Skip to main content
Top

2020 | OriginalPaper | Chapter

The Explanation Game: Explaining Machine Learning Models Using Shapley Values

Authors : Luke Merrick, Ankur Taly

Published in: Machine Learning and Knowledge Extraction

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A number of techniques have been proposed to explain a machine learning model’s prediction by attributing it to the corresponding input features. Popular among these are techniques that apply the Shapley value method from cooperative game theory. While existing papers focus on the axiomatic motivation of Shapley values, and efficient techniques for computing them, they offer little justification for the game formulations used, and do not address the uncertainty implicit in their methods’ outputs. For instance, the popular SHAP algorithm’s formulation may give substantial attributions to features that play no role in the model. In this work, we illustrate how subtle differences in the underlying game formulations of existing methods can cause large differences in the attributions for a prediction. We then present a general game formulation that unifies existing methods, and enables straightforward confidence intervals on their attributions. Furthermore, it allows us to interpret the attributions as contrastive explanations of an input relative to a distribution of reference inputs. We tie this idea to classic research in cognitive psychology on contrastive explanations, and propose a conceptual framework for generating and interpreting explanations for ML models, called formulate, approximate, explain (FAE). We apply this framework to explain black-box models trained on two UCI datasets and a Lending Club dataset.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
We note that this shortcoming, and the multiplicity of game formulations has also been noted in parallel work  [14, 28].
 
2
As defined by Equation 9 in [19].
 
3
In this context, correlation refers to general statistical dependence, not just a nonzero Pearson correlation coefficient.
 
4
It is somewhat unclear whether IME proposes \(\mathcal {U}\) or \(\mathcal {D}^{inp}\), as [26] assumes \(\mathcal {D}^{inp}= \mathcal {U}\), while [27] calls for values to be sampled from \(\mathcal {X}\) “at random.”.
 
5
In Bike Sharing we model hourly bike rentals from temporal and weather features, in Adult Income we model whether an adult earns more than $50,000 annually, and in Lending Club we model whether a borrower will default on a loan.
 
6
The official implementation of KernelSHAP [19] raises a warning if over 100 references are used.
 
Literature
1.
go back to reference Aas, K., Jullum, M., Løland, A.: Explaining individual predictions when features are dependent: more accurate approximations to shapley values. arXiv preprint arXiv:1903.10464 (2019) Aas, K., Jullum, M., Løland, A.: Explaining individual predictions when features are dependent: more accurate approximations to shapley values. arXiv preprint arXiv:​1903.​10464 (2019)
2.
go back to reference Ancona, M., Ceolini, