Skip to main content
Top
Published in: Topics in Catalysis 1-4/2022

24-07-2021 | Original Paper

The Effect of Hartree-Fock Exchange on Scaling Relations and Reaction Energetics for C–H Activation Catalysts

Authors: Vyshnavi Vennelakanti, Aditya Nandy, Heather J. Kulik

Published in: Topics in Catalysis | Issue 1-4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

High-throughput computational catalyst studies are typically carried out using density functional theory (DFT) with a single, approximate exchange-correlation functional. In open shell transition metal complexes (TMCs) that are promising for challenging reactions (e.g., C–H activation), the predictive power of DFT has been challenged, and properties are known to be strongly dependent on the admixture of Hartree-Fock (HF) exchange. We carry out a large-scale study of the effect of HF exchange on the predicted catalytic properties of over 1200 mid-row (i.e., Cr, Mn, Fe, Co) 3d TMCs for direct methane-to-methanol conversion. Reaction energy sensitivities across this set depend both on the catalytic rearrangement and ligand chemistry of the catalyst. These differences in sensitivities change both the absolute energetics predicted for a catalyst and its relative performance. Previous observations of the poor performance of global linear free energy relationships (LFERs) hold with both semi-local DFT widely employed in heterogeneous catalysis and hybrid DFT. Narrower metal/oxidation/spin-state specific LFERs perform better and are less sensitive to HF exchange than absolute reaction energetics, except in the case of some intermediate/high-spin states. Importantly, the interplay between spin-state dependent reaction energetics and exchange effects on spin-state ordering means that the choice of DFT functional strongly influences whether the minimum energy pathway is spin-conserved. Despite these caveats, LFERs involving catalysts that can be expected to have closed shell intermediates and low-spin ground states retain significant predictive power.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Spivey JJ, Krishna KS, Kumar CSSR, Dooley KM, Flake JC, Haber LH, Xu Y, Janik MJ, Sinnott SB, Cheng YT, Liang T, Sholl DS, Manz TA, Diebold U, Parkinson GS, Bruce DA, de Jongh P (2014) Synthesis, characterization, and computation of catalysts at the center for atomic-level catalyst design. J Phys Chem C 118(35):20043–20069CrossRef Spivey JJ, Krishna KS, Kumar CSSR, Dooley KM, Flake JC, Haber LH, Xu Y, Janik MJ, Sinnott SB, Cheng YT, Liang T, Sholl DS, Manz TA, Diebold U, Parkinson GS, Bruce DA, de Jongh P (2014) Synthesis, characterization, and computation of catalysts at the center for atomic-level catalyst design. J Phys Chem C 118(35):20043–20069CrossRef
2.
go back to reference Sperger T, Sanhueza IA, Kalvet I, Schoenebeck F (2015) Computational studies of synthetically relevant homogeneous organometallic catalysis involving Ni, Pd, Ir, and Rh: an overview of commonly employed DFT methods and mechanistic insights. Chem Rev 115(17):9532–9586PubMedCrossRef Sperger T, Sanhueza IA, Kalvet I, Schoenebeck F (2015) Computational studies of synthetically relevant homogeneous organometallic catalysis involving Ni, Pd, Ir, and Rh: an overview of commonly employed DFT methods and mechanistic insights. Chem Rev 115(17):9532–9586PubMedCrossRef
3.
go back to reference Sperger T, Sanhueza IA, Schoenebeck F (2016) Computation and experiment: a powerful combination to understand and predict reactivities. Acc Chem Res 49(6):1311–1319PubMedCrossRef Sperger T, Sanhueza IA, Schoenebeck F (2016) Computation and experiment: a powerful combination to understand and predict reactivities. Acc Chem Res 49(6):1311–1319PubMedCrossRef
4.
go back to reference Medford AJ, Vojvodic A, Hummelshoj JS, Voss J, Abild-Pedersen F, Studt F, Bligaard T, Nilsson A, Norskov JK (2015) From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J Catal 328:36–42CrossRef Medford AJ, Vojvodic A, Hummelshoj JS, Voss J, Abild-Pedersen F, Studt F, Bligaard T, Nilsson A, Norskov JK (2015) From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J Catal 328:36–42CrossRef
5.
go back to reference Cheng GJ, Zhang XH, Chung LW, Xu LP, Wu YD (2015) Computational organic chemistry: bridging theory and experiment in establishing the mechanisms of chemical reactions. J Am Chem Soc 137(5):1706–1725PubMedCrossRef Cheng GJ, Zhang XH, Chung LW, Xu LP, Wu YD (2015) Computational organic chemistry: bridging theory and experiment in establishing the mechanisms of chemical reactions. J Am Chem Soc 137(5):1706–1725PubMedCrossRef
6.
go back to reference Vogiatzis KD, Polynski MV, Kirkland JK, Townsend J, Hashemi A, Liu C, Pidko EA (2018) Computational approach to molecular catalysis by 3d transition metals: challenges and opportunities. Chem Rev 119(4):2453–2523PubMedPubMedCentralCrossRef Vogiatzis KD, Polynski MV, Kirkland JK, Townsend J, Hashemi A, Liu C, Pidko EA (2018) Computational approach to molecular catalysis by 3d transition metals: challenges and opportunities. Chem Rev 119(4):2453–2523PubMedPubMedCentralCrossRef
7.
go back to reference Raugei S, DuBois DL, Rousseau R, Chen S, Ho M-H, Bullock RM, Dupuis M (2015) Toward molecular catalysts by computer. Acc Chem Res 48(2):248–255PubMedCrossRef Raugei S, DuBois DL, Rousseau R, Chen S, Ho M-H, Bullock RM, Dupuis M (2015) Toward molecular catalysts by computer. Acc Chem Res 48(2):248–255PubMedCrossRef
8.
go back to reference Greeley J (2016) Theoretical heterogeneous catalysis: scaling relationships and computational catalyst design. Annu Rev Chem Biomol Eng 7:605–635PubMedCrossRef Greeley J (2016) Theoretical heterogeneous catalysis: scaling relationships and computational catalyst design. Annu Rev Chem Biomol Eng 7:605–635PubMedCrossRef
9.
go back to reference Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1(1):37–46PubMedCrossRef Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1(1):37–46PubMedCrossRef
10.
go back to reference Foscato M, Jensen VR (2020) Automated in silico design of homogeneous catalysts. ACS Catal 10(3):2354–2377CrossRef Foscato M, Jensen VR (2020) Automated in silico design of homogeneous catalysts. ACS Catal 10(3):2354–2377CrossRef
11.
go back to reference Nandy A, Zhu J, Janet JP, Duan C, Getman RB, Kulik HJ (2019) Machine learning accelerates the discovery of design rules and exceptions in stable metal-oxo intermediate formation. ACS Catal 9:8243–8255CrossRef Nandy A, Zhu J, Janet JP, Duan C, Getman RB, Kulik HJ (2019) Machine learning accelerates the discovery of design rules and exceptions in stable metal-oxo intermediate formation. ACS Catal 9:8243–8255CrossRef
13.
go back to reference Kim JY, Kulik HJ (2018) When is ligand pKa a good descriptor for catalyst energetics? In search of optimal CO2 hydration catalysts. J Phys Chem A 122(18):4579–4590PubMedCrossRef Kim JY, Kulik HJ (2018) When is ligand pKa a good descriptor for catalyst energetics? In search of optimal CO2 hydration catalysts. J Phys Chem A 122(18):4579–4590PubMedCrossRef
14.
go back to reference Gani TZH, Kulik HJ (2018) Understanding and breaking scaling relations in single-site catalysis: methane to methanol conversion by FeIV=O. ACS Catal 8:975–986CrossRef Gani TZH, Kulik HJ (2018) Understanding and breaking scaling relations in single-site catalysis: methane to methanol conversion by FeIV=O. ACS Catal 8:975–986CrossRef
15.
go back to reference Cramer CJ, Truhlar DG (2009) Density functional theory for transition metals and transition metal chemistry. Phys Chem Chem Phys 11(46):10757–10816PubMedCrossRef Cramer CJ, Truhlar DG (2009) Density functional theory for transition metals and transition metal chemistry. Phys Chem Chem Phys 11(46):10757–10816PubMedCrossRef
16.
go back to reference Janet JP, Zhao Q, Ioannidis EI, Kulik HJ (2017) Density functional theory for modelling large molecular adsorbate-surface interactions: a mini-review and worked example. Mol Simul 43(5–6):327–345CrossRef Janet JP, Zhao Q, Ioannidis EI, Kulik HJ (2017) Density functional theory for modelling large molecular adsorbate-surface interactions: a mini-review and worked example. Mol Simul 43(5–6):327–345CrossRef
17.
go back to reference Gaggioli CA, Stoneburner SJ, Cramer CJ, Gagliardi L (2019) Beyond density functional theory: the multiconfigurational approach to model heterogeneous catalysis. ACS Catal 9(9):8481–8502CrossRef Gaggioli CA, Stoneburner SJ, Cramer CJ, Gagliardi L (2019) Beyond density functional theory: the multiconfigurational approach to model heterogeneous catalysis. ACS Catal 9(9):8481–8502CrossRef
18.
go back to reference Jimenez-Hoyos CA, Janesko BG, Scuseria GE (2009) Evaluation of range-separated hybrid and other density functional approaches on test sets relevant for transition metal-based homogeneous catalysts. J Phys Chem A 113(43):11742–11749PubMedCrossRef Jimenez-Hoyos CA, Janesko BG, Scuseria GE (2009) Evaluation of range-separated hybrid and other density functional approaches on test sets relevant for transition metal-based homogeneous catalysts. J Phys Chem A 113(43):11742–11749PubMedCrossRef
19.
go back to reference Zhao Q, Kulik HJ (2019) Stable surfaces that bind too tightly: can range-separated hybrids or DFT + U improve paradoxical descriptions of surface chemistry? J Phys Chem Lett 10(17):5090–5098PubMedPubMedCentralCrossRef Zhao Q, Kulik HJ (2019) Stable surfaces that bind too tightly: can range-separated hybrids or DFT + U improve paradoxical descriptions of surface chemistry? J Phys Chem Lett 10(17):5090–5098PubMedPubMedCentralCrossRef
20.
go back to reference Schimka L, Harl J, Stroppa A, Grüneis A, Marsman M, Mittendorfer F, Kresse G (2010) Accurate surface and adsorption energies from many-body perturbation theory. Nat Mater 9(9):741–744PubMedCrossRef Schimka L, Harl J, Stroppa A, Grüneis A, Marsman M, Mittendorfer F, Kresse G (2010) Accurate surface and adsorption energies from many-body perturbation theory. Nat Mater 9(9):741–744PubMedCrossRef
21.
go back to reference Kulik HJ (2015) Perspective: treating electron over-delocalization with the DFT plus U method. J Chem Phys 142(24):240901 Kulik HJ (2015) Perspective: treating electron over-delocalization with the DFT plus U method. J Chem Phys 142(24):240901
22.
go back to reference Yu HS, Li SL, Truhlar DG (2016) Perspective: Kohn-Sham density functional theory descending a staircase. J Chem Phys 145(13):130901PubMedCrossRef Yu HS, Li SL, Truhlar DG (2016) Perspective: Kohn-Sham density functional theory descending a staircase. J Chem Phys 145(13):130901PubMedCrossRef
23.
go back to reference Cohen AJ, Mori-Sanchez P, Yang W (2008) Fractional charge perspective on the band gap in density-functional theory. Phys Rev B 77(11):115123 Cohen AJ, Mori-Sanchez P, Yang W (2008) Fractional charge perspective on the band gap in density-functional theory. Phys Rev B 77(11):115123
24.
go back to reference Perdew JP, Parr RG, Levy M, Balduz JL Jr (1982) Density-functional theory for fractional particle number - derivative discontinuities of the energy. Phys Rev Lett 49(23):1691–1694CrossRef Perdew JP, Parr RG, Levy M, Balduz JL Jr (1982) Density-functional theory for fractional particle number - derivative discontinuities of the energy. Phys Rev Lett 49(23):1691–1694CrossRef
25.
go back to reference Yang WT, Zhang YK, Ayers PW (2000) Degenerate ground states and a fractional number of electrons in density and reduced density matrix functional theory. Phys Rev Lett 84(22):5172–5175PubMedCrossRef Yang WT, Zhang YK, Ayers PW (2000) Degenerate ground states and a fractional number of electrons in density and reduced density matrix functional theory. Phys Rev Lett 84(22):5172–5175PubMedCrossRef
26.
go back to reference Cohen AJ, Mori-Sanchez P, Yang W (2008) Insights into current limitations of density functional theory. Science 321(5890):792–794PubMedCrossRef Cohen AJ, Mori-Sanchez P, Yang W (2008) Insights into current limitations of density functional theory. Science 321(5890):792–794PubMedCrossRef
27.
go back to reference Janesko BG, Proynov E, Kong J, Scalmani G, Frisch MJ (2017) Practical density functionals beyond the overdelocalization–underbinding zero-sum game. J Phys Chem Lett 8(17):4314–4318PubMedCrossRef Janesko BG, Proynov E, Kong J, Scalmani G, Frisch MJ (2017) Practical density functionals beyond the overdelocalization–underbinding zero-sum game. J Phys Chem Lett 8(17):4314–4318PubMedCrossRef
28.
go back to reference Johnson BG, Gonzales CA, Gill PMW, Pople JA (1994) A density-functional study of the simplest hydrogen abstraction reaction - effect of self-interaction correction. Chem Phys Lett 221(1–2):100–108CrossRef Johnson BG, Gonzales CA, Gill PMW, Pople JA (1994) A density-functional study of the simplest hydrogen abstraction reaction - effect of self-interaction correction. Chem Phys Lett 221(1–2):100–108CrossRef
29.
go back to reference Ruzsinszky A, Perdew JP, Csonka GI, Vydrov OA, Scuseria GE (2006) Spurious fractional charge on dissociated atoms: pervasive and resilient self-interaction error of common density functionals. J Chem Phys 125(19):194112PubMedCrossRef Ruzsinszky A, Perdew JP, Csonka GI, Vydrov OA, Scuseria GE (2006) Spurious fractional charge on dissociated atoms: pervasive and resilient self-interaction error of common density functionals. J Chem Phys 125(19):194112PubMedCrossRef
30.
go back to reference Ruzsinszky A, Perdew JP, Csonka GI, Vydrov OA, Scuseria GE (2007) Density functionals that are one- and two- are not always many-electron self-interaction-free, as shown for H-2(+), He-2(+), LiH+, and Ne-2(+). J Chem Phys 126(10):104102PubMedCrossRef Ruzsinszky A, Perdew JP, Csonka GI, Vydrov OA, Scuseria GE (2007) Density functionals that are one- and two- are not always many-electron self-interaction-free, as shown for H-2(+), He-2(+), LiH+, and Ne-2(+). J Chem Phys 126(10):104102PubMedCrossRef
31.
go back to reference Dutoi AD, Head-Gordon M (2006) Self-interaction error of local density functionals for alkali-halide dissociation. Chem Phys Lett 422(1–3):230–233CrossRef Dutoi AD, Head-Gordon M (2006) Self-interaction error of local density functionals for alkali-halide dissociation. Chem Phys Lett 422(1–3):230–233CrossRef
32.
go back to reference Bally T, Sastry GN (1997) Incorrect dissociation behavior of radical ions in density functional calculations. J Phys Chem A 101(43):7923–7925CrossRef Bally T, Sastry GN (1997) Incorrect dissociation behavior of radical ions in density functional calculations. J Phys Chem A 101(43):7923–7925CrossRef
33.
go back to reference Zhang Y, Yang W (1998) A challenge for density functionals: self-interaction error increases for systems with a non integer number of electrons. J Chem Phys 109(7):2604–2608CrossRef Zhang Y, Yang W (1998) A challenge for density functionals: self-interaction error increases for systems with a non integer number of electrons. J Chem Phys 109(7):2604–2608CrossRef
34.
go back to reference Wilbraham L, Verma P, Truhlar DG, Gagliardi L, Ciofini I (2017) Multiconfiguration pair-density functional theory predicts spin state ordering in iron complexes with the same accuracy as complete active space second-order perturbation theory at a significantly reduced computational cost. J Phys Chem Lett 8(9):2026–2030PubMedCrossRef Wilbraham L, Verma P, Truhlar DG, Gagliardi L, Ciofini I (2017) Multiconfiguration pair-density functional theory predicts spin state ordering in iron complexes with the same accuracy as complete active space second-order perturbation theory at a significantly reduced computational cost. J Phys Chem Lett 8(9):2026–2030PubMedCrossRef
35.
go back to reference Ioannidis EI, Kulik HJ (2017) Ligand-field-dependent behavior of meta-GGA exchange in transition-metal complex spin-state ordering. J Phys Chem A 121(4):874–884PubMedCrossRef Ioannidis EI, Kulik HJ (2017) Ligand-field-dependent behavior of meta-GGA exchange in transition-metal complex spin-state ordering. J Phys Chem A 121(4):874–884PubMedCrossRef
36.
go back to reference Ioannidis EI, Kulik HJ (2015) Towards quantifying the role of exact exchange in predictions of transition metal complex properties. J Chem Phys 143(3):034104 Ioannidis EI, Kulik HJ (2015) Towards quantifying the role of exact exchange in predictions of transition metal complex properties. J Chem Phys 143(3):034104
37.
go back to reference Mortensen SR, Kepp KP (2015) Spin propensities of octahedral complexes from density functional theory. J Phys Chem A 119(17):4041–4050PubMedCrossRef Mortensen SR, Kepp KP (2015) Spin propensities of octahedral complexes from density functional theory. J Phys Chem A 119(17):4041–4050PubMedCrossRef
38.
go back to reference Droghetti A, Alfe D, Sanvito S (2012) Assessment of density functional theory for iron(II) molecules across the spin-crossover transition. J Chem Phys 137(12):124303 Droghetti A, Alfe D, Sanvito S (2012) Assessment of density functional theory for iron(II) molecules across the spin-crossover transition. J Chem Phys 137(12):124303
39.
go back to reference Ganzenmuller G, Berkaine N, Fouqueau A, Casida ME, Reiher M (2005) Comparison of density functionals for differences between the high-(T-5(2 g)) and low-((1)A(1 g)) spin states of iron(II) compounds. IV. Results for the ferrous complexes [Fe(L)(‘NHS4’)]. J Chem Phys 122:23CrossRef Ganzenmuller G, Berkaine N, Fouqueau A, Casida ME, Reiher M (2005) Comparison of density functionals for differences between the high-(T-5(2 g)) and low-((1)A(1 g)) spin states of iron(II) compounds. IV. Results for the ferrous complexes [Fe(L)(‘NHS4’)]. J Chem Phys 122:23CrossRef
40.
go back to reference Kulik HJ, Cococcioni M, Scherlis DA, Marzari N (2006) Density functional theory in transition-metal chemistry: a self-consistent Hubbard U approach. Phys Rev Lett 97(10):103001PubMedCrossRef Kulik HJ, Cococcioni M, Scherlis DA, Marzari N (2006) Density functional theory in transition-metal chemistry: a self-consistent Hubbard U approach. Phys Rev Lett 97(10):103001PubMedCrossRef
41.
go back to reference Tozer DJ, De Proft F (2005) Computation of the hardness and the problem of negative electron affinities in density functional theory. J Phys Chem A 109(39):8923–8929PubMedCrossRef Tozer DJ, De Proft F (2005) Computation of the hardness and the problem of negative electron affinities in density functional theory. J Phys Chem A 109(39):8923–8929PubMedCrossRef
42.
go back to reference Teale AM, De Proft F, Tozer DJ (2008) Orbital energies and negative electron affinities from density functional theory: insight from the integer discontinuity. J Chem Phys 129(4):044110PubMedCrossRef Teale AM, De Proft F, Tozer DJ (2008) Orbital energies and negative electron affinities from density functional theory: insight from the integer discontinuity. J Chem Phys 129(4):044110PubMedCrossRef
43.
go back to reference Peach MJG, Teale AM, Helgaker T, Tozer DJ (2015) Fractional electron loss in approximate DFT and Hartree-Fock theory. J Chem Theory Comput 11(11):5262–5268PubMedCrossRef Peach MJG, Teale AM, Helgaker T, Tozer DJ (2015) Fractional electron loss in approximate DFT and Hartree-Fock theory. J Chem Theory Comput 11(11):5262–5268PubMedCrossRef
44.
go back to reference Mori-Sanchez P, Cohen AJ, Yang WT (2008) Localization and delocalization errors in density functional theory and implications for band-gap prediction. Phys Rev Lett 100:14CrossRef Mori-Sanchez P, Cohen AJ, Yang WT (2008) Localization and delocalization errors in density functional theory and implications for band-gap prediction. Phys Rev Lett 100:14CrossRef
45.
go back to reference Mahler A, Janesko BG, Moncho S, Brothers EN (2018) When Hartree-Fock exchange admixture lowers DFT-predicted barrier heights: natural bond orbital analyses and implications for catalysis. J Chem Phys 148(24) Mahler A, Janesko BG, Moncho S, Brothers EN (2018) When Hartree-Fock exchange admixture lowers DFT-predicted barrier heights: natural bond orbital analyses and implications for catalysis. J Chem Phys 148(24)
47.
go back to reference Reiher M, Salomon O, Hess BA (2001) Reparameterization of hybrid functionals based on energy differences of states of different multiplicity. Theor Chem Acc 107(1):48–55CrossRef Reiher M, Salomon O, Hess BA (2001) Reparameterization of hybrid functionals based on energy differences of states of different multiplicity. Theor Chem Acc 107(1):48–55CrossRef
48.
go back to reference Coskun D, Jerome SV, Friesner RA (2016) Evaluation of the performance of the B3LYP, PBE0, and M06 DFT functionals, and DBLOC-corrected versions, in the calculation of redox potentials and spin splittings for transition metal containing systems. J Chem Theory Comput 12(3):1121–1128PubMedCrossRef Coskun D, Jerome SV, Friesner RA (2016) Evaluation of the performance of the B3LYP, PBE0, and M06 DFT functionals, and DBLOC-corrected versions, in the calculation of redox potentials and spin splittings for transition metal containing systems. J Chem Theory Comput 12(3):1121–1128PubMedCrossRef
49.
go back to reference Haunschild R, Henderson TM, Jimenez-Hoyos CA, Scuseria GE (2010) Many-electron self-interaction and spin polarization errors in local hybrid density functionals. J Chem Phys 133(13):134116PubMedCrossRef Haunschild R, Henderson TM, Jimenez-Hoyos CA, Scuseria GE (2010) Many-electron self-interaction and spin polarization errors in local hybrid density functionals. J Chem Phys 133(13):134116PubMedCrossRef
50.
go back to reference Mori-Sanchez P, Cohen AJ, Yang WT (2006) Many-electron self-interaction error in approximate density functionals. J Chem Phys 125(20) Mori-Sanchez P, Cohen AJ, Yang WT (2006) Many-electron self-interaction error in approximate density functionals. J Chem Phys 125(20)
51.
go back to reference Schmidt T, Kummel S (2016) One- and many-electron self-interaction error in local and global hybrid functionals. Phys Rev B 93(16) Schmidt T, Kummel S (2016) One- and many-electron self-interaction error in local and global hybrid functionals. Phys Rev B 93(16)
52.
go back to reference Kim MC, Sim E, Burke K (2013) Understanding and reducing errors in density functional calculations. Phys Rev Lett 111:7CrossRef Kim MC, Sim E, Burke K (2013) Understanding and reducing errors in density functional calculations. Phys Rev Lett 111:7CrossRef
53.
go back to reference Zheng X, Liu M, Johnson ER, Contreras-Garcia J, Yang W (2012) Delocalization error of density-functional approximations: a distinct manifestation in hydrogen molecular chains. J Chem Phys 137(21):214106PubMedCrossRef Zheng X, Liu M, Johnson ER, Contreras-Garcia J, Yang W (2012) Delocalization error of density-functional approximations: a distinct manifestation in hydrogen molecular chains. J Chem Phys 137(21):214106PubMedCrossRef
54.
go back to reference Simm GN, Reiher M (2016) Systematic error estimation for chemical reaction energies. J Chem Theory Comput 12(6):2762–2773PubMedCrossRef Simm GN, Reiher M (2016) Systematic error estimation for chemical reaction energies. J Chem Theory Comput 12(6):2762–2773PubMedCrossRef
55.
go back to reference Sutton JE, Guo W, Katsoulakis MA, Vlachos DG (2016) Effects of correlated parameters and uncertainty in electronic-structure-based chemical kinetic modelling. Nat Chem 8(4):331–337PubMedCrossRef Sutton JE, Guo W, Katsoulakis MA, Vlachos DG (2016) Effects of correlated parameters and uncertainty in electronic-structure-based chemical kinetic modelling. Nat Chem 8(4):331–337PubMedCrossRef
56.
go back to reference Walker E, Ammal SC, Terejanu GA, Heyden A (2016) Uncertainty quantification framework applied to the water–gas shift reaction over Pt-based catalysts. J Phys Chem C 120(19):10328–10339CrossRef Walker E, Ammal SC, Terejanu GA, Heyden A (2016) Uncertainty quantification framework applied to the water–gas shift reaction over Pt-based catalysts. J Phys Chem C 120(19):10328–10339CrossRef
57.
go back to reference Wellendorff J, Lundgaard KT, Mogelhoj A, Petzold V, Landis DD, Norskov JK, Bligaard T, Jacobsen KW (2012) Density functionals for surface science: exchange-correlation model development with Bayesian error estimation. Phys Rev B 85(23):235149CrossRef Wellendorff J, Lundgaard KT, Mogelhoj A, Petzold V, Landis DD, Norskov JK, Bligaard T, Jacobsen KW (2012) Density functionals for surface science: exchange-correlation model development with Bayesian error estimation. Phys Rev B 85(23):235149CrossRef
58.
go back to reference Medford AJ, Wellendorff J, Vojvodic A, Studt F, Abild-Pedersen F, Jacobsen KW, Bligaard T, Nørskov JK (2014) Assessing the reliability of calculated catalytic ammonia synthesis rates. Science 345(6193):197–200PubMedCrossRef Medford AJ, Wellendorff J, Vojvodic A, Studt F, Abild-Pedersen F, Jacobsen KW, Bligaard T, Nørskov JK (2014) Assessing the reliability of calculated catalytic ammonia synthesis rates. Science 345(6193):197–200PubMedCrossRef
59.
go back to reference Sumaria V, Krishnamurthy D, Viswanathan V (2018) Quantifying confidence in DFT predicted surface Pourbaix diagrams and associated reaction pathways for chlorine evolution. ACS Catal 8(10):9034–9042CrossRef Sumaria V, Krishnamurthy D, Viswanathan V (2018) Quantifying confidence in DFT predicted surface Pourbaix diagrams and associated reaction pathways for chlorine evolution. ACS Catal 8(10):9034–9042CrossRef
60.
