Skip to main content
Top
Published in: Optical and Quantum Electronics 5/2024

01-05-2024

The exact solutions of Schrödinger–Hirota equation based on the auxiliary equation method

Authors: Yajun Du, Tianle Yin, Jing Pang

Published in: Optical and Quantum Electronics | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Schrödinger–Hirota equation are studied in light transmission, optical fiber communication, and nonlinear effects in optics. The auxiliary equation method is not only suitable for solving specific types of nonlinear partial differential equations, but also has strong applicability to all kinds of different types of equations. It helps us to deduce the exact solution of the equation faster and analyzes the dynamic behavior of the system further. The extended fourth Jacobi elliptic equation is used in this paper to seek different types of exact solutions, which include bright soliton solutions, kink solutions, periodic wave solutions, and singular traveling wave solutions via selecting appropriate parameters.The characteristics of some solutions are graphically presented using two- and three-dimensional graphs such as the real part, the imaginary part, and their modulus via providing suitable values to arbitrary parameters. Compared to other methods, the method is more direct and easier for calculations. Kindly check and confirm the edit made in the title. The edit made in the title is correct. The word "extended“ in the title can be deleted if necessary.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ahmad, A., Seadawy, A.R., Ahmed, S., et al.: Dynamical forms of breathers, rogue waves, lump and their interactions for Schrödinger–Hirota equation. Opt. Quant. Electron. 55(8), 730 (2023)CrossRef Ahmad, A., Seadawy, A.R., Ahmed, S., et al.: Dynamical forms of breathers, rogue waves, lump and their interactions for Schrödinger–Hirota equation. Opt. Quant. Electron. 55(8), 730 (2023)CrossRef
go back to reference Akram, G., Sadaf, M., Zainab, I.: New graphical observations for KdV equation and KdV-Burgers equation using modified auxiliary equation method. Mod. Phys. Lett. B 36(01), 2150520 (2022a)ADSMathSciNetCrossRef Akram, G., Sadaf, M., Zainab, I.: New graphical observations for KdV equation and KdV-Burgers equation using modified auxiliary equation method. Mod. Phys. Lett. B 36(01), 2150520 (2022a)ADSMathSciNetCrossRef
go back to reference Akram, G., Sadaf, M., Zainab, I.: The dynamical study of Biswas–Arshed equation via modified auxiliary equation method. Optik 255, 168614 (2022b)ADSCrossRef Akram, G., Sadaf, M., Zainab, I.: The dynamical study of Biswas–Arshed equation via modified auxiliary equation method. Optik 255, 168614 (2022b)ADSCrossRef
go back to reference Akram, G., Sadaf, M., Zainab, I., et al.: A comparative study of time fractional nonlinear Drinfeld–Sokolov–Wilson system via modified auxiliary equation Method. Fract. Fract. 7(9), 665 (2023)CrossRef Akram, G., Sadaf, M., Zainab, I., et al.: A comparative study of time fractional nonlinear Drinfeld–Sokolov–Wilson system via modified auxiliary equation Method. Fract. Fract. 7(9), 665 (2023)CrossRef
go back to reference Arnous, A.H., Ullah, M.Z., Asma, M., et al.: Dark and singular dispersive optical solitons of Schrödinger–Hirota equation by modified simple equation method. Optik 136, 445–450 (2017)ADSCrossRef Arnous, A.H., Ullah, M.Z., Asma, M., et al.: Dark and singular dispersive optical solitons of Schrödinger–Hirota equation by modified simple equation method. Optik 136, 445–450 (2017)ADSCrossRef
go back to reference Ayati, Z., Badiepour, A.: Solitary solution of Jimbo–Miwa equation by the modified extended and multiple exp-function methods. Int. J. Appl. Comput. Math. 9(1), 1 (2023)MathSciNetCrossRef Ayati, Z., Badiepour, A.: Solitary solution of Jimbo–Miwa equation by the modified extended and multiple exp-function methods. Int. J. Appl. Comput. Math. 9(1), 1 (2023)MathSciNetCrossRef
