Skip to main content
Top
Published in: Polymer Science, Series C 2/2020

01-09-2020

The Effect of the Stabilization and Carbonization Temperatures on the Properties of Microporous Carbon Nanofiber Cathodes for Fuel Cells on Polybenzimidazole Membrane

Authors: K. M. Skupov, I. I. Ponomarev, Yu. M. Vol’fkovich, A. D. Modestov, Iv. I. Ponomarev, Yu. A. Volkova, D. Yu. Razorenov, V. E. Sosenkin

Published in: Polymer Science, Series C | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Materials based on pyrolyzed electrospun nanofiber polyacrylonitrile were studied by the method of standard contact porosimetry. An influence of oxidation and pyrolysis temperatures on specific surface area. It was shown that an increase of oxidation temperature from 300 to 350°C and of pyrolysis temperature from 900 to 1000°C leads to a decrease of pore specific surface area and to a decrease of a part of micropore specific surface area. Platinated samples showed sufficient values of electrochemically active platinum surface area (12‒35 m2 g\(_{{{\text{Pt}}}}^{{ - 1}}\)) and were tested as cathodes for high temperature polymer electrolyte membrane fuel cell. An increase in power density was found when a part of electrode micropore specific surface area was decreasing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Zhang, PEM Fuel Cell Electrocatalyst and Catalyst Layers (Springer, London, 2008).CrossRef J. Zhang, PEM Fuel Cell Electrocatalyst and Catalyst Layers (Springer, London, 2008).CrossRef
2.
go back to reference Q. Li, D. Aili, H. A. Hjuler, and J. O. Jensen, High Temperature Polymer Electrolyte Membrane Fuel Cells, Approaches, Status and Perspectives (Springer, Cham; Heidelberg; New York; Dordrecht; London, 2016).CrossRef Q. Li, D. Aili, H. A. Hjuler, and J. O. Jensen, High Temperature Polymer Electrolyte Membrane Fuel Cells, Approaches, Status and Perspectives (Springer, Cham; Heidelberg; New York; Dordrecht; London, 2016).CrossRef
3.
go back to reference Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher, Appl. Energy 88, 981 (2011).CrossRef Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher, Appl. Energy 88, 981 (2011).CrossRef
4.
go back to reference R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J. E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishukata, Z. Siroma, Y. Uchimoto, K. Yasuda, K. Kimijima, and N. Iwashita, Chem. Rev. 107, 3904 (2007).CrossRefPubMed R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J. E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishukata, Z. Siroma, Y. Uchimoto, K. Yasuda, K. Kimijima, and N. Iwashita, Chem. Rev. 107, 3904 (2007).CrossRefPubMed
6.
go back to reference S. S. Araya, F. Zhou, V. Liso, S. L. Sahlin, J. R. Vang, S. Thomas, X. Gao, C. Jeppesen, and S. K. Kaer, Int. J. Hydrogen Energy 41, 21310 (2016).CrossRef S. S. Araya, F. Zhou, V. Liso, S. L. Sahlin, J. R. Vang, S. Thomas, X. Gao, C. Jeppesen, and S. K. Kaer, Int. J. Hydrogen Energy 41, 21310 (2016).CrossRef
8.
go back to reference A. Chandan, M. Hattenberger, A. El-kharouf, S. Du, A. Dhir, V. Self, B. G. Pollet, A. Ingram, and W. Bujalski, J. Power Sources 231, 264 (2013).CrossRef A. Chandan, M. Hattenberger, A. El-kharouf, S. Du, A. Dhir, V. Self, B. G. Pollet, A. Ingram, and W. Bujalski, J. Power Sources 231, 264 (2013).CrossRef
12.
14.
go back to reference Y. Jeon, J.-I. Park, J. Ok, A. Dorjgotov, H.-J. Kim, H. Kim, C. Lee, S. Park, and Y.-G. Shul, Int. J. Hydrogen Energy 41, 6864 (2016).CrossRef Y. Jeon, J.-I. Park, J. Ok, A. Dorjgotov, H.-J. Kim, H. Kim, C. Lee, S. Park, and Y.-G. Shul, Int. J. Hydrogen Energy 41, 6864 (2016).CrossRef
15.
go back to reference S. Chan, J. Jankovic, D. Susac, M. S. Saha, M. Tam, H. Yang, and F. Ko, J. Mater. Sci. 53, 11633 (2018).CrossRef S. Chan, J. Jankovic, D. Susac, M. S. Saha, M. Tam, H. Yang, and F. Ko, J. Mater. Sci. 53, 11633 (2018).CrossRef
17.
go back to reference T. Kh. Tenchurin, S. N. Krasheninnikov, A. S. Orekhov, S. N. Chvalun, A. D. Shepelev, S. I. Belousov, and A. I. Gulyaev, Fibre Chem. 46, 151 (2014).CrossRef T. Kh. Tenchurin, S. N. Krasheninnikov, A. S. Orekhov, S. N. Chvalun, A. D. Shepelev, S. I. Belousov, and A. I. Gulyaev, Fibre Chem. 46, 151 (2014).CrossRef
18.
go back to reference M. Kopec, M. Lamson, R. Yuan, C. Tang, M. Kruk, M. Zhong, K. Matyjaszewski, and T. Kowalewski, Prog. Polym. Sci. 92, 89 (2019).CrossRef M. Kopec, M. Lamson, R. Yuan, C. Tang, M. Kruk, M. Zhong, K. Matyjaszewski, and T. Kowalewski, Prog. Polym. Sci. 92, 89 (2019).CrossRef
19.
20.
21.
go back to reference B. Zhang, F. Kang, J.-M. Tarascon, and J.-K. Kim, Prog. Mater. Sci 76, 319 (2016).CrossRef B. Zhang, F. Kang, J.-M. Tarascon, and J.-K. Kim, Prog. Mater. Sci 76, 319 (2016).CrossRef
22.
go back to reference I. I. Ponomarev, K. M. Skupov, D. Yu. Razorenov, V. G. Zhigalina, O. M. Zhigalina, Iv. I. Ponomarev, Yu. A. Volkova, M. S. Kondratenko, S. S. Bukalov, and E. S. Davydova, Russ. J. Electrochem. 52, 735 (2016).CrossRef I. I. Ponomarev, K. M. Skupov, D. Yu. Razorenov, V. G. Zhigalina, O. M. Zhigalina, Iv. I. Ponomarev, Yu. A. Volkova, M. S. Kondratenko, S. S. Bukalov, and E. S. Davydova, Russ. J. Electrochem. 52, 735 (2016).CrossRef
23.
go back to reference V. G. Zhigalina, O. M. Zhigalina, I. I. Ponomarev, K. M. Skupov, D. Y. Razorenov, I. I. Ponomarev, N. A. Kiselev, and G. Leitinger, Cryst. Eng. Commun. 19, 3792 (2017).CrossRef V. G. Zhigalina, O. M. Zhigalina, I. I. Ponomarev, K. M. Skupov, D. Y. Razorenov, I. I. Ponomarev, N. A. Kiselev, and G. Leitinger, Cryst. Eng. Commun. 19, 3792 (2017).CrossRef
24.
go back to reference K. M. Skupov, I. I. Ponomarev, D. Yu. Razorenov, V. G. Zhigalina, O. M. Zhigalina, Iv. I. Ponomarev, Yu. A. Volkova, Yu. M. Volfkovich, and V. E. Sosenkin, Russ. J. Electrochem. 53, 728 (2017).CrossRef K. M. Skupov, I. I. Ponomarev, D. Yu. Razorenov, V. G. Zhigalina, O. M. Zhigalina, Iv. I. Ponomarev, Yu. A. Volkova, Yu. M. Volfkovich, and V. E. Sosenkin, Russ. J. Electrochem. 53, 728 (2017).CrossRef
25.
go back to reference K. M. Skupov, I. I. Ponomarev, D. Y. Razorenov, V. G. Zhigalina, O. M. Zhigalina, I. I. Ponomarev, Y. A. Volkova, Y. M. Volfkovich, and V. E. Sosenkin, Macromol. Symp. 375, 1600188 (2017).CrossRef K. M. Skupov, I. I. Ponomarev, D. Y. Razorenov, V. G. Zhigalina, O. M. Zhigalina, I. I. Ponomarev, Y. A. Volkova, Y. M. Volfkovich, and V. E. Sosenkin, Macromol. Symp. 375, 1600188 (2017).CrossRef
26.
go back to reference I. I. Ponomarev, K. M. Skupov, Iv. I. Ponomarev, D. Yu. Razorenov, Yu. A. Volkova, V. G. Basu, O. M. Zhigalina, S. S. Bukalov, Yu. M. Volfkovich, and V. E. Sosenkin, Russ. J. Electrochem. 55, 552 (2019).CrossRef I. I. Ponomarev, K. M. Skupov, Iv. I. Ponomarev, D. Yu. Razorenov, Yu. A. Volkova, V. G. Basu, O. M. Zhigalina, S. S. Bukalov, Yu. M. Volfkovich, and V. E. Sosenkin, Russ. J. Electrochem. 55, 552 (2019).CrossRef
27.
go back to reference I. I. Ponomarev, K. M. Skupov, A. V. Naumkin, V. G. Basu, O. M. Zhigalina, D. Y. Razorenov, Iv. I. Ponomarev, and Yu. A. Volkova, RSC Adv. 9, 257 (2019).CrossRef I. I. Ponomarev, K. M. Skupov, A. V. Naumkin, V. G. Basu, O. M. Zhigalina, D. Y. Razorenov, Iv. I. Ponomarev, and Yu. A. Volkova, RSC Adv. 9, 257 (2019).CrossRef
28.