go back to reference Christensen R, Hansen HA, Vegge T (2015) Identifying systematic DFT errors in catalytic reactions. Catal Sci Technol 5(11):4946–4949CrossRef Christensen R, Hansen HA, Vegge T (2015) Identifying systematic DFT errors in catalytic reactions. Catal Sci Technol 5(11):4946–4949CrossRef
61.
go back to reference Wellendorff J, Silbaugh TL, Garcia-Pintos D, Norskov JK, Bligaard T, Studt F, Campbell CT (2015) A benchmark database for adsorption bond energies to transition metal surfaces and comparison to selected DFT functionals. Surf Sci 640:36–44CrossRef Wellendorff J, Silbaugh TL, Garcia-Pintos D, Norskov JK, Bligaard T, Studt F, Campbell CT (2015) A benchmark database for adsorption bond energies to transition metal surfaces and comparison to selected DFT functionals. Surf Sci 640:36–44CrossRef
62.
go back to reference Houchins G, Viswanathan V (2017) Quantifying confidence in density functional theory predictions of magnetic ground states. Phys Rev B 96(13):134426CrossRef Houchins G, Viswanathan V (2017) Quantifying confidence in density functional theory predictions of magnetic ground states. Phys Rev B 96(13):134426CrossRef
63.
go back to reference Gani TZH, Kulik HJ (2017) Unifying exchange sensitivity in transition metal spin-state ordering and catalysis through bond valence metrics. J Chem Theory Comput 13:5443–5457PubMedCrossRef Gani TZH, Kulik HJ (2017) Unifying exchange sensitivity in transition metal spin-state ordering and catalysis through bond valence metrics. J Chem Theory Comput 13:5443–5457PubMedCrossRef
65.
go back to reference Janesko BG, Scuseria GE (2008) Hartree-Fock orbitals significantly improve the reaction barrier heights predicted by semi local density functionals. J Chem Phys 128(24):244112PubMedPubMedCentralCrossRef Janesko BG, Scuseria GE (2008) Hartree-Fock orbitals significantly improve the reaction barrier heights predicted by semi local density functionals. J Chem Phys 128(24):244112PubMedPubMedCentralCrossRef
66.
go back to reference Gani TZH, Kulik HJ (2016) Where does the density localize? Convergent behavior for global hybrids, range separation, and DFT + U. J Chem Theory Comput 12:5931–5945PubMedCrossRef Gani TZH, Kulik HJ (2016) Where does the density localize? Convergent behavior for global hybrids, range separation, and DFT + U. J Chem Theory Comput 12:5931–5945PubMedCrossRef
72.
go back to reference Hammond C, Forde MM, Rahim A, Hasbi M, Thetford A, He Q, Jenkins RL, Dimitratos N, Lopez-Sanchez JA, Dummer NF (2012) Direct catalytic conversion of methane to methanol in an aqueous medium by using copper‐promoted Fe‐ZSM‐5. Angew Chem Int Ed 51(21):5129–5133CrossRef Hammond C, Forde MM, Rahim A, Hasbi M, Thetford A, He Q, Jenkins RL, Dimitratos N, Lopez-Sanchez JA, Dummer NF (2012) Direct catalytic conversion of methane to methanol in an aqueous medium by using copper‐promoted Fe‐ZSM‐5. Angew Chem Int Ed 51(21):5129–5133CrossRef
73.
go back to reference Jones C, Taube D, Ziatdinov VR, Periana RA, Nielsen RJ, Oxgaard J, Goddard WA (2004) Selective oxidation of methane to methanol catalyzed, with C-H activation, by homogeneous, cationic gold. Angew Chem Int Ed 116(35):4726–4729CrossRef Jones C, Taube D, Ziatdinov VR, Periana RA, Nielsen RJ, Oxgaard J, Goddard WA (2004) Selective oxidation of methane to methanol catalyzed, with C-H activation, by homogeneous, cationic gold. Angew Chem Int Ed 116(35):4726–4729CrossRef
74.
go back to reference Palkovits R, Antonietti M, Kuhn P, Thomas A, Schüth F (2009) Solid catalysts for the selective low-temperature oxidation of methane to methanol. Angew Chem Int Ed 48(37):6909–6912CrossRef Palkovits R, Antonietti M, Kuhn P, Thomas A, Schüth F (2009) Solid catalysts for the selective low-temperature oxidation of methane to methanol. Angew Chem Int Ed 48(37):6909–6912CrossRef
75.
76.
go back to reference Balcells D, Moles P, Blakemore JD, Raynaud C, Brudvig GW, Crabtree RH, Eisenstein O (2009) Molecular recognition in Mn-catalyzed C–H oxidation. Reaction mechanism and origin of selectivity from a DFT perspective. Dalton Trans 30:5989–6000CrossRef Balcells D, Moles P, Blakemore JD, Raynaud C, Brudvig GW, Crabtree RH, Eisenstein O (2009) Molecular recognition in Mn-catalyzed C–H oxidation. Reaction mechanism and origin of selectivity from a DFT perspective. Dalton Trans 30:5989–6000CrossRef
79.
