Skip to main content
Top
Published in: Journal of Electroceramics 4/2021

09-08-2021

The effects of sintering temperature on structural, electrical, and magnetic properties of MgFe1.92Bi0.08O4

Authors: Niousha Varastegani, Amin Yourdkhani, S. A. Seyed Ebrahimi, Aurelian Rotaru

Published in: Journal of Electroceramics | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this article, MgFe1.92Bi0.08O4 ceramics were prepared by the solid-state synthesis method followed by sintering at 1000, 1050, 1100, and 1150 °C. The effects of sintering temperature on structural, electrical, and magnetic properties were systematically investigated. The results showed that by increasing the sintering temperature, the lattice parameter was increased from 8.376 to 8.405 Å, the relative density was improved up to 97.1 %, the average grain size was increased from 1.92 to 4.12 μm, the d.c conductivity was increased from 38.4 to 5.8 MΩ.cm, the saturation magnetization was increased from 15.9 to 20.2 emu/g, and the coercive field was increased from 9.7 to 6.7 Oe. According to Maxwell and Wagner’s two-layer model, the dielectric behavior and AC conductivity of the samples were explained based on the space charge polarization. The sample sintered at 1050 °C revealed the optimum dielectric properties with a 0.016 dielectric loss and a 24.4 dielectric constant at 10 MHz. Further increasing the sintering temperature resulted in increasing the dielectric constant and dielectric loss up to 33.1, 0.156, respectively, due to the increased thermal activation of electron hopping between Fe2+ and Fe3+ ions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S.Y. Mulushoa et al., Synthesis of spinel MgFe2O4 ferrite material and studying its structural and morphological properties using solid state method. Chem. Sci. 6(4), 653–661 (2017) S.Y. Mulushoa et al., Synthesis of spinel MgFe2O4 ferrite material and studying its structural and morphological properties using solid state method. Chem. Sci. 6(4), 653–661 (2017)
2.
go back to reference W.C. ALLEN, Temperature dependence of properties of magnesium ferrite. J. Am. Ceram. Soc. 49(5), 257–260 (1966)CrossRef W.C. ALLEN, Temperature dependence of properties of magnesium ferrite. J. Am. Ceram. Soc. 49(5), 257–260 (1966)CrossRef
3.
go back to reference S.K. Gore et al., The structural and magnetic properties of dual phase cobalt ferrite. Sci. Rep. 7(1), 1–9 (2017)CrossRef S.K. Gore et al., The structural and magnetic properties of dual phase cobalt ferrite. Sci. Rep. 7(1), 1–9 (2017)CrossRef
4.
go back to reference G. Gan et al., Influence of microstructure on magnetic and dielectric performance of Bi2O3-doped MgCd ferrites for high frequency antennas. Ceram. Int. 45(9), 12035–12040 (2019)CrossRef G. Gan et al., Influence of microstructure on magnetic and dielectric performance of Bi2O3-doped MgCd ferrites for high frequency antennas. Ceram. Int. 45(9), 12035–12040 (2019)CrossRef
5.
go back to reference S.M. Hoque et al., Study of the bulk magnetic and electrical properties of MgFe2O4 synthesized by chemical method. Mater. Sci. Appl. 2(11), 1564 (2011) S.M. Hoque et al., Study of the bulk magnetic and electrical properties of MgFe2O4 synthesized by chemical method. Mater. Sci. Appl. 2(11), 1564 (2011)
6.
go back to reference N. Varastegani et al., Varistor and electrical properties of MgO.(Fe2O3) 1 – x (Bi2O3) x ceramics. J. Eur. Ceram. Soc. 40(4), 1325–1329 (2020)CrossRef N. Varastegani et al., Varistor and electrical properties of MgO.(Fe2O3) 1 – x (Bi2O3) x ceramics. J. Eur. Ceram. Soc. 40(4), 1325–1329 (2020)CrossRef
7.
go back to reference D.L. Sekulić et al., Impedance spectroscopy of nanocrystalline MgFe2O4 and MnFe2O4 ferrite ceramics: Effect of grain boundaries on the electrical properties. Sci. Sintering. 48(1) (2016) D.L. Sekulić et al., Impedance spectroscopy of nanocrystalline MgFe2O4 and MnFe2O4 ferrite ceramics: Effect of grain boundaries on the electrical properties. Sci. Sintering. 48(1) (2016)
8.
go back to reference A. Yaseen, T.H. Mubarak, S.M.A. Ridha, An effect of calcination temperatures on the characteristics of the MgFe2O4 nano ferrite prepared using auto combustion method. J. Biomol. Tech. 9(4), 9 (2018) A. Yaseen, T.H. Mubarak, S.M.A. Ridha, An effect of calcination temperatures on the characteristics of the MgFe2O4 nano ferrite prepared using auto combustion method. J. Biomol. Tech. 9(4), 9 (2018)
9.
