect of fast and slow surface states on photoelectrochemical performance of hematite photoanodes fabricated by electrodeposition and hydrothermal methods

Authors: Longzhu Li, Honglei Zhang, Changhai Liu, Penghua Liang, Naotoshi Mitsuzaki, Zhidong Chen

Published in: Journal of Materials Science | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The hematite films prepared by electrodeposition (ED) and hydrothermal (HT) methods have similar nanorods morphology and the same length. However, the hematite prepared by HT method has higher photocurrent density and negative shift of onset potential. The samples are systematically characterized by scanning electron microscopy, UV–Vis spectra, X-ray diffractometry and photoelectrochemical measurements. The results reveal that the enhanced photoelectrochemical (PEC) performance of HT hematite is attributed to the superior surface charge injection efficiency, which is caused by a slower surface recombination rate rather than a more catalytically active hematite surface. And the slower surface recombination rate can be attributed to the absence of the slow surface states CSS2. This work provides an in-depth understanding of the reasons for the different PEC performance of hematite photoanodes fabricated by ED and HT methods, which is of certain significance in guiding the modification of hematite photoanodes prepared by the two typical routes in PEC water splitting system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductorelectrode. Nature 238:37–38CrossRef Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductorelectrode. Nature 238:37–38CrossRef
2.
go back to reference Daghrir R, Drogui P, Khakani MAE (2013) Photoelectrocatalytic oxidation of chlortetracycline using Ti/TiO2 photo-anode with simultaneous H2O2 production. Electrochim Acta 87:18–31CrossRef Daghrir R, Drogui P, Khakani MAE (2013) Photoelectrocatalytic oxidation of chlortetracycline using Ti/TiO2 photo-anode with simultaneous H2O2 production. Electrochim Acta 87:18–31CrossRef
3.
go back to reference Li H, Zhou Q, Gao Y, Gui X, Yang L, Du M, Shi E, Shi J, Cao A, Fang Y (2015) Templated synthesis of TiO2 nanotube macrostructures and their photocatalytic properties. Nano Res 8:900–906CrossRef Li H, Zhou Q, Gao Y, Gui X, Yang L, Du M, Shi E, Shi J, Cao A, Fang Y (2015) Templated synthesis of TiO2 nanotube macrostructures and their photocatalytic properties. Nano Res 8:900–906CrossRef
4.
go back to reference Wang T, Jin B, Jiao Z, Lu G, Ye J, Bi Y (2015) Electric field-directed growth and photoelectrochemical properties of cross-linked Au-ZnO hetero-nanowirearrays. Chem Commun 51:2103–2106CrossRef Wang T, Jin B, Jiao Z, Lu G, Ye J, Bi Y (2015) Electric field-directed growth and photoelectrochemical properties of cross-linked Au-ZnO hetero-nanowirearrays. Chem Commun 51:2103–2106CrossRef
5.
go back to reference Kim JK, Bae S, Kim W, Jeong MJ, Lee SH, Lee CL, Choi WK, Hwang JY, Park JH, Son DI (2015) Nano carbon conformal coating strategy for enhanced photoelectrochemical responses and long-term stability of ZnO quantumdots. Nano Energy 13:258–266CrossRef Kim JK, Bae S, Kim W, Jeong MJ, Lee SH, Lee CL, Choi WK, Hwang JY, Park JH, Son DI (2015) Nano carbon conformal coating strategy for enhanced photoelectrochemical responses and long-term stability of ZnO quantumdots. Nano Energy 13:258–266CrossRef
6.
go back to reference Sivula K, Le Formal F, Grätzel M (2011) Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. Chemsuschem 4:432–449CrossRef Sivula K, Le Formal F, Grätzel M (2011) Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. Chemsuschem 4:432–449CrossRef
7.
go back to reference Kumar P, Sharma P, Shrivastav R, Dass S, Satsangi VR (2011) Electrodeposited zirconium-doped α-Fe2O3 thin film for photoelectrochemical water splitting. Int J Hydrogen Energy 36:2777–2784CrossRef Kumar P, Sharma P, Shrivastav R, Dass S, Satsangi VR (2011) Electrodeposited zirconium-doped α-Fe2O3 thin film for photoelectrochemical water splitting. Int J Hydrogen Energy 36:2777–2784CrossRef
9.
go back to reference Wang S, Chen H, Gao G, Butburee T, Lyu M, Thaweesak S, Yun JH, Du A, Liu G, Wang L (2016) Synergistic crystal facet engineering and structural control of WO3 films exhibiting unprecedented photoelectrochemical performance. Nano Energy 24:94–102CrossRef Wang S, Chen H, Gao G, Butburee T, Lyu M, Thaweesak S, Yun JH, Du A, Liu G, Wang L (2016) Synergistic crystal facet engineering and structural control of WO3 films exhibiting unprecedented photoelectrochemical performance. Nano Energy 24:94–102CrossRef
10.
go back to reference Jiang T, Xie T, Yang W, Chen L, Fan H, Wang D (2013) Photoelectrochemical and photovoltaic properties of p–n Cu2O homojunction films and their photocatalytic performance. J Phys Chem C 117:4619–4624CrossRef Jiang T, Xie T, Yang W, Chen L, Fan H, Wang D (2013) Photoelectrochemical and photovoltaic properties of p–n Cu2O homojunction films and their photocatalytic performance. J Phys Chem C 117:4619–4624CrossRef
11.
go back to reference Wang S, Chen P, Yun JH, Hu Y, Wang L (2017) An electrochemically treated BiVO4 photoanode for efficient photoelectrochemical water splitting. Angew Chem Int Ed 129:8620–8624CrossRef Wang S, Chen P, Yun JH, Hu Y, Wang L (2017) An electrochemically treated BiVO4 photoanode for efficient photoelectrochemical water splitting. Angew Chem Int Ed 129:8620–8624CrossRef
12.
go back to reference Zhen C, Chen R, Wang L, Liu G, Cheng HM (2016) Tantalum (oxy) nitride based photoanodes for solar-driven water oxidation. J Mater Chem A 4:2783–2800CrossRef Zhen C, Chen R, Wang L, Liu G, Cheng HM (2016) Tantalum (oxy) nitride based photoanodes for solar-driven water oxidation. J Mater Chem A 4:2783–2800CrossRef
13.
go back to reference Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achievingsustainability? Chem Rev 116:7159–7329CrossRef Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achievingsustainability? Chem Rev 116:7159–7329CrossRef
14.
go back to reference Zhang H, Nai J, Yu L, Lou XW (2017) Metal-organic-framework-based materials as platforms for renewable energy and environmental applications. Joule 1:77–107CrossRef Zhang H, Nai J, Yu L, Lou XW (2017) Metal-organic-framework-based materials as platforms for renewable energy and environmental applications. Joule 1:77–107CrossRef
15.
go back to reference Kennedy JH, Frese KW (1978) Photooxidation of water at α-Fe2O3 electrodes. J Electrochem Soc 125:709–714CrossRef Kennedy JH, Frese KW (1978) Photooxidation of water at α-Fe2O3 electrodes. J Electrochem Soc 125:709–714CrossRef
16.
go back to reference Itoh K, Bockris JM (1984) Stacked thin-film photoelectrode using iron oxide. J Appl Phys 56:874–876CrossRef Itoh K, Bockris JM (1984) Stacked thin-film photoelectrode using iron oxide. J Appl Phys 56:874–876CrossRef
17.
go back to reference Itoh K, Bockris JM (1984) Thin film photoelectrochemistry: iron oxide. J Electrochem Soc 131:1266–1271CrossRef Itoh K, Bockris JM (1984) Thin film photoelectrochemistry: iron oxide. J Electrochem Soc 131:1266–1271CrossRef
18.
go back to reference Dare-Edwards MP, Goodenough JB, Hamnett A, Trevellick PR (1983) Electrochemistry and photoelectrochemistry of iron (III) oxide. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 79:2027–2041 Dare-Edwards MP, Goodenough JB, Hamnett A, Trevellick PR (1983) Electrochemistry and photoelectrochemistry of iron (III) oxide. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 79:2027–2041
19.
go back to reference Morin FJ (1951) Electrical properties of α-Fe2O3 and α-Fe2O3 containing titanium. Phys Rev 83:1005CrossRef Morin FJ (1951) Electrical properties of α-Fe2O3 and α-Fe2O3 containing titanium. Phys Rev 83:1005CrossRef
20.
go back to reference Lindgren T, Wang H, Beermann N, Vayssieres L, Hagfeldt A, Lindquist SE (2002) Aqueous photoelectrochemistry of hematite nanorod array. Sol Energy Mater Sol Cells 71:231–243CrossRef Lindgren T, Wang H, Beermann N, Vayssieres L, Hagfeldt A, Lindquist SE (2002) Aqueous photoelectrochemistry of hematite nanorod array. Sol Energy Mater Sol Cells 71:231–243CrossRef
21.
go back to reference Tilley SD, Cornuz M, Sivula K, Grätzel M (2010) Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. Angew Chem 122:6549–6552CrossRef Tilley SD, Cornuz M, Sivula K, Grätzel M (2010) Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. Angew Chem 122:6549–6552CrossRef
22.
go back to reference Lin Y, Zhou S, Sheehan SW, Wang D (2011) Nanonet-based hematite heteronanostructures for efficient solar water splitting. J Am Chem Soc 133:2398–2401CrossRef Lin Y, Zhou S, Sheehan SW, Wang D (2011) Nanonet-based hematite heteronanostructures for efficient solar water splitting. J Am Chem Soc 133:2398–2401CrossRef
23.
go back to reference Glasscock JA, Barnes PR, Plumb IC, Savvides N (2007) Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si. J Phys Chem C 111:16477–16488CrossRef Glasscock JA, Barnes PR, Plumb IC, Savvides N (2007) Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si. J Phys Chem C 111:16477–16488CrossRef
24.
go back to reference Duret A, Grätzel M (2005) Visible light-induced water oxidation on mesoscopic α-Fe2O3 films made by ultrasonic spray pyrolysis. J Phys Chem B 109:17184–17191CrossRef Duret A, Grätzel M (2005) Visible light-induced water oxidation on mesoscopic α-Fe2O3 films made by ultrasonic spray pyrolysis. J Phys Chem B 109:17184–17191CrossRef
25.
go back to reference Brillet J, Grätzel M, Sivula K (2010) Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting. Nano Lett 10:4155–4160CrossRef Brillet J, Grätzel M, Sivula K (2010) Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting. Nano Lett 10:4155–4160CrossRef
26.
go back to reference Sivula K, Zboril R, Le Formal F, Robert R, Weidenkaff A, Tucek J, Frydrych J, Grätzel M (2010) Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. J Am Chem Soc 132:7436–7444CrossRef Sivula K, Zboril R, Le Formal F, Robert R, Weidenkaff A, Tucek J, Frydrych J, Grätzel M (2010) Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. J Am Chem Soc 132:7436–7444CrossRef
27.
go back to reference Shen S, Li M, Guo L, Jiang J, Mao SS (2014) Surface passivation of undoped hematite nanorod arrays via aqueous solution growth for improved photoelectrochemical water splitting. J Colloid Interface Sci 427:20–24CrossRef Shen S, Li M, Guo L, Jiang J, Mao SS (2014) Surface passivation of undoped hematite nanorod arrays via aqueous solution growth for improved photoelectrochemical water splitting. J Colloid Interface Sci 427:20–24CrossRef
28.
go back to reference Li L, Liu C, Qiu Y, Mitsuzak N, Chen Z (2017) The influence of the hydrothermal temperature and time on morphology and photoelectrochemical response of α-Fe2O3 photoanode. J Alloy Compd 696:980–987CrossRef Li L, Liu C, Qiu Y, Mitsuzak N, Chen Z (2017) The influence of the hydrothermal temperature and time on morphology and photoelectrochemical response of α-Fe2O3 photoanode. J Alloy Compd 696:980–987CrossRef
29.
go back to reference Mohapatra SK, John SE, Banerjee S, Misra M (2009) Water photooxidation by smooth and ultrathin α-Fe2O3 nanotube arrays. Chem Mater 21:3048–3055CrossRef Mohapatra SK, John SE, Banerjee S, Misra M (2009) Water photooxidation by smooth and ultrathin α-Fe2O3 nanotube arrays. Chem Mater 21:3048–3055CrossRef
30.
go back to reference Spray RL, Choi KS (2009) Photoactivity of transparent nanocrystalline Fe2O3 electrodes prepared via anodic electrodeposition. Chem Mater 21:3701–3709CrossRef Spray RL, Choi KS (2009) Photoactivity of transparent nanocrystalline Fe2O3 electrodes prepared via anodic electrodeposition. Chem Mater 21:3701–3709CrossRef
31.
go back to reference Zhang P, Kleiman-Shwarsctein A, Hu YS, Lefton J, Sharma S, Forman AJ, McFarland E (2011) Oriented Ti doped hematite thin film as active photoanodes synthesized by facile APCVD. Energy Environ Sci 4:1020–1028CrossRef Zhang P, Kleiman-Shwarsctein A, Hu YS, Lefton J, Sharma S, Forman AJ, McFarland E (2011) Oriented Ti doped hematite thin film as active photoanodes synthesized by facile APCVD. Energy Environ Sci 4:1020–1028CrossRef
32.