go back to reference Fajin JLC, Vines F, Cordeiro MNDS, Illas F, Gomes JRB (2016) Effect of the exchange-correlation potential on the transferability of Bronsted-Evans-Polanyi relationships in heterogeneous catalysis. J Chem Theory Comput 12(5):2121–2126PubMedCrossRef Fajin JLC, Vines F, Cordeiro MNDS, Illas F, Gomes JRB (2016) Effect of the exchange-correlation potential on the transferability of Bronsted-Evans-Polanyi relationships in heterogeneous catalysis. J Chem Theory Comput 12(5):2121–2126PubMedCrossRef
80.
go back to reference Curnan MT, Kitchin JR (2015) Investigating the energetic ordering of stable and metastable TiO2 polymorphs using DFT + U and hybrid functionals. J Phys Chem C 119(36):21060–21071CrossRef Curnan MT, Kitchin JR (2015) Investigating the energetic ordering of stable and metastable TiO2 polymorphs using DFT + U and hybrid functionals. J Phys Chem C 119(36):21060–21071CrossRef
84.
go back to reference Wodrich MD, Sawatlon B, Busch M, Corminboeuf C (2021) The genesis of molecular volcano plots. Acc Chem Res 54(5):1107–1117PubMedCrossRef Wodrich MD, Sawatlon B, Busch M, Corminboeuf C (2021) The genesis of molecular volcano plots. Acc Chem Res 54(5):1107–1117PubMedCrossRef
85.
go back to reference Anand M, Rohr B, Statt MJ, Nørskov JK (2020) Scaling relationships and volcano plots in homogeneous catalysis. J Phys Chem Lett 11(20):8518–8526PubMedCrossRef Anand M, Rohr B, Statt MJ, Nørskov JK (2020) Scaling relationships and volcano plots in homogeneous catalysis. J Phys Chem Lett 11(20):8518–8526PubMedCrossRef
86.
go back to reference Busch M, Wodrich MD, Corminboeuf C (2015) Linear scaling relationships and volcano plots in homogeneous catalysis–revisiting the Suzuki reaction. Chem Sci 6(12):6754–6761PubMedPubMedCentralCrossRef Busch M, Wodrich MD, Corminboeuf C (2015) Linear scaling relationships and volcano plots in homogeneous catalysis–revisiting the Suzuki reaction. Chem Sci 6(12):6754–6761PubMedPubMedCentralCrossRef
87.
go back to reference Andrikopoulos PC, Michel C, Chouzier S, Sautet P (2015) In silico screening of iron-oxo catalysts for CH bond cleavage. ACS Catal 5(4):2490–2499CrossRef Andrikopoulos PC, Michel C, Chouzier S, Sautet P (2015) In silico screening of iron-oxo catalysts for CH bond cleavage. ACS Catal 5(4):2490–2499CrossRef
90.
go back to reference Pérez-Ramírez J, López N (2019) Strategies to break linear scaling relationships. Nat Catal 2(11):971–976CrossRef Pérez-Ramírez J, López N (2019) Strategies to break linear scaling relationships. Nat Catal 2(11):971–976CrossRef
91.
go back to reference Marshall-Roth T, Libretto NJ, Wrobel AT, Anderton KJ, Pegis ML, Ricke ND, Van Voorhis T, Miller JT, Surendranath Y (2020) A pyridinic Fe-N 4 macrocycle models the active sites in Fe/N-doped carbon electrocatalysts. Nat Commun 11(1):1–14CrossRef Marshall-Roth T, Libretto NJ, Wrobel AT, Anderton KJ, Pegis ML, Ricke ND, Van Voorhis T, Miller JT, Surendranath Y (2020) A pyridinic Fe-N 4 macrocycle models the active sites in Fe/N-doped carbon electrocatalysts. Nat Commun 11(1):1–14CrossRef
92.
go back to reference Liu F, Yang T, Yang J, Xu E, Bajaj A, Kulik HJ (2019) Bridging the homogeneous-heterogeneous divide: modeling spin and reactivity in single atom catalysis. Front Chem 7:219PubMedPubMedCentralCrossRef Liu F, Yang T, Yang J, Xu E, Bajaj A, Kulik HJ (2019) Bridging the homogeneous-heterogeneous divide: modeling spin and reactivity in single atom catalysis. Front Chem 7:219PubMedPubMedCentralCrossRef
93.
go back to reference Xu H, Cheng D, Cao D, Zeng XC (2018) A universal principle for a rational design of single-atom electrocatalysts. Nat Catal 1(5):339–348CrossRef Xu H, Cheng D, Cao D, Zeng XC (2018) A universal principle for a rational design of single-atom electrocatalysts. Nat Catal 1(5):339–348CrossRef
94.
go back to reference Sours T, Patel A, Nørskov J, Siahrostami S, Kulkarni A (2020) Circumventing scaling relations in oxygen electrochemistry using metal–organic frameworks. J Phys Chem Lett 11(23):10029–10036PubMedCrossRef Sours T, Patel A, Nørskov J, Siahrostami S, Kulkarni A (2020) Circumventing scaling relations in oxygen electrochemistry using metal–organic frameworks. J Phys Chem Lett 11(23):10029–10036PubMedCrossRef
95.
go back to reference Abram S-L, Monte-Perez I, Pfaff FF, Farquhar ER, Ray K (2014) Evidence of two-state reactivity in alkane hydroxylation by Lewis-acid bound copper-nitrene complexes. Chem Commun 50(69):9852–9854CrossRef Abram S-L, Monte-Perez I, Pfaff FF, Farquhar ER, Ray K (2014) Evidence of two-state reactivity in alkane hydroxylation by Lewis-acid bound copper-nitrene complexes. Chem Commun 50(69):9852–9854CrossRef
96.