go back to reference M. Gateshki et al., Structure of nanocrystalline MgFe2O4 from X-ray diffraction, Rietveld and atomic pair distribution function analysis. J. Appl. Crystallogr. 38(5), 772–779 (2005)CrossRef M. Gateshki et al., Structure of nanocrystalline MgFe2O4 from X-ray diffraction, Rietveld and atomic pair distribution function analysis. J. Appl. Crystallogr. 38(5), 772–779 (2005)CrossRef
10.
go back to reference J. Govha et al., Synthesis of Nano-magnesium ferrite spinel and its characterization. Int. J. Eng. Res. Technol. 3, 1420–1422 (2014) J. Govha et al., Synthesis of Nano-magnesium ferrite spinel and its characterization. Int. J. Eng. Res. Technol. 3, 1420–1422 (2014)
11.
go back to reference K. Rane, V. Verenkar, P. Sawant, Dielectric behaviour of MgFe 2 O 4 prepared from chemically beneficiated iron ore rejects. Bull. Mater. Sci. 24(3), 323–330 (2001)CrossRef K. Rane, V. Verenkar, P. Sawant, Dielectric behaviour of MgFe 2 O 4 prepared from chemically beneficiated iron ore rejects. Bull. Mater. Sci. 24(3), 323–330 (2001)CrossRef
12.
go back to reference A. Farea et al., Influence of frequency, temperature and composition on electrical properties of polycrystalline Co0. 5CdxFe2. 5 – xO4 ferrites. Physica B 403(4), 684–701 (2008)CrossRef A. Farea et al., Influence of frequency, temperature and composition on electrical properties of polycrystalline Co0. 5CdxFe2. 5 – xO4 ferrites. Physica B 403(4), 684–701 (2008)CrossRef
13.
go back to reference G. Gan et al., Low loss, enhanced magneto-dielectric properties of Bi2O3 doped Mg-Cd ferrites for high frequency antennas. J. Alloy. Compd. 735, 2634–2639 (2018)CrossRef G. Gan et al., Low loss, enhanced magneto-dielectric properties of Bi2O3 doped Mg-Cd ferrites for high frequency antennas. J. Alloy. Compd. 735, 2634–2639 (2018)CrossRef
14.
go back to reference A. Abdeen, Dielectric behaviour in Ni–Zn ferrites. J. Magn. Magn. Mater. 192(1), 121–129 (1999)CrossRef A. Abdeen, Dielectric behaviour in Ni–Zn ferrites. J. Magn. Magn. Mater. 192(1), 121–129 (1999)CrossRef
15.
go back to reference V. Khot et al., Formation, microstructure and magnetic properties of nanocrystalline MgFe2O4. Mater. Chem. Phys. 132(2–3), 782–787 (2012)CrossRef V. Khot et al., Formation, microstructure and magnetic properties of nanocrystalline MgFe2O4. Mater. Chem. Phys. 132(2–3), 782–787 (2012)CrossRef
16.
go back to reference K. Maex et al., Low dielectric constant materials for microelectronics. J. Appl. Phys. 93(11), 8793–8841 (2003)CrossRef K. Maex et al., Low dielectric constant materials for microelectronics. J. Appl. Phys. 93(11), 8793–8841 (2003)CrossRef
17.
go back to reference J. Ekin, Experimental techniques for low-temperature measurements: Cryostat design, material properties and superconductor critical-current testing (Oxford University Press, Oxford, 2006) J. Ekin, Experimental techniques for low-temperature measurements: Cryostat design, material properties and superconductor critical-current testing (Oxford University Press, Oxford, 2006)
18.
go back to reference K.C. Chan et al., Ni1 – xCoxFe1. 98O4 ferrite ceramics with promising magneto-dielectric properties. J. Am. Ceram. Soc. 91(12), 3937–3942 (2008)CrossRef K.C. Chan et al., Ni1 – xCoxFe1. 98O4 ferrite ceramics with promising magneto-dielectric properties. J. Am. Ceram. Soc. 91(12), 3937–3942 (2008)CrossRef
19.
go back to reference F.L. Zabotto et al., Influence of the sintering temperature on the magnetic and electric properties of NiFe2O4 ferrites. Mater. Res. 15(3), 428–433 (2012)CrossRef F.L. Zabotto et al., Influence of the sintering temperature on the magnetic and electric properties of NiFe2O4 ferrites. Mater. Res. 15(3), 428–433 (2012)CrossRef
20.
go back to reference J. Kim, T. Kimura, T. Yamaguchi, Effect of bismuth of oxide content on the sintering of zinc oxide. J. Am. Ceram. Soc. 72(8), 1541–1544 (1989)CrossRef J. Kim, T. Kimura, T. Yamaguchi, Effect of bismuth of oxide content on the sintering of zinc oxide. J. Am. Ceram. Soc. 72(8), 1541–1544 (1989)CrossRef
21.
go back to reference M. Rozman, M. Drofenik, Sintering of nanosized MnZn ferrite powders. J. Am. Ceram. Soc. 81(7), 1757–1764 (1998)CrossRef M. Rozman, M. Drofenik, Sintering of nanosized MnZn ferrite powders. J. Am. Ceram. Soc. 81(7), 1757–1764 (1998)CrossRef
22.
go back to reference M. Drofenik, A. Znidarsic, D. Makovec, Influence of the addition of Bi2O3 on the grain growth and magnetic permeability of MnZn ferrites. J. Am. Ceram. Soc. 81(11), 2841–2848 (1998)CrossRef M. Drofenik, A. Znidarsic, D. Makovec, Influence of the addition of Bi2O3 on the grain growth and magnetic permeability of MnZn ferrites. J. Am. Ceram. Soc. 81(11), 2841–2848 (1998)CrossRef
23.
go back to reference L. Kong et al., Electrical and magnetic properties of magnesium ferrite ceramics doped with Bi2O3. Acta Mater. 55(19), 6561–6572 (2007)CrossRef L. Kong et al., Electrical and magnetic properties of magnesium ferrite ceramics doped with Bi2O3. Acta Mater. 55(19), 6561–6572 (2007)CrossRef
24.
go back to reference C. Liu et al., Effects of sintering temperature and Bi2O3 content on microstructure and magnetic properties of LiZn ferrites. J. Magn. Magn. Mater. 320(7), 1335–1339 (2008)CrossRef C. Liu et al., Effects of sintering temperature and Bi2O3 content on microstructure and magnetic properties of LiZn ferrites. J. Magn. Magn. Mater. 320(7), 1335–1339 (2008)CrossRef
25.
go back to reference H.I. Hsiang, J.F. Chueh, Bi2O3 addition effects on the sintering mechanism, magnetic properties, and DC superposition behavior of NiCuZn ferrites. Int. J. Appl. Ceram. Technol. 12(5), 1008–1015 (2015)CrossRef H.I. Hsiang, J.F. Chueh, Bi2O3 addition effects on the sintering mechanism, magnetic properties, and DC superposition behavior of NiCuZn ferrites. Int. J. Appl. Ceram. Technol. 12(5), 1008–1015 (2015)CrossRef
26.
go back to reference M.T. Sebastian, Dielectric materials for wireless communication (Elsevier, Amsterdam, 2010) M.T. Sebastian, Dielectric materials for wireless communication (Elsevier, Amsterdam, 2010)
27.
go back to reference C. Venkataraju, G. Satishkumar, K. Sivakumar, Effect of bismuth on the properties of Mn ferrite nanoparticles prepared by co-precipitation method. J. Mater. Sci.: Mater. Electron. 23(6), 1163–1168 (2012) C. Venkataraju, G. Satishkumar, K. Sivakumar, Effect of bismuth on the properties of Mn ferrite nanoparticles prepared by co-precipitation method. J. Mater. Sci.: Mater. Electron. 23(6), 1163–1168 (2012)
28.
go back to reference K. Sun et al., Grain growth, densification and magnetic properties of NiZn ferrites with Bi2O3 additive. J. Phys. D: Appl. Phys. 41(23), 235002 (2008)CrossRef K. Sun et al., Grain growth, densification and magnetic properties of NiZn ferrites with Bi2O3 additive. J. Phys. D: Appl. Phys. 41(23), 235002 (2008)CrossRef
29.
go back to reference R. Guo et al., Effects of Bi2O3 on FMR linewidth and microwave dielectric properties of LiZnMn ferrite. J. Alloys Compd. 589, 1–4 (2014)CrossRef R. Guo et al., Effects of Bi2O3 on FMR linewidth and microwave dielectric properties of LiZnMn ferrite. J. Alloys Compd. 589, 1–4 (2014)CrossRef
30.
go back to reference L. Jia et al., Microstructures and magnetic properties of Bi-substituted NiCuZn ferrite. J. Appl. Phys. 111(7), 07A326 (2012)CrossRef L. Jia et al., Microstructures and magnetic properties of Bi-substituted NiCuZn ferrite. J. Appl. Phys. 111(7), 07A326 (2012)CrossRef
31.