go back to reference Jiao S, Xu L, Hu K, Li J, Gao S, Xu D (2009) Morphological control of α-FeOOH nanostructures by electrodeposition. J Phys Chem C 114:269–273CrossRef Jiao S, Xu L, Hu K, Li J, Gao S, Xu D (2009) Morphological control of α-FeOOH nanostructures by electrodeposition. J Phys Chem C 114:269–273CrossRef
33.
go back to reference Lian J, Duan X, Ma J, Peng P, Kim T, Zheng W (2009) Hematite (α-Fe2O3) with various morphologies: ionic liquid-assisted synthesis, formation mechanism, and properties. ACS Nano 3:3749–3761CrossRef Lian J, Duan X, Ma J, Peng P, Kim T, Zheng W (2009) Hematite (α-Fe2O3) with various morphologies: ionic liquid-assisted synthesis, formation mechanism, and properties. ACS Nano 3:3749–3761CrossRef
34.
go back to reference Xu Y, Schoonen MA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Miner 85:543–556CrossRef Xu Y, Schoonen MA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Miner 85:543–556CrossRef
35.
go back to reference Le Formal F, Grätzel M, Sivula K (2010) Controlling photoactivity in ultrathin hematite films for solar water-splitting. Adv Funct Mater 20:1099–1107CrossRef Le Formal F, Grätzel M, Sivula K (2010) Controlling photoactivity in ultrathin hematite films for solar water-splitting. Adv Funct Mater 20:1099–1107CrossRef
36.
go back to reference Herrera FV, Grez P, Schrebler R, Ballesteros LA, Muñoz E, Córdova R, Dalchiele EA (2010) Preparation and photoelectrochemical characterization of porphyrin-sensitized α-Fe2O3 thin films. J Electrochem Soc 157:D302–D308CrossRef Herrera FV, Grez P, Schrebler R, Ballesteros LA, Muñoz E, Córdova R, Dalchiele EA (2010) Preparation and photoelectrochemical characterization of porphyrin-sensitized α-Fe2O3 thin films. J Electrochem Soc 157:D302–D308CrossRef
37.
go back to reference Dotan H, Sivula K, Grätzel M, Rothschild A, Warren SC (2011) Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ Sci 4:958–964CrossRef Dotan H, Sivula K, Grätzel M, Rothschild A, Warren SC (2011) Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ Sci 4:958–964CrossRef
38.
go back to reference Bard AJ, Bocarsly AB, Fan FRF, Walton EG, Wrighton MS (1980) The concept of Fermi level pinning at semiconductor/liquid junctions, Consequences for energy conversion efficiency and selection of useful solution redox couples in solar devices. J Am Chem Soc 102:3671–3677CrossRef Bard AJ, Bocarsly AB, Fan FRF, Walton EG, Wrighton MS (1980) The concept of Fermi level pinning at semiconductor/liquid junctions, Consequences for energy conversion efficiency and selection of useful solution redox couples in solar devices. J Am Chem Soc 102:3671–3677CrossRef
39.
go back to reference Uosaki K, Kita H (1983) Effects of the Helmholtz layer capacitance on the potential distribution at semiconductor/electrolyte interface and the linearity of the Mott–Schottky plot. J Electrochem Soc 130:895–897CrossRef Uosaki K, Kita H (1983) Effects of the Helmholtz layer capacitance on the potential distribution at semiconductor/electrolyte interface and the linearity of the Mott–Schottky plot. J Electrochem Soc 130:895–897CrossRef
40.
go back to reference Wijayantha KU, Saremi-Yarahmadi S, Peter LM (2011) Kinetics of oxygen evolution at α-Fe2O3 photoanodes: a study by photoelectrochemical impedance spectroscopy. Phys Chem Chem Phys 13:5264–5270CrossRef Wijayantha KU, Saremi-Yarahmadi S, Peter LM (2011) Kinetics of oxygen evolution at α-Fe2O3 photoanodes: a study by photoelectrochemical impedance spectroscopy. Phys Chem Chem Phys 13:5264–5270CrossRef
41.
