Skip to main content
Top

2015 | OriginalPaper | Chapter

The Energy Driven Hot Carrier Model

Authors : Stewart E. Rauch, Fernando Guarin

Published in: Hot Carrier Degradation in Semiconductor Devices

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The so-called “Energy Driven Model” for hot carrier effects in MOS devices was first proposed in 2005 as a replacement for the ubiquitous Lucky Electron Model (LEM) in the short channel regime (especially at or below the 130 nm node) [1]. As MOSFET size and voltage are scaled down, the carrier energy distribution becomes increasingly dependent only on the applied bias, because of quasi-ballistic transport over the high field region. The energy driven model represents a new paradigm of MOSFET hot carrier behavior in which the fundamental driving force is available energy, rather than peak lateral electric field as it is in the LEM. The model predictions are shown to be consistent with experimental impact ionization results. Experimental hot carrier degradation results for a wide range of technologies support the concept of a nearly universal carrier energy dependent cross section of hot carrier damage (Sit).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Rauch, G. La Rosa, IEEE Trans. Device Mater. Reliab., 5, 701 (2005) S. Rauch, G. La Rosa, IEEE Trans. Device Mater. Reliab., 5, 701 (2005)
2.
go back to reference C. Hu et al., IEEE Trans. Electron Devices 32, 375 (1985) C. Hu et al., IEEE Trans. Electron Devices 32, 375 (1985)
3.
go back to reference C. Guérin, IEEE Trans. Device Mater. Reliab. 7, 225 (2007) C. Guérin, IEEE Trans. Device Mater. Reliab. 7, 225 (2007)
5.
go back to reference J. Townsend, The Theory of Ionization of Gases by Collision (Constable, London, 1910)CrossRef J. Townsend, The Theory of Ionization of Gases by Collision (Constable, London, 1910)CrossRef
6.
7.
go back to reference B. Ridley, J. Phys. C: Solid State Phys. 16, 3373 (1983) B. Ridley, J. Phys. C: Solid State Phys. 16, 3373 (1983)
8.
9.
go back to reference A. Pacelli et al., J. Appl. Phys. 83, 4760 (1998) A. Pacelli et al., J. Appl. Phys. 83, 4760 (1998)
10.
go back to reference O. Rubel et al., Phys. Status Solid C 1, 1186 (2004) O. Rubel et al., Phys. Status Solid C 1, 1186 (2004)
12.
go back to reference N. Goldsman et al., IEEE Electron Device Lett. 11, 472 (1990) N. Goldsman et al., IEEE Electron Device Lett. 11, 472 (1990)
13.
go back to reference P. Ko, et al., in IEEE IEDM Tech. Dig. (1981), p. 600 P. Ko, et al., in IEEE IEDM Tech. Dig. (1981), p. 600
14.
go back to reference Y. Taur, T. Ning, Fundamentals of Modern VLSI Devices (Cambridge University Press, Cambridge, 1998), pp. 156ff Y. Taur, T. Ning, Fundamentals of Modern VLSI Devices (Cambridge University Press, Cambridge, 1998), pp. 156ff
15.
go back to reference J. Jakumeit, U. Ravaioli, Physica B 314, 363 (2002) J. Jakumeit, U. Ravaioli, Physica B 314, 363 (2002)
16.
go back to reference M. Chang et al., in Proceedings of ESSDERC (1996), pp. 263 M. Chang et al., in Proceedings of ESSDERC (1996), pp. 263
17.
go back to reference J. Bude, M. Mastrapasqua, IEEE Electron Device Lett. 16, 439 (1995) J. Bude, M. Mastrapasqua, IEEE Electron Device Lett. 16, 439 (1995)
18.
go back to reference F. Venturi et al., IEEE Trans. Electron Devices 38, 1895 (1991) F. Venturi et al., IEEE Trans. Electron Devices 38, 1895 (1991)
19.
20.
go back to reference P. Scrobahaci, IEEE Trans. Electron Devices 41, 1197 (1994) P. Scrobahaci, IEEE Trans. Electron Devices 41, 1197 (1994)
21.
go back to reference A. Ghetti et al., IEEE Trans. Electron Devices 46, 696 (1999) A. Ghetti et al., IEEE Trans. Electron Devices 46, 696 (1999)
22.
go back to reference N. Sano, M. Tomizawa, IEEE Trans. Electron Devices 42, 2211 (1995) N. Sano, M. Tomizawa, IEEE Trans. Electron Devices 42, 2211 (1995)
23.
go back to reference T. Mietzner et al., IEEE Trans. Electron Devices 48, 2323 (2001) T. Mietzner et al., IEEE Trans. Electron Devices 48, 2323 (2001)
24.
go back to reference L. Keldysh, Soviet Phys. JETP 10, 509 (1960) L. Keldysh, Soviet Phys. JETP 10, 509 (1960)
25.
go back to reference Y. Kamakura et al., J. Appl. Phys. 75, 3500 (1994) Y. Kamakura et al., J. Appl. Phys. 75, 3500 (1994)
26.
go back to reference P. Childs, D. Dyke, Solid State Electron 48, 765 (2004) P. Childs, D. Dyke, Solid State Electron 48, 765 (2004)