go back to reference K.A. Nekouee et al., The effects of bismuth oxide on microstructures and magnetic properties of Mn-Mg-Al ferrites. J. Electron. Mater. 47(7), 4078–4084 (2018)CrossRef K.A. Nekouee et al., The effects of bismuth oxide on microstructures and magnetic properties of Mn-Mg-Al ferrites. J. Electron. Mater. 47(7), 4078–4084 (2018)CrossRef
32.
go back to reference K. Nalwa, A. Garg, A. Upadhyaya, Effect of samarium doping on the properties of solid-state synthesized multiferroic bismuth ferrite. Mater. Lett. 62(6–7), 878–881 (2008)CrossRef K. Nalwa, A. Garg, A. Upadhyaya, Effect of samarium doping on the properties of solid-state synthesized multiferroic bismuth ferrite. Mater. Lett. 62(6–7), 878–881 (2008)CrossRef
33.
go back to reference JGd.M. Furtado et al., Microstructural evaluation of rare-earth-zinc oxide-based varistor ceramics. Mater. Res. 8(4), 425–429 (2005)CrossRef JGd.M. Furtado et al., Microstructural evaluation of rare-earth-zinc oxide-based varistor ceramics. Mater. Res. 8(4), 425–429 (2005)CrossRef
34.
go back to reference P.A. Sossi, B. Fegley Jr., Thermodynamics of element volatility and its application to planetary processes. Rev. Mineral. Geochem. 84(1), 393–459 (2018)CrossRef P.A. Sossi, B. Fegley Jr., Thermodynamics of element volatility and its application to planetary processes. Rev. Mineral. Geochem. 84(1), 393–459 (2018)CrossRef
35.
go back to reference K.G. Brooks, Y. Berta, V.R. Amarakoon, Effect of Bi2O3 on impurity ion distribution and electrical resistivity of Li-Zn ferrites. J. Am. Ceram. Soc. 75(11), 3065–3069 (1992)CrossRef K.G. Brooks, Y. Berta, V.R. Amarakoon, Effect of Bi2O3 on impurity ion distribution and electrical resistivity of Li-Zn ferrites. J. Am. Ceram. Soc. 75(11), 3065–3069 (1992)CrossRef
36.
go back to reference Y. Ni, Magnetic sensors based on topological insulators (2016) Y. Ni, Magnetic sensors based on topological insulators (2016)
37.
go back to reference F. Tyholdt et al., Synthesis of oriented BiFeO 3 thin films by chemical solution deposition: phase, texture, and microstructural development. J. Mater. Res. 20(8), 2127–2139 (2005) F. Tyholdt et al., Synthesis of oriented BiFeO 3 thin films by chemical solution deposition: phase, texture, and microstructural development. J. Mater. Res. 20(8), 2127–2139 (2005)
38.
go back to reference E.I. Speranskaya et al., The phase diagram of the system bismuth oxide-ferric oxide. Bull. Acad. Sci. USSR, Division of chemical science. 14(5), 873–874 (1965) E.I. Speranskaya et al., The phase diagram of the system bismuth oxide-ferric oxide. Bull. Acad. Sci. USSR, Division of chemical science. 14(5), 873–874 (1965)
39.
go back to reference G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21(24), 2463–2485 (2009)CrossRef G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21(24), 2463–2485 (2009)CrossRef
40.
go back to reference R.M. Rosnan et al., The effect of sintering temperature on the structural and magnetic properties of Ni-Mg substituted CoFe2O4 nanoparticles. Mater. Sci. Forum. Trans Tech Publ (2016) R.M. Rosnan et al., The effect of sintering temperature on the structural and magnetic properties of Ni-Mg substituted CoFe2O4 nanoparticles. Mater. Sci. Forum. Trans Tech Publ (2016)
41.
go back to reference N. Kouki et al., Microstructural analysis, magnetic properties, magnetocaloric effect, and critical behaviors of Ni 0.6 Cd 0.2 Cu 0.2 Fe 2 O 4 ferrites prepared using the sol–gel method under different sintering temperatures. RSC Adv. 9(4), 1990–2001 (2019)CrossRef N. Kouki et al., Microstructural analysis, magnetic properties, magnetocaloric effect, and critical behaviors of Ni 0.6 Cd 0.2 Cu 0.2 Fe 2 O 4 ferrites prepared using the sol–gel method under different sintering temperatures. RSC Adv. 9(4), 1990–2001 (2019)CrossRef
42.
go back to reference S. Nasrin et al., Synthesis and deciphering the effects of sintering temperature on structural, elastic, dielectric, electric and magnetic properties of magnetic Ni 0.25 Cu 0.13 Zn 0.62 Fe 2 O 4 ceramics. J. Mater. Sci.: Mater. Electron. 30(11), 10722–10741 (2019) S. Nasrin et al., Synthesis and deciphering the effects of sintering temperature on structural, elastic, dielectric, electric and magnetic properties of magnetic Ni 0.25 Cu 0.13 Zn 0.62 Fe 2 O 4 ceramics. J. Mater. Sci.: Mater. Electron. 30(11), 10722–10741 (2019)
43.