go back to reference Zandi O, Schon AR, Hajibabaei H, Hamann TW (2016) Enhanced charge separation and collection in high-performance electrodeposited hematite films. Chem Mater 28:765–771CrossRef Zandi O, Schon AR, Hajibabaei H, Hamann TW (2016) Enhanced charge separation and collection in high-performance electrodeposited hematite films. Chem Mater 28:765–771CrossRef
42.
go back to reference Bassi PS, Xianglin L, Fang Y, Loo JSC, Barber J, Wong LH (2016) Understanding charge transport in non-doped pristine and surface passivated hematite (Fe2O3) nanorods under front and backside illumination in the context of light induced water splitting. Phys Chem Chem Phys 18:30370–30378CrossRef Bassi PS, Xianglin L, Fang Y, Loo JSC, Barber J, Wong LH (2016) Understanding charge transport in non-doped pristine and surface passivated hematite (Fe2O3) nanorods under front and backside illumination in the context of light induced water splitting. Phys Chem Chem Phys 18:30370–30378CrossRef
43.
go back to reference Bertoluzzi L, Bisquert J (2012) Equivalent circuit of electrons and holes in thin semiconductor films for photoelectrochemical water splitting applications. J Phys Chem Lett 3:2517–2522CrossRef Bertoluzzi L, Bisquert J (2012) Equivalent circuit of electrons and holes in thin semiconductor films for photoelectrochemical water splitting applications. J Phys Chem Lett 3:2517–2522CrossRef
44.
go back to reference Ye L, Wang D, Chen S (2016) Fabrication and enhanced photoelectrochemical performance of MoS2/S-doped g-C3N4 heterojunction film. ACS Appl Mater Interfaces 8:5280–5289CrossRef Ye L, Wang D, Chen S (2016) Fabrication and enhanced photoelectrochemical performance of MoS2/S-doped g-C3N4 heterojunction film. ACS Appl Mater Interfaces 8:5280–5289CrossRef
45.
go back to reference Zhong M, Hisatomi T, Kuang Y, Zhao J, Liu M, Iwase A (2015) Surface modification of CoOx loaded BiVO4 photoanodes with ultrathin p-type NiO layers for improved solar water oxidation. J Am Chem Soc 137:5053–5060CrossRef Zhong M, Hisatomi T, Kuang Y, Zhao J, Liu M, Iwase A (2015) Surface modification of CoOx loaded BiVO4 photoanodes with ultrathin p-type NiO layers for improved solar water oxidation. J Am Chem Soc 137:5053–5060CrossRef
46.
go back to reference Zaban A, Greenshtein M, Bisquert J (2003) Determination of the electron lifetime in nanocrystalline dye solar cells by open circuit voltage decay measurements. ChemPhysChem 4:859–864CrossRef Zaban A, Greenshtein M, Bisquert J (2003) Determination of the electron lifetime in nanocrystalline dye solar cells by open circuit voltage decay measurements. ChemPhysChem 4:859–864CrossRef
47.
go back to reference Klahr B, Gimenez S, Fabregat-Santiago F, Bisquert J, Hamann TW (2012) Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes. Energy Environ Sci 5:7626–7636CrossRef Klahr B, Gimenez S, Fabregat-Santiago F, Bisquert J, Hamann TW (2012) Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes. Energy Environ Sci 5:7626–7636CrossRef
48.
go back to reference Zandi O, Hamann T (2014) Enhanced water splitting efficiency through selective surface state removal. J Phys Chem Lett 5:1522–1526CrossRef Zandi O, Hamann T (2014) Enhanced water splitting efficiency through selective surface state removal. J Phys Chem Lett 5:1522–1526CrossRef
49.
go back to reference Allongue P, Cachet H (1985) Band-edge shift and surface charges at illuminated n-GaAs/aqueous electrolyte junctions surface-state analysis and simulation of their occupation rate. J Electrochem Soc 132:45–52CrossRef Allongue P, Cachet H (1985) Band-edge shift and surface charges at illuminated n-GaAs/aqueous electrolyte junctions surface-state analysis and simulation of their occupation rate. J Electrochem Soc 132:45–52CrossRef
Metadata
Title
The effect of fast and slow surface states on photoelectrochemical performance of hematite photoanodes fabricated by electrodeposition and hydrothermal methods
Authors
Longzhu Li
Honglei Zhang
Changhai Liu
Penghua Liang
Naotoshi Mitsuzaki
Zhidong Chen
Publication date
29-08-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 1/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2862-7

Other articles of this Issue 1/2019

Journal of Materials Science 1/2019 Go to the issue

Premium Partners