Skip to main content
Top
Published in: The International Journal of Advanced Manufacturing Technology 5-6/2020

22-08-2020 | ORIGINAL ARTICLE

The effect of scan path on thermal gradient during selective laser melting

Authors: Benjamin Blackford, Gene Zak, Il Yong Kim

Published in: The International Journal of Advanced Manufacturing Technology | Issue 5-6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

High thermal gradients during selective laser melting (SLM) can generate residual stresses due to uneven volumetric expansion, which can lead to weak or cracked parts. In SLM, scan path refers to the route the laser takes during a single layer of solidification, and has a direct impact on thermal gradient, and by association residual stress. This work uses a finite element model to compare the thermal gradients generated by nine different scan paths, six of which have been tested and discussed in literature, and three of which are proposed in this document. This study found that scan paths which subdivide powder layers into smaller areas were found to produce fewer areas of high thermal gradient, as well as a lower total average gradient when compared to paths that scan the full layer without subdivision. One of the new scan path concepts, named the “subsectioned spiral method”, produced the most favorable results. Of the six non-transient data categories retrieved, the subsectioned spiral scan path outperformed all eight other paths, with improvements ranging between 6 and 44% compared with the baseline path.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bikas H, Stavropoulos P, Chryssolouris G (2016) Additive manufacturing methods and modeling approaches: a critical review. Int J Adv Manuf Technol 83(1-4):389–405CrossRef Bikas H, Stavropoulos P, Chryssolouris G (2016) Additive manufacturing methods and modeling approaches: a critical review. Int J Adv Manuf Technol 83(1-4):389–405CrossRef
2.
go back to reference Durakovic B (2018) Design for additive manufacturing: benefits, trends and challenges. Period Eng Nat Sci 6(2):179–191 Durakovic B (2018) Design for additive manufacturing: benefits, trends and challenges. Period Eng Nat Sci 6(2):179–191
3.
go back to reference Parry L, Ashcroft I, Wildman R (2016) Understanding the effect of laser scan strategy on residual stress inselective laser melting through thermo-mechanical simulation. Additive Manuf 12:1–15CrossRef Parry L, Ashcroft I, Wildman R (2016) Understanding the effect of laser scan strategy on residual stress inselective laser melting through thermo-mechanical simulation. Additive Manuf 12:1–15CrossRef
4.
go back to reference Zegard TPGH (2016) Bridging topology optimization and additive manufacturing. Struct Multidiscip Optim 53:175–192CrossRef Zegard TPGH (2016) Bridging topology optimization and additive manufacturing. Struct Multidiscip Optim 53:175–192CrossRef
5.
go back to reference Everton SK, Hirsch M, Stravroulakis P, Leach RK, Clare AT (2016) Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater Des 95(5):431–445CrossRef Everton SK, Hirsch M, Stravroulakis P, Leach RK, Clare AT (2016) Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater Des 95(5):431–445CrossRef
6.
go back to reference Kruth JP, Deckers J, Yasa E, Wauthle R (2012) Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method. Proc Inst Mec Eng, B: J Eng Manuf 226(6):980–991CrossRef Kruth JP, Deckers J, Yasa E, Wauthle R (2012) Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method. Proc Inst Mec Eng, B: J Eng Manuf 226(6):980–991CrossRef
7.
go back to reference Taylor J (2011) An Eng. Guide to fabricating steel structures, Austrailian Steel institute Taylor J (2011) An Eng. Guide to fabricating steel structures, Austrailian Steel institute
8.
go back to reference Cherry JA, Davies HM, Mehmood S, Lavery NP, Brown SGR, Sienz J (2015) Investigation into the effect of process parameters on microstructural and physical properties of 316 L stainless steel parts by selective laser melting. Int J Adv Manuf Technol 76(5-8):869–879CrossRef Cherry JA, Davies HM, Mehmood S, Lavery NP, Brown SGR, Sienz J (2015) Investigation into the effect of process parameters on microstructural and physical properties of 316 L stainless steel parts by selective laser melting. Int J Adv Manuf Technol 76(5-8):869–879CrossRef
9.