go back to reference S.K. Gore et al., Influence of Bi 3+-doping on the magnetic and Mössbauer properties of spinel cobalt ferrite. Dalton Trans. 44(14), 6384–6390 (2015)CrossRef S.K. Gore et al., Influence of Bi 3+-doping on the magnetic and Mössbauer properties of spinel cobalt ferrite. Dalton Trans. 44(14), 6384–6390 (2015)CrossRef
44.
go back to reference S. Maitra, J. Roy, Effect of TiO2 and V2O5 additives on chemical mullite. Adv. Ceram. Sci. Eng. (ACSE). 2(3) (2013) S. Maitra, J. Roy, Effect of TiO2 and V2O5 additives on chemical mullite. Adv. Ceram. Sci. Eng. (ACSE). 2(3) (2013)
45.
go back to reference D. Holz et al., Fundamentals of the densification mechanism of NiCuZn-ferrites. J. Jpn. Soc. Powder Powder Metall. 61(S1), S75–S77 (2014)CrossRef D. Holz et al., Fundamentals of the densification mechanism of NiCuZn-ferrites. J. Jpn. Soc. Powder Powder Metall. 61(S1), S75–S77 (2014)CrossRef
46.
go back to reference J.E. ten Elshof, M. Lankhorst, H.J. Bouwmeester, Oxygen exchange and diffusion coefficients of strontium-doped lanthanum ferrites by electrical conductivity relaxation. J. Electrochem. Soc. 144(3), 1060 (1997)CrossRef J.E. ten Elshof, M. Lankhorst, H.J. Bouwmeester, Oxygen exchange and diffusion coefficients of strontium-doped lanthanum ferrites by electrical conductivity relaxation. J. Electrochem. Soc. 144(3), 1060 (1997)CrossRef
47.
go back to reference J. Mürbe, J. Töpfer, Ni-Cu-Zn Ferrites for low temperature firing: II. Effects of powder morphology and Bi 2 O 3 addition on microstructure and permeability. J. Electroceram. 16(3), 199–205 (2006)CrossRef J. Mürbe, J. Töpfer, Ni-Cu-Zn Ferrites for low temperature firing: II. Effects of powder morphology and Bi 2 O 3 addition on microstructure and permeability. J. Electroceram. 16(3), 199–205 (2006)CrossRef
48.
go back to reference J. Jeong, Y.H. Han, B.C. Moon, Effects of Bi 2 O 3 addition on the microstructure and electromagnetic properties of NiCuZn ferrites. J. Mater. Sci.: Mater. Electron. 15(5), 303–306 (2004) J. Jeong, Y.H. Han, B.C. Moon, Effects of Bi 2 O 3 addition on the microstructure and electromagnetic properties of NiCuZn ferrites. J. Mater. Sci.: Mater. Electron. 15(5), 303–306 (2004)
49.
go back to reference S.A. Lamonova, A.P. Surzhikov, E.N. Lysenko, Electrical properties of lithium ferrite with addition of ZrO2. in IOP Conference Series: Materials Science and Engineering (IOP Publishing, Bristol, 2016) S.A. Lamonova, A.P. Surzhikov, E.N. Lysenko, Electrical properties of lithium ferrite with addition of ZrO2. in IOP Conference Series: Materials Science and Engineering (IOP Publishing, Bristol, 2016)
50.
go back to reference S. Mazen, A. El, Taher, The conduction mechanism of Cu–Ge ferrite. Solid State Commun. 150(35–36), 1719–1724 (2010)CrossRef S. Mazen, A. El, Taher, The conduction mechanism of Cu–Ge ferrite. Solid State Commun. 150(35–36), 1719–1724 (2010)CrossRef
51.
go back to reference K. Funke, Jump relaxation in solid electrolytes. Prog. Solid State Chem. 22(2), 111–195 (1993)CrossRef K. Funke, Jump relaxation in solid electrolytes. Prog. Solid State Chem. 22(2), 111–195 (1993)CrossRef
52.
go back to reference C. Sujatha et al., Effect of sintering temperature on electromagnetic properties of NiCuZn ferrite. Ceram. Int. 39(3), 3077–3086 (2013)CrossRef C. Sujatha et al., Effect of sintering temperature on electromagnetic properties of NiCuZn ferrite. Ceram. Int. 39(3), 3077–3086 (2013)CrossRef
53.