go back to reference Zhu B, Guan W, Yan L-K, Su Z-M (2016) Two-state reactivity mechanism of benzene C–C activation by trinuclear titanium hydride. J Am Chem Soc 138(35):11069–11072PubMedCrossRef Zhu B, Guan W, Yan L-K, Su Z-M (2016) Two-state reactivity mechanism of benzene C–C activation by trinuclear titanium hydride. J Am Chem Soc 138(35):11069–11072PubMedCrossRef
97.
go back to reference Schwarz H (2017) Menage-a-trois: single-atom catalysis, mass spectrometry, and computational chemistry. Catal Sci Technol 7(19):4302–4314CrossRef Schwarz H (2017) Menage-a-trois: single-atom catalysis, mass spectrometry, and computational chemistry. Catal Sci Technol 7(19):4302–4314CrossRef
98.
go back to reference Liu WG, Zhang LL, Liu X, Liu XY, Yang XF, Miao S, Wang WT, Wang AQ, Zhang T (2017) Discriminating catalytically active FeNx species of atomically dispersed Fe-N-C catalyst for selective oxidation of the C–H bond. J Am Chem Soc 139(31):10790–10798PubMedCrossRef Liu WG, Zhang LL, Liu X, Liu XY, Yang XF, Miao S, Wang WT, Wang AQ, Zhang T (2017) Discriminating catalytically active FeNx species of atomically dispersed Fe-N-C catalyst for selective oxidation of the C–H bond. J Am Chem Soc 139(31):10790–10798PubMedCrossRef
103.
go back to reference Shaik S, Danovich D, Fiedler A, Schroder D, Schwarz H (1995) 2-State reactivity in organometallic gas-phase ion chemistry. Helv Chim Acta 78(6):1393–1407CrossRef Shaik S, Danovich D, Fiedler A, Schroder D, Schwarz H (1995) 2-State reactivity in organometallic gas-phase ion chemistry. Helv Chim Acta 78(6):1393–1407CrossRef
104.
go back to reference Schroder D, Shaik S, Schwarz H (2000) Two-state reactivity as a new concept in organometallic chemistry. Acc Chem Res 33(3):139–145PubMedCrossRef Schroder D, Shaik S, Schwarz H (2000) Two-state reactivity as a new concept in organometallic chemistry. Acc Chem Res 33(3):139–145PubMedCrossRef
106.
go back to reference Ufimtsev IS, Martinez TJ (2009) Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics. J Chem Theory Comput 5(10):2619–2628PubMedCrossRef Ufimtsev IS, Martinez TJ (2009) Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics. J Chem Theory Comput 5(10):2619–2628PubMedCrossRef
110.
go back to reference Nandy A, Duan C, Janet JP, Gugler S, Kulik HJ (2018) Strategies and software for machine learning accelerated discovery in transition metal chemistry. Ind Eng Chem Res 57(42):13973–13986CrossRef Nandy A, Duan C, Janet JP, Gugler S, Kulik HJ (2018) Strategies and software for machine learning accelerated discovery in transition metal chemistry. Ind Eng Chem Res 57(42):13973–13986CrossRef
111.
go back to reference Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRef Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRef
112.
go back to reference Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652CrossRef Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652CrossRef
113.
go back to reference Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98(45):11623–11627CrossRef Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98(45):11623–11627CrossRef
114.
go back to reference Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104PubMedCrossRef Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104PubMedCrossRef
115.
go back to reference Becke AD, Johnson ER (2005) A density-functional model of the dispersion interaction. J Chem Phys 123(15):154101PubMedCrossRef Becke AD, Johnson ER (2005) A density-functional model of the dispersion interaction. J Chem Phys 123(15):154101PubMedCrossRef
117.
go back to reference Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82(1):270–283CrossRef Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82(1):270–283CrossRef
118.
go back to reference Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods.9. Extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54(2):724–728CrossRef Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods.9. Extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54(2):724–728CrossRef
119.
go back to reference Wang L-P, Song C (2016) Geometry optimization made simple with translation and rotation coordinates. J Chem Phys 144(21):214108PubMedCrossRef Wang L-P, Song C (2016) Geometry optimization made simple with translation and rotation coordinates. J Chem Phys 144(21):214108PubMedCrossRef
121.
123.
go back to reference Bowman DN, Jakubikova E (2012) Low-spin versus high-spin ground state in pseudo-octahedral iron complexes. Inorg Chem 51(11):6011–6019PubMedCrossRef Bowman DN, Jakubikova E (2012) Low-spin versus high-spin ground state in pseudo-octahedral iron complexes. Inorg Chem 51(11):6011–6019PubMedCrossRef
124.
go back to reference Kepp KP (2016) Theoretical study of spin crossover in 30 iron complexes. Inorg Chem 55(6):2717–2727PubMedCrossRef Kepp KP (2016) Theoretical study of spin crossover in 30 iron complexes. Inorg Chem 55(6):2717–2727PubMedCrossRef
Metadata
Title
The Effect of Hartree-Fock Exchange on Scaling Relations and Reaction Energetics for C–H Activation Catalysts
Authors
Vyshnavi Vennelakanti
Aditya Nandy
Heather J. Kulik
Publication date
24-07-2021
Publisher
Springer US
Published in
Topics in Catalysis / Issue 1-4/2022
Print ISSN: 1022-5528
Electronic ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-021-01482-5

Other articles of this Issue 1-4/2022

Topics in Catalysis 1-4/2022 Go to the issue

Premium Partners