go back to reference Cakicioglu, H., Ozisik, M., Secer, A., et al.: Optical soliton solutions of Schrödinger–Hirota equation with parabolic law nonlinearity via generalized Kudryashov algorithm. Opt. Quant. Electron. 55(5), 407 (2023)CrossRef Cakicioglu, H., Ozisik, M., Secer, A., et al.: Optical soliton solutions of Schrödinger–Hirota equation with parabolic law nonlinearity via generalized Kudryashov algorithm. Opt. Quant. Electron. 55(5), 407 (2023)CrossRef
go back to reference Ekici, M., Mirzazadeh, M., Sonmezoglu, A., et al.: Dispersive optical solitons with Schrödinger–Hirota equation by extended trial equation method. Optik 136, 451–461 (2017)ADSCrossRef Ekici, M., Mirzazadeh, M., Sonmezoglu, A., et al.: Dispersive optical solitons with Schrödinger–Hirota equation by extended trial equation method. Optik 136, 451–461 (2017)ADSCrossRef
go back to reference Eslami, M., Rezazadeh, H., Rezazadeh, M., et al.: Exact solutions to the space-time fractional Schrödinger–Hirota equation and the space-time modified KDV-Zakharov-Kuznetsov equation. Opt. Quant. Electron. 49, 1–15 (2017)CrossRef Eslami, M., Rezazadeh, H., Rezazadeh, M., et al.: Exact solutions to the space-time fractional Schrödinger–Hirota equation and the space-time modified KDV-Zakharov-Kuznetsov equation. Opt. Quant. Electron. 49, 1–15 (2017)CrossRef
go back to reference Fu, Z., Liu, S., Liu, S., et al.: New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations. Phys. Lett. A 290(1–2), 72–76 (2001)ADSMathSciNetCrossRef Fu, Z., Liu, S., Liu, S., et al.: New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations. Phys. Lett. A 290(1–2), 72–76 (2001)ADSMathSciNetCrossRef
go back to reference Ghanbari, B., Günerhan, H., Ìlhan, O.A., et al.: Some new families of exact solutions to a new extension of nonlinear Schrödinger equation. Phys. Scr. 95(7), 075208 (2020)ADSCrossRef Ghanbari, B., Günerhan, H., Ìlhan, O.A., et al.: Some new families of exact solutions to a new extension of nonlinear Schrödinger equation. Phys. Scr. 95(7), 075208 (2020)ADSCrossRef
go back to reference Gonzalez-Gaxiola, O., Biswas, A., Moraru, L., et al.: Dispersive optical solitons with Schrödinger–Hirota equation by Laplace-Adomian decomposition approach. Universe 9(1), 19 (2022)ADSCrossRef Gonzalez-Gaxiola, O., Biswas, A., Moraru, L., et al.: Dispersive optical solitons with Schrödinger–Hirota equation by Laplace-Adomian decomposition approach. Universe 9(1), 19 (2022)ADSCrossRef
go back to reference Guan, X., Yang, H., Meng, X., et al.: Higher-order rogue waves solutions of the modified Gerdjikov–Ivanov equation with dispersion via generalized Darboux transformation. Appl. Math. Lett. 136, 108466 (2023)MathSciNetCrossRef Guan, X., Yang, H., Meng, X., et al.: Higher-order rogue waves solutions of the modified Gerdjikov–Ivanov equation with dispersion via generalized Darboux transformation. Appl. Math. Lett. 136, 108466 (2023)MathSciNetCrossRef
go back to reference Guo, Y.C.: Introduction to Nonlinear Partial Differential Equations. Tsinghua University Press, Beijing (2008) Guo, Y.C.: Introduction to Nonlinear Partial Differential Equations. Tsinghua University Press, Beijing (2008)
go back to reference Li, Z.B.: Traveling Wave Solutions of Nonlinear Mathematical Physics Equations. Science Press, Beijing (2007) Li, Z.B.: Traveling Wave Solutions of Nonlinear Mathematical Physics Equations. Science Press, Beijing (2007)
go back to reference Liu, S., Fu, Z., Liu, S., et al.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289(1–2), 69–74 (2001)ADSMathSciNetCrossRef Liu, S., Fu, Z., Liu, S., et al.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289(1–2), 69–74 (2001)ADSMathSciNetCrossRef
go back to reference Liu, X., Zhang, H., Liu, W.: The dynamic characteristics of pure-quartic solitons and soliton molecules. Appl. Math. Model. 102, 305–312 (2022)MathSciNetCrossRef Liu, X., Zhang, H., Liu, W.: The dynamic characteristics of pure-quartic solitons and soliton molecules. Appl. Math. Model. 102, 305–312 (2022)MathSciNetCrossRef
go back to reference Lu, J.: The exact solutions for the nonlinear variable-coefficient fifth-order Schrödinger equation. Results Phys. 39, 105708 (2022)CrossRef Lu, J.: The exact solutions for the nonlinear variable-coefficient fifth-order Schrödinger equation. Results Phys. 39, 105708 (2022)CrossRef