go back to reference S. Mehmood, F. Zahra, M. Rehman. Effect of sintering on structural and electrical properties of co-precipitated Mn-Zn ferrites. in IOP Conference Series: Materials Science and Engineering (IOP Publishing, Bristol, 2016) S. Mehmood, F. Zahra, M. Rehman. Effect of sintering on structural and electrical properties of co-precipitated Mn-Zn ferrites. in IOP Conference Series: Materials Science and Engineering (IOP Publishing, Bristol, 2016)
54.
go back to reference J. Wong, Sintering and varistor characteristics of ZnO-Bi2O3 ceramics. J. Appl. Phys. 51(8), 4453–4459 (1980)CrossRef J. Wong, Sintering and varistor characteristics of ZnO-Bi2O3 ceramics. J. Appl. Phys. 51(8), 4453–4459 (1980)CrossRef
55.
go back to reference D.L. Sekulic et al., Temperature-dependent complex impedance, electrical conductivity and dielectric studies of M Fe 2 O 4 (M = Mn, Ni, Zn) ferrites prepared by sintering of mechanochemical synthesized nanopowders. J. Mater. Sci.: Mater. Electron. 26(3), 1291–1303 (2015) D.L. Sekulic et al., Temperature-dependent complex impedance, electrical conductivity and dielectric studies of M Fe 2 O 4 (M = Mn, Ni, Zn) ferrites prepared by sintering of mechanochemical synthesized nanopowders. J. Mater. Sci.: Mater. Electron. 26(3), 1291–1303 (2015)
56.
go back to reference A. Beitollahi, M. Hoor, Effect of sintering temperature on the microstructure and high-frequency magnetic properties of Ni 0.467 Zn 0.07 Co 0.015 Fe 0.511 O 4 ferrite. J. Mater. Sci.: Mater. Electron. 14(8), 477–482 (2003) A. Beitollahi, M. Hoor, Effect of sintering temperature on the microstructure and high-frequency magnetic properties of Ni 0.467 Zn 0.07 Co 0.015 Fe 0.511 O 4 ferrite. J. Mater. Sci.: Mater. Electron. 14(8), 477–482 (2003)
57.
go back to reference D. Arcos et al., Grain boundary impedance of doped Mn–Zn ferrites. J. Mater. Res. 14(3), 861–865 (1999)CrossRef D. Arcos et al., Grain boundary impedance of doped Mn–Zn ferrites. J. Mater. Res. 14(3), 861–865 (1999)CrossRef
58.
go back to reference J. Jose, M.A. Khadar, Role of grain boundaries on the electrical conductivity of nanophase zinc oxide. Mater. Sci. Eng. A 304, 810–813 (2001)CrossRef J. Jose, M.A. Khadar, Role of grain boundaries on the electrical conductivity of nanophase zinc oxide. Mater. Sci. Eng. A 304, 810–813 (2001)CrossRef
59.
go back to reference C. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83(1), 121 (1951)CrossRef C. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83(1), 121 (1951)CrossRef
60.
go back to reference S. Akhter et al., Structural, magnetic and electrical properties of Cu-Mg ferrites. J. Sci. Res. 6(2), 205–215 (2014)CrossRef S. Akhter et al., Structural, magnetic and electrical properties of Cu-Mg ferrites. J. Sci. Res. 6(2), 205–215 (2014)CrossRef
61.
go back to reference M. Gupta et al., Evidence of electron exchange between Fe2 + and Fe3 + ions on tetrahedral and octahedral sites in Fe2MoO4. J. Phys. C: Solid State Phys. 12(12), 2401 (1979)CrossRef M. Gupta et al., Evidence of electron exchange between Fe2 + and Fe3 + ions on tetrahedral and octahedral sites in Fe2MoO4. J. Phys. C: Solid State Phys. 12(12), 2401 (1979)CrossRef
62.
go back to reference A.K. Jonscher, Dielectric relaxation in solids. J. Phys. D: Appl. Phys. 32(14), R57 (1999)CrossRef A.K. Jonscher, Dielectric relaxation in solids. J. Phys. D: Appl. Phys. 32(14), R57 (1999)CrossRef
63.
go back to reference J.C. Maxwell, Electricity and magnetism, vol. 2 (Dover New York, 1954) J.C. Maxwell, Electricity and magnetism, vol. 2 (Dover New York, 1954)
64.
go back to reference W.A. Yager, The distribution of relaxation times in typical dielectrics. Physics 7(12), 434–450 (1936)CrossRef W.A. Yager, The distribution of relaxation times in typical dielectrics. Physics 7(12), 434–450 (1936)CrossRef
65.