go back to reference Williams J, Deckard C (1998) Advances in modeling the effects of selected parameters on the SLS process. Rapid Prototyp J 4(2):90–100CrossRef Williams J, Deckard C (1998) Advances in modeling the effects of selected parameters on the SLS process. Rapid Prototyp J 4(2):90–100CrossRef
10.
go back to reference Kimura T, Nakamoto T (2016) Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting. Mater Des 89:1294–1301CrossRef Kimura T, Nakamoto T (2016) Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting. Mater Des 89:1294–1301CrossRef
11.
go back to reference Yadroitsev I, Yadroitsva PB, Smurov I (2012) Factor analysis of selective laser melting process parameters and geometrical characteristics of synthesized single tracks. Rapid Prototyp J 18(3):201–208CrossRef Yadroitsev I, Yadroitsva PB, Smurov I (2012) Factor analysis of selective laser melting process parameters and geometrical characteristics of synthesized single tracks. Rapid Prototyp J 18(3):201–208CrossRef
12.
go back to reference Zhang B, Dembinski L, Coddet C (2013) The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316 L powder. Mater Sci Eng A 548:21–31CrossRef Zhang B, Dembinski L, Coddet C (2013) The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316 L powder. Mater Sci Eng A 548:21–31CrossRef
13.
go back to reference Nickel A, Barnett D, Prinz F (2001) Thermal stresses and deposition patterns in layered manufacturing. Mater Sci Eng A 317:59–64CrossRef Nickel A, Barnett D, Prinz F (2001) Thermal stresses and deposition patterns in layered manufacturing. Mater Sci Eng A 317:59–64CrossRef
14.
go back to reference Jhabvala J, Boillat E, Antignac T, Glardon R (2010) On effect of scanning strategies in the selective laser melting process. Virtual Phys Prototyp 5(2):99–109CrossRef Jhabvala J, Boillat E, Antignac T, Glardon R (2010) On effect of scanning strategies in the selective laser melting process. Virtual Phys Prototyp 5(2):99–109CrossRef
15.
go back to reference Kruth JP, Froyen L, Van Vaerenbergh J, Mercelis P, Rombouts M, Lauwers B (2004) Selective laser melting of iron-based powder. J Mater Process Technol 149:616–622CrossRef Kruth JP, Froyen L, Van Vaerenbergh J, Mercelis P, Rombouts M, Lauwers B (2004) Selective laser melting of iron-based powder. J Mater Process Technol 149:616–622CrossRef
16.
go back to reference Yang J, Bin H, Zhang X, Liu Z (2003) Fractal scanning path generation and control system for selective laser sintering (SLS). Int J Mach Tools Manuf 43:293–300CrossRef Yang J, Bin H, Zhang X, Liu Z (2003) Fractal scanning path generation and control system for selective laser sintering (SLS). Int J Mach Tools Manuf 43:293–300CrossRef
17.
go back to reference Catchpole-Smith S, Aboulkhair N, Parry L, Tuck C, Ashcroft I, Clare A (2017) Fractal scan strategies for selective laser melting of ‘unweldable’nickel superalloys. Additive Manuf 15:113–122CrossRef Catchpole-Smith S, Aboulkhair N, Parry L, Tuck C, Ashcroft I, Clare A (2017) Fractal scan strategies for selective laser melting of ‘unweldable’nickel superalloys. Additive Manuf 15:113–122CrossRef
18.
go back to reference Liu F, Lin X, Huang C, Song M, Yang G, Chen J, Huang W (2011) The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718. J Alloys Compd 509:4505–4509CrossRef Liu F, Lin X, Huang C, Song M, Yang G, Chen J, Huang W (2011) The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718. J Alloys Compd 509:4505–4509CrossRef
19.
go back to reference Boivineau M, Cagran C, Doytier D, Eyraud V, Nadal M-H, Wilthan B, Pottlacher G (2006) Thermophysical properties of solid and liquid Ti-6Al-4V (TA6V) alloy. Int J Thermophys 27(2) Boivineau M, Cagran C, Doytier D, Eyraud V, Nadal M-H, Wilthan B, Pottlacher G (2006) Thermophysical properties of solid and liquid Ti-6Al-4V (TA6V) alloy. Int J Thermophys 27(2)
20.
go back to reference Li JJZ, Johnson WJ, Rhim W-K (2006) Thermal expansion of liquid Ti-6Al-4V measured by electrostatic levitation. Appl Phys Lett 89(11) Li JJZ, Johnson WJ, Rhim W-K (2006) Thermal expansion of liquid Ti-6Al-4V measured by electrostatic levitation. Appl Phys Lett 89(11)
21.
go back to reference Li Y, Zhou K, Tan P, Tor SB, Chua CK, Leong KF (2018) Modeling temperature and residual stress fields in selective laser melting. Int J Mater Sci 136:24–35 Li Y, Zhou K, Tan P, Tor SB, Chua CK, Leong KF (2018) Modeling temperature and residual stress fields in selective laser melting. Int J Mater Sci 136:24–35
22.