go back to reference Ma, H.C., Yu, Y.D., Ge, D.J.: New exact travelling wave solutions for Zakharov–Kuznetsov equation. Commun. Theor. Phys. 51(4), 609 (2009)ADSMathSciNetCrossRef Ma, H.C., Yu, Y.D., Ge, D.J.: New exact travelling wave solutions for Zakharov–Kuznetsov equation. Commun. Theor. Phys. 51(4), 609 (2009)ADSMathSciNetCrossRef
go back to reference Ma, H.C., Yu, Y.D., Ge, D.J.: The auxiliary equation method for solving the Zakharov–Kuznetsov (ZK) equation. Comput. Math. Appl. 58(11–12), 2523–2527 (2009)MathSciNetCrossRef Ma, H.C., Yu, Y.D., Ge, D.J.: The auxiliary equation method for solving the Zakharov–Kuznetsov (ZK) equation. Comput. Math. Appl. 58(11–12), 2523–2527 (2009)MathSciNetCrossRef
go back to reference Osman, M.S., Machado, J.A.T., Baleanu, D., et al.: On distinctive solitons type solutions for some important nonlinear Schrödinger equations. Opt. Quant. Electron. 53, 1–24 (2021)CrossRef Osman, M.S., Machado, J.A.T., Baleanu, D., et al.: On distinctive solitons type solutions for some important nonlinear Schrödinger equations. Opt. Quant. Electron. 53, 1–24 (2021)CrossRef
go back to reference Ozisik, M., Onder, I., Esen, H., et al.: On the investigation of optical soliton solutions of cubic-quartic Fokas–Lenells and Schrödinger–Hirota equations. Optik 272, 170389 (2023)ADSCrossRef Ozisik, M., Onder, I., Esen, H., et al.: On the investigation of optical soliton solutions of cubic-quartic Fokas–Lenells and Schrödinger–Hirota equations. Optik 272, 170389 (2023)ADSCrossRef
go back to reference Radha, B., Duraisamy, C.: The homogeneous balance method and its applications for finding the exact solutions for nonlinear equations. J. Ambient. Intell. Humaniz. Comput. 12, 6591–6597 (2021)CrossRef Radha, B., Duraisamy, C.: The homogeneous balance method and its applications for finding the exact solutions for nonlinear equations. J. Ambient. Intell. Humaniz. Comput. 12, 6591–6597 (2021)CrossRef
go back to reference Shakeel, M., Attaullah, Shah, N.A.: Modified exp-function method to find exact solutions of microtubules nonlinear dynamics models. Symmetry 15(2), 360 (2023)ADSCrossRef Shakeel, M., Attaullah, Shah, N.A.: Modified exp-function method to find exact solutions of microtubules nonlinear dynamics models. Symmetry 15(2), 360 (2023)ADSCrossRef
go back to reference Sharif, A.: Jacobi elliptic function approach to a conformable fractional nonlinear Schrödinger–Hirota equation. Partial Differ. Equ. Appl. Math. 8, 100541 (2023a)CrossRef Sharif, A.: Jacobi elliptic function approach to a conformable fractional nonlinear Schrödinger–Hirota equation. Partial Differ. Equ. Appl. Math. 8, 100541 (2023a)CrossRef
go back to reference Sharif, A.: Jacobi elliptic function approach to a conformable fractional nonlinear Schrödinger–Hirota equation. Partial Differ. Equ. Appl. Math. 8, 100541 (2023b)CrossRef Sharif, A.: Jacobi elliptic function approach to a conformable fractional nonlinear Schrödinger–Hirota equation. Partial Differ. Equ. Appl. Math. 8, 100541 (2023b)CrossRef
go back to reference Si, R.D.R.J.: Exact travelling wave solutions for four forms of nonlinear Klein–Gordon equations. Phys. Lett. A 363(5–6), 440–447 (2007)ADSMathSciNet Si, R.D.R.J.: Exact travelling wave solutions for four forms of nonlinear Klein–Gordon equations. Phys. Lett. A 363(5–6), 440–447 (2007)ADSMathSciNet
go back to reference Si, R.D.R.J.: Traveling wave solutions for nonlinear wave equations: Theory and applications of the auxiliary equation method. Sci. Press 251, 1–184 (2019)ADS Si, R.D.R.J.: Traveling wave solutions for nonlinear wave equations: Theory and applications of the auxiliary equation method. Sci. Press 251, 1–184 (2019)ADS
go back to reference Wang, H., Li, X., Zhou, Q., et al.: Dynamics and spectral analysis of optical rogue waves for a coupled nonlinear Schrödinger equation applicable to pulse propagation in isotropic media. Chaos Solit. Fract. 166, 112924 (2023)CrossRef Wang, H., Li, X., Zhou, Q., et al.: Dynamics and spectral analysis of optical rogue waves for a coupled nonlinear Schrödinger equation applicable to pulse propagation in isotropic media. Chaos Solit. Fract. 166, 112924 (2023)CrossRef