27.
go back to reference S. Huang et al., in IEEE IEDM Technical Digest (2001), p. 237 S. Huang et al., in IEEE IEDM Technical Digest (2001), p. 237
28.
go back to reference S. Zanchetta et al., Solid State Electron 46, 429 (2002) S. Zanchetta et al., Solid State Electron 46, 429 (2002)
29.
go back to reference Y. Pang, J. Brews, IEEE Trans. Electron Devices 49, 2209 (2002) Y. Pang, J. Brews, IEEE Trans. Electron Devices 49, 2209 (2002)
30.
31.
go back to reference T. Kunikiyo et al., J. Appl. Phys. 79, 7718 (1996) T. Kunikiyo et al., J. Appl. Phys. 79, 7718 (1996)
32.
go back to reference P. Childs, C. Leung, Electron. Lett. 31, 139 (1995) P. Childs, C. Leung, Electron. Lett. 31, 139 (1995)
33.
go back to reference P. Childs, C. Leung, J. Appl. Phys. 79, 222 (1996) P. Childs, C. Leung, J. Appl. Phys. 79, 222 (1996)
34.
go back to reference M. Chang et al., J. Appl. Phys. 82, 2974 (1997) M. Chang et al., J. Appl. Phys. 82, 2974 (1997)
35.
go back to reference D. Ventura et al., Numer. Funct. Anal. Optim. 16, 565 (1995) D. Ventura et al., Numer. Funct. Anal. Optim. 16, 565 (1995)
36.
go back to reference M. Fischetti, S. Laux, in IEEE IEDM Technical Digest (1995), p. 305 M. Fischetti, S. Laux, in IEEE IEDM Technical Digest (1995), p. 305
37.
go back to reference S. Rauch et al., IEEE Electron Device Lett. 19, 463 (1998) S. Rauch et al., IEEE Electron Device Lett. 19, 463 (1998)
38.
go back to reference S. Rauch et al., IEEE Trans. Device Mater. Reliab. 1, 113 (2001) S. Rauch et al., IEEE Trans. Device Mater. Reliab. 1, 113 (2001)
39.
go back to reference L. Su et al., in IEEE Symposium on VLSI Technology Digest (1996), p. 12 L. Su et al., in IEEE Symposium on VLSI Technology Digest (1996), p. 12
40.
go back to reference V. Chan et al., in IEEE IEDM Technical Digest (2003), p. 77 V. Chan et al., in IEEE IEDM Technical Digest (2003), p. 77
41.
go back to reference F. Arnaud et al., in IEEE IEDM Technical Digest (2009), p. 651 F. Arnaud et al., in IEEE IEDM Technical Digest (2009), p. 651
42.
go back to reference A. Paul et al., in IEEE IEDM Technical Digest (2013), p. 361 A. Paul et al., in IEEE IEDM Technical Digest (2013), p. 361
43.
go back to reference R. Woltjer, G. Paulzen, in IEEE IEDM Technical Digest (1992), p. 535 R. Woltjer, G. Paulzen, in IEEE IEDM Technical Digest (1992), p. 535
44.
go back to reference R. McMahon et al., in Technical Proceedings of 2002 International Conference on Modeling and Simulation of Microsystems (2002), p. 576 R. McMahon et al., in Technical Proceedings of 2002 International Conference on Modeling and Simulation of Microsystems (2002), p. 576
46.
go back to reference S. Rauch et al., IEEE Trans. Device Mater. Reliab. 10, 40 (2010) S. Rauch et al., IEEE Trans. Device Mater. Reliab. 10, 40 (2010)
47.
go back to reference S. Pantelides et al., IEEE Trans. Nucl. Sci. 47, 2262 (2000) S. Pantelides et al., IEEE Trans. Nucl. Sci. 47, 2262 (2000)
48.
go back to reference B. Tuttle et al., Phys. Rev. B 59, 12884 (1999) B. Tuttle et al., Phys. Rev. B 59, 12884 (1999)
49.
go back to reference K. Hess et al., Appl. Phys. Lett. 75, 3147 (1999) K. Hess et al., Appl. Phys. Lett. 75, 3147 (1999)
50.
go back to reference C. Van de Walle, B. Tuttle, IEEE Trans. Electron Devices 47, 1779 (2000) C. Van de Walle, B. Tuttle, IEEE Trans. Electron Devices 47, 1779 (2000)
51.
go back to reference B. Tuttle, W. McMahon, K. Hess, Superlattice Microstruct. 27(2/3), 229–233 (2000)CrossRef B. Tuttle, W. McMahon, K. Hess, Superlattice Microstruct. 27(2/3), 229–233 (2000)CrossRef
52.
go back to reference K. Hess et al., Physica B 272, 527–531 (1999) K. Hess et al., Physica B 272, 527–531 (1999)
53.
go back to reference S. Rauch, G. La Rosa, in IEEE IRPS, Tutorial #124 (2010) S. Rauch, G. La Rosa, in IEEE IRPS, Tutorial #124 (2010)
54.
go back to reference C. Crowell, S. Sze, Appl. Phys. Lett. 9, 242 (1966) C. Crowell, S. Sze, Appl. Phys. Lett. 9, 242 (1966)
55.
go back to reference S. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981), p. 16 S. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981), p. 16
Metadata
Title
The Energy Driven Hot Carrier Model
Authors
Stewart E. Rauch
Fernando Guarin
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-08994-2_2