go back to reference M. S. Kondratenko, I. I. Ponomarev, M. O. Gallyamov, D. Y. Razorenov, Y. A. Volkova, E. P. Kharitonova, and A. R. Khokhlov, Beilstein J. Nanotechnol. 4, 481 (2013).CrossRefPubMedPubMedCentral M. S. Kondratenko, I. I. Ponomarev, M. O. Gallyamov, D. Y. Razorenov, Y. A. Volkova, E. P. Kharitonova, and A. R. Khokhlov, Beilstein J. Nanotechnol. 4, 481 (2013).CrossRefPubMedPubMedCentral
29.
go back to reference Y. M. Vol’fkovich, Iv. I. Ponomarev, V. E. Sosenkin, I. I. Ponomarev, K. M. Skupov, D. Y. Razorenov, Prot. Met. Phys. Chem. Surf. 55, 195 (2019).CrossRef Y. M. Vol’fkovich, Iv. I. Ponomarev, V. E. Sosenkin, I. I. Ponomarev, K. M. Skupov, D. Y. Razorenov, Prot. Met. Phys. Chem. Surf. 55, 195 (2019).CrossRef
30.
32.
go back to reference Yu. M. Volfkovich, A. V. Sakars, and A. A. Volinsky, Int. J. Nanotechnol. 2, 292 (2005).CrossRef Yu. M. Volfkovich, A. V. Sakars, and A. A. Volinsky, Int. J. Nanotechnol. 2, 292 (2005).CrossRef
33.
go back to reference Yu. M. Volfkovich, A. N. Filippov, and V. S. Bagotsky, Structural Properties of Porous Materials and Powders Used in Different Fields of Science and Technology (Springer, London, 2014).CrossRef Yu. M. Volfkovich, A. N. Filippov, and V. S. Bagotsky, Structural Properties of Porous Materials and Powders Used in Different Fields of Science and Technology (Springer, London, 2014).CrossRef
34.
go back to reference J. Rouquerol, G. Baron, R. Denoyel, H. Giesche, J. Groen, P. Klobes, P. Levitz, A. V. Neimark, S. Rigby, R. Skudas, K. Sing, M. Thommes, and K. Unger, Pure Appl. Chem. 84, 107 (2011).CrossRef J. Rouquerol, G. Baron, R. Denoyel, H. Giesche, J. Groen, P. Klobes, P. Levitz, A. V. Neimark, S. Rigby, R. Skudas, K. Sing, M. Thommes, and K. Unger, Pure Appl. Chem. 84, 107 (2011).CrossRef
35.
36.
37.
go back to reference W. Vielstich, H. A. Gasteiger, and H. Yokokawa, in Handbook of Fuel Cells, Fundamentals, Technology and Applications (Wiley, Chichester, 2009), Vol. 5. W. Vielstich, H. A. Gasteiger, and H. Yokokawa, in Handbook of Fuel Cells, Fundamentals, Technology and Applications (Wiley, Chichester, 2009), Vol. 5.
39.
go back to reference A. Lasia, “Electrochemical Impedance Spectroscopy and Its Applications,” in Modern Aspects of Electrochemistry, Ed. by B. E. Conway, J. Bockris, and R. E. White (Kluwer Academic/Plenum Publ., New York, 1999). A. Lasia, “Electrochemical Impedance Spectroscopy and Its Applications,” in Modern Aspects of Electrochemistry, Ed. by B. E. Conway, J. Bockris, and R. E. White (Kluwer Academic/Plenum Publ., New York, 1999).
40.
41.
go back to reference K. M. Skupov, J. Hobbs, and J. P. Claverie, Prog. Org. Coat. 65, 314 (2009).CrossRef K. M. Skupov, J. Hobbs, and J. P. Claverie, Prog. Org. Coat. 65, 314 (2009).CrossRef
42.
43.
go back to reference J. Halter, T. Gloor, B. Amoroso, T. J. Schmidt, and F. N. Buchi, Phys. Chem. Chem. Phys. 21, 13126 (2019).CrossRefPubMed J. Halter, T. Gloor, B. Amoroso, T. J. Schmidt, and F. N. Buchi, Phys. Chem. Chem. Phys. 21, 13126 (2019).CrossRefPubMed
Metadata
Title
The Effect of the Stabilization and Carbonization Temperatures on the Properties of Microporous Carbon Nanofiber Cathodes for Fuel Cells on Polybenzimidazole Membrane
Authors
K. M. Skupov
I. I. Ponomarev
Yu. M. Vol’fkovich
A. D. Modestov
Iv. I. Ponomarev
Yu. A. Volkova
D. Yu. Razorenov
V. E. Sosenkin
Publication date
01-09-2020
Publisher
Pleiades Publishing
Published in
Polymer Science, Series C / Issue 2/2020
Print ISSN: 1811-2382
Electronic ISSN: 1555-614X
DOI
https://doi.org/10.1134/S1811238220020149

Other articles of this Issue 2/2020

Polymer Science, Series C 2/2020 Go to the issue

Premium Partners