go back to reference Wang, H., Zhou, Q., Liu, W.: Exact analysis and elastic interaction of multi-soliton for a two-dimensional Gross-Pitaevskii equation in the Bose-Einstein condensation. J. Adv. Res. 38, 179–190 (2022)CrossRef Wang, H., Zhou, Q., Liu, W.: Exact analysis and elastic interaction of multi-soliton for a two-dimensional Gross-Pitaevskii equation in the Bose-Einstein condensation. J. Adv. Res. 38, 179–190 (2022)CrossRef
go back to reference Wang, T.Y., Zhou, Q., Liu, W.J.: Soliton fusion and fission for the high-order coupled nonlinear Schrödinger system in fiber lasers. Chin. Phys. B 31(2), 020501 (2022)ADSCrossRef Wang, T.Y., Zhou, Q., Liu, W.J.: Soliton fusion and fission for the high-order coupled nonlinear Schrödinger system in fiber lasers. Chin. Phys. B 31(2), 020501 (2022)ADSCrossRef
go back to reference Yan, Y.Y., Liu, W.J.: Soliton rectangular pulses and bound states in a dissipative system modeled by the variable-coefficients complex cubic-quintic Ginzburg-Landau equation. Chin. Phys. Lett. 38(9), 094201 (2021)ADSCrossRef Yan, Y.Y., Liu, W.J.: Soliton rectangular pulses and bound states in a dissipative system modeled by the variable-coefficients complex cubic-quintic Ginzburg-Landau equation. Chin. Phys. Lett. 38(9), 094201 (2021)ADSCrossRef
go back to reference Yan, L., Yao, R.X., Lou, S.Y.: An extended Hirota bilinear method and new wave structures of (2+1)-dimensional Sawada–Kotera equation. Appl. Math. Lett. 145, 108760 (2023)MathSciNetCrossRef Yan, L., Yao, R.X., Lou, S.Y.: An extended Hirota bilinear method and new wave structures of (2+1)-dimensional Sawada–Kotera equation. Appl. Math. Lett. 145, 108760 (2023)MathSciNetCrossRef
go back to reference Yin, T., Ji, Y., Pang, J.: Variable coefficient extended cKP equation for Rossby waves and its exact solution with dissipation. Phys. Fluids 35(8), 086605 (2023)ADSCrossRef Yin, T., Ji, Y., Pang, J.: Variable coefficient extended cKP equation for Rossby waves and its exact solution with dissipation. Phys. Fluids 35(8), 086605 (2023)ADSCrossRef
go back to reference Yin, Z., Jiang, X., Zhang, N., et al.: Stability analysis for linear systems with a differentiable time-varying delay via auxiliary equation-based method. Electronics 11(21), 3492 (2022)CrossRef Yin, Z., Jiang, X., Zhang, N., et al.: Stability analysis for linear systems with a differentiable time-varying delay via auxiliary equation-based method. Electronics 11(21), 3492 (2022)CrossRef
go back to reference Yin, T., Xing, Z., Pang, J.: Modified Hirota bilinear method to (3+ 1)-D variable coefficients generalized shallow water wave equation. Nonlinear Dyn. 111(11), 9741–9752 (2023)CrossRef Yin, T., Xing, Z., Pang, J.: Modified Hirota bilinear method to (3+ 1)-D variable coefficients generalized shallow water wave equation. Nonlinear Dyn. 111(11), 9741–9752 (2023)CrossRef
go back to reference Zayed, E.M.E., Shohib, R.M.A., Alngar, M.E.M., et al.: Solitons and conservation laws in magneto-optic waveguides with generalized Kudryashov’s equation by the unified auxiliary equation approach. Optik 245, 167694 (2021)ADSCrossRef Zayed, E.M.E., Shohib, R.M.A., Alngar, M.E.M., et al.: Solitons and conservation laws in magneto-optic waveguides with generalized Kudryashov’s equation by the unified auxiliary equation approach. Optik 245, 167694 (2021)ADSCrossRef
go back to reference Zhao, X., Wang, L., Sun, W.: The repeated homogeneous balance method and its applications to nonlinear partial differential equations. Chaos Solit. Fract. 28(2), 448–453 (2006)ADSMathSciNetCrossRef Zhao, X., Wang, L., Sun, W.: The repeated homogeneous balance method and its applications to nonlinear partial differential equations. Chaos Solit. Fract. 28(2), 448–453 (2006)ADSMathSciNetCrossRef
Metadata
Title
The exact solutions of Schrödinger–Hirota equation based on the auxiliary equation method
Authors
Yajun Du
Tianle Yin
Jing Pang
Publication date
01-05-2024
Publisher
Springer US
Published in
Optical and Quantum Electronics / Issue 5/2024
Print ISSN: 0306-8919
Electronic ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-024-06283-0

Other articles of this Issue 5/2024

Optical and Quantum Electronics 5/2024 Go to the issue