go back to reference D. Ravinder, Electrical transport properties of cadmium substituted copper ferrites. Mater. Lett. 43(3), 129–138 (2000)CrossRef D. Ravinder, Electrical transport properties of cadmium substituted copper ferrites. Mater. Lett. 43(3), 129–138 (2000)CrossRef
66.
go back to reference N. Singh, A. Agarwal, S. Sanghi, Dielectric relaxation, conductivity behavior and magnetic properties of Mg substituted Zn–Li ferrites. Curr Appl. Phys. 11(3), 783–789 (2011)CrossRef N. Singh, A. Agarwal, S. Sanghi, Dielectric relaxation, conductivity behavior and magnetic properties of Mg substituted Zn–Li ferrites. Curr Appl. Phys. 11(3), 783–789 (2011)CrossRef
67.
go back to reference S. Fajardo et al., A critical review of the application of electrochemical techniques for studying corrosion of mg and mg alloys: Opportunities and challenges (Magnesium Alloys-Selected Issue, 2018) S. Fajardo et al., A critical review of the application of electrochemical techniques for studying corrosion of mg and mg alloys: Opportunities and challenges (Magnesium Alloys-Selected Issue, 2018)
68.
go back to reference L. Kong et al., Magneto-dielectric properties of Mg–Cu–Co ferrite ceramics: II. Electrical, dielectric, and magnetic properties. J. Am. Ceram. Soc. 90(7), 2104–2112 (2007)CrossRef L. Kong et al., Magneto-dielectric properties of Mg–Cu–Co ferrite ceramics: II. Electrical, dielectric, and magnetic properties. J. Am. Ceram. Soc. 90(7), 2104–2112 (2007)CrossRef
69.
go back to reference F. Pizzitutti, F. Bruni, Electrode and interfacial polarization in broadband dielectric spectroscopy measurements. Rev. Sci. Instrum. 72(5), 2502–2504 (2001)CrossRef F. Pizzitutti, F. Bruni, Electrode and interfacial polarization in broadband dielectric spectroscopy measurements. Rev. Sci. Instrum. 72(5), 2502–2504 (2001)CrossRef
70.
go back to reference L.T. Mei, H.I. Hsiang, W.H. Hsu, Varistor and magnetic properties of nickel copper zinc niobium ferrite doped with Bi 2 O 3. J. Am. Ceram. Soc. 97(12), 3918–3925 (2014)CrossRef L.T. Mei, H.I. Hsiang, W.H. Hsu, Varistor and magnetic properties of nickel copper zinc niobium ferrite doped with Bi 2 O 3. J. Am. Ceram. Soc. 97(12), 3918–3925 (2014)CrossRef
71.
go back to reference S. Misra, S. Ram, Magnetic, dielectric, and ferroelectric properties in Bi3+-substituted Li0. 35Zn0. 3Fe2. 35-xBixO4 (x = 0.1) nanocrystallites. Mater. Today Proc. 3(6), 2141–2145 (2016) S. Misra, S. Ram, Magnetic, dielectric, and ferroelectric properties in Bi3+-substituted Li0. 35Zn0. 3Fe2. 35-xBixO4 (x = 0.1) nanocrystallites. Mater. Today Proc. 3(6), 2141–2145 (2016)
72.
go back to reference S.I. Ahmad, S.A. Ansari, D.R. Kumar, Structural, morphological, magnetic properties and cation distribution of Ce and Sm co-substituted nano crystalline cobalt ferrite. Mater. Chem. Phys. 208, 248–257 (2018)CrossRef S.I. Ahmad, S.A. Ansari, D.R. Kumar, Structural, morphological, magnetic properties and cation distribution of Ce and Sm co-substituted nano crystalline cobalt ferrite. Mater. Chem. Phys. 208, 248–257 (2018)CrossRef
73.
go back to reference I. Ahmad et al., Study of cation distribution for Cu–Co nanoferrites synthesized by the sol–gel method. Ceram. Int. 39(6), 6735–6741 (2013)CrossRef I. Ahmad et al., Study of cation distribution for Cu–Co nanoferrites synthesized by the sol–gel method. Ceram. Int. 39(6), 6735–6741 (2013)CrossRef
74.
go back to reference N. Najmoddin et al., XRD cation distribution and magnetic properties of mesoporous Zn-substituted CuFe2O4. Ceram. Int. 40(2), 3619–3625 (2014)CrossRef N. Najmoddin et al., XRD cation distribution and magnetic properties of mesoporous Zn-substituted CuFe2O4. Ceram. Int. 40(2), 3619–3625 (2014)CrossRef
75.
go back to reference A. Goldman, Modern ferrite technology (Springer Science & Business Media, Berlin, 2006) A. Goldman, Modern ferrite technology (Springer Science & Business Media, Berlin, 2006)
76.