go back to reference Panda BK, Sahoo S (2019) Thermo-mechanical modeling and validation of stress field during laser. Results Phys 12:1372–1381CrossRef Panda BK, Sahoo S (2019) Thermo-mechanical modeling and validation of stress field during laser. Results Phys 12:1372–1381CrossRef
23.
go back to reference Cook RD, Malkus DS, Plesha ME, Witt RJ (1974) Concepts and Appl. of finite element analysis. John Wiley & Sons Inc, Hoboken Cook RD, Malkus DS, Plesha ME, Witt RJ (1974) Concepts and Appl. of finite element analysis. John Wiley & Sons Inc, Hoboken
25.
go back to reference Chatzi E (2014) The finite element method for the anal. of non-linear and dyn. syst. Swiss Federal Institute of Technology, Zuric Chatzi E (2014) The finite element method for the anal. of non-linear and dyn. syst. Swiss Federal Institute of Technology, Zuric
26.
go back to reference Roberts IA, Wang CJ, Esterlein R, Stanford M, Mynors (2009) A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing. Int J Mach Tools Manuf 49(12-13):916–923CrossRef Roberts IA, Wang CJ, Esterlein R, Stanford M, Mynors (2009) A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing. Int J Mach Tools Manuf 49(12-13):916–923CrossRef
27.
go back to reference Dong L, Makradi A, Ahzi S, Remond Y (2009) Three-dimensional transient finite element analysis of the selective laser sintering process. J Mater Process Technol 209:700–706CrossRef Dong L, Makradi A, Ahzi S, Remond Y (2009) Three-dimensional transient finite element analysis of the selective laser sintering process. J Mater Process Technol 209:700–706CrossRef
28.
go back to reference Traer J (2018) High fidelity additive manuf. process model. for residual stress and deform. Queen's University, Kingston Traer J (2018) High fidelity additive manuf. process model. for residual stress and deform. Queen's University, Kingston
29.
go back to reference Chiumenti M, Neiva E, Salsi E, Cervera M, Badia S, Moya J, Chen Z, Lee C, Davies C (2017) Numerical modeling and experimental validation in selective laser melting. Addit Manuf 18:171–185 Chiumenti M, Neiva E, Salsi E, Cervera M, Badia S, Moya J, Chen Z, Lee C, Davies C (2017) Numerical modeling and experimental validation in selective laser melting. Addit Manuf 18:171–185
30.
go back to reference Reddy J, Gartling D (2000) The finite element method in heat transfer and fluid dyn. CRC Press, LondonMATH Reddy J, Gartling D (2000) The finite element method in heat transfer and fluid dyn. CRC Press, LondonMATH
31.
go back to reference Zhuang J-R, Lee Y-T, Hsieh W-H, Yang A-S (2018) Determination of melt pool dimensions using DOE-FEM and RSM with process window during SLM of Ti6Al4V powder. Opt Laser Technol 103:59–76CrossRef Zhuang J-R, Lee Y-T, Hsieh W-H, Yang A-S (2018) Determination of melt pool dimensions using DOE-FEM and RSM with process window during SLM of Ti6Al4V powder. Opt Laser Technol 103:59–76CrossRef
32.
go back to reference Ren K, Chew Y, Fuh J, Zhang Y, Bi G (2019) Thermo-mechanical analyses for optimized path planning in laser aided additive manufacturing processes. Mater Des 162:80–93CrossRef Ren K, Chew Y, Fuh J, Zhang Y, Bi G (2019) Thermo-mechanical analyses for optimized path planning in laser aided additive manufacturing processes. Mater Des 162:80–93CrossRef
33.
go back to reference Cheng B, Price S, Lydon J, Cooper K, Chou K (2014) On process temperature in powder-bed electron beam additive manufacturing: model development and validation. J Manuf Sci Eng 136(6) Cheng B, Price S, Lydon J, Cooper K, Chou K (2014) On process temperature in powder-bed electron beam additive manufacturing: model development and validation. J Manuf Sci Eng 136(6)
34.
go back to reference Fu CH, Guo YB (2014) Three-dimensional temperature gradient mechanism in selective laser melting of Ti-6Al-4V. J Manuf Sci Eng 136(6) Fu CH, Guo YB (2014) Three-dimensional temperature gradient mechanism in selective laser melting of Ti-6Al-4V. J Manuf Sci Eng 136(6)
Metadata
Title
The effect of scan path on thermal gradient during selective laser melting
Authors
Benjamin Blackford
Gene Zak
Il Yong Kim
Publication date
22-08-2020
Publisher
Springer London
Published in
The International Journal of Advanced Manufacturing Technology / Issue 5-6/2020
Print ISSN: 0268-3768
Electronic ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-020-05899-2

Other articles of this Issue 5-6/2020

The International Journal of Advanced Manufacturing Technology 5-6/2020 Go to the issue

Premium Partners