go back to reference S. Tafaroji et al., Effect of pre-sintering temperature and ball-milling on the conductivity of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3 – δ as a cathode for solid oxide fuel cells prepared by sol-gel thermolysis method. Materials Research Express 6(9), 095522 (2019)CrossRef S. Tafaroji et al., Effect of pre-sintering temperature and ball-milling on the conductivity of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3 – δ as a cathode for solid oxide fuel cells prepared by sol-gel thermolysis method. Materials Research Express 6(9), 095522 (2019)CrossRef
77.
go back to reference G. Singh, V. Tiwari, P. Gupta, Role of oxygen vacancies on relaxation and conduction behavior of KNbO 3 ceramic. J. Appl. Phys. 107(6), 064103 (2010)CrossRef G. Singh, V. Tiwari, P. Gupta, Role of oxygen vacancies on relaxation and conduction behavior of KNbO 3 ceramic. J. Appl. Phys. 107(6), 064103 (2010)CrossRef
78.
go back to reference M.F. Al–Hilli, S. Li, K.S. Kassim, Gadolinium substitution and sintering temperature dependent electronic properties of Li–Ni ferrite. Mater. Chem. Phys. 128(1–2), 127–132 (2011)CrossRef M.F. Al–Hilli, S. Li, K.S. Kassim, Gadolinium substitution and sintering temperature dependent electronic properties of Li–Ni ferrite. Mater. Chem. Phys. 128(1–2), 127–132 (2011)CrossRef
79.
go back to reference M. Wang et al., Extra up-spin magnetic moments and extraordinary high saturation magnetization of Ni2 + doped barium ferrite in 4f2 site. Mater. Res. Express 6(8), 086104 (2019)CrossRef M. Wang et al., Extra up-spin magnetic moments and extraordinary high saturation magnetization of Ni2 + doped barium ferrite in 4f2 site. Mater. Res. Express 6(8), 086104 (2019)CrossRef
80.
go back to reference A. Franco Jr., M. Silva, High temperature magnetic properties of magnesium ferrite nanoparticles. J. Appl. Phys. 109(7), 07B505 (2011)CrossRef A. Franco Jr., M. Silva, High temperature magnetic properties of magnesium ferrite nanoparticles. J. Appl. Phys. 109(7), 07B505 (2011)CrossRef
81.
go back to reference I. Szafraniak-Wiza, B. Andrzejewski, B. Hilczer, Magnetic properties of bismuth ferrite nanopowder obtained by mechanochemical synthesis. arXiv preprint arXiv:1407.4657 (2014) I. Szafraniak-Wiza, B. Andrzejewski, B. Hilczer, Magnetic properties of bismuth ferrite nanopowder obtained by mechanochemical synthesis. arXiv preprint arXiv:1407.4657 (2014)
82.
go back to reference D. Xue, W. Ma, Magnetic switching of a Stoner-Wohlfarth particle subjected to a perpendicular bias field. Electronics 8(3), 366 (2019)CrossRef D. Xue, W. Ma, Magnetic switching of a Stoner-Wohlfarth particle subjected to a perpendicular bias field. Electronics 8(3), 366 (2019)CrossRef
83.
go back to reference E.C. Stoner, E. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 240(826), 599–642 (1948) E.C. Stoner, E. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 240(826), 599–642 (1948)
84.
go back to reference A. Anwar et al., Impact of rare earth Dy + 3 cations on the various parameters of nanocrystalline nickel spinel ferrite. J. Mater. Res. Technol. 9(3), 5313–5325 (2020)CrossRef A. Anwar et al., Impact of rare earth Dy + 3 cations on the various parameters of nanocrystalline nickel spinel ferrite. J. Mater. Res. Technol. 9(3), 5313–5325 (2020)CrossRef
85.
go back to reference M.P. Reddy et al., Effect of sintering temperature on structural and magnetic properties of NiCuZn and MgCuZn ferrites. J. Magn. Magn. Mater. 322(19), 2819–2823 (2010)CrossRef M.P. Reddy et al., Effect of sintering temperature on structural and magnetic properties of NiCuZn and MgCuZn ferrites. J. Magn. Magn. Mater. 322(19), 2819–2823 (2010)CrossRef
Metadata
Title
The effects of sintering temperature on structural, electrical, and magnetic properties of MgFe1.92Bi0.08O4
Authors
Niousha Varastegani
Amin Yourdkhani
S. A. Seyed Ebrahimi
Aurelian Rotaru
Publication date
09-08-2021
Publisher
Springer US
Published in
Journal of Electroceramics / Issue 4/2021
Print ISSN: 1385-3449
Electronic ISSN: 1573-8663
DOI
https://doi.org/10.1007/s10832-021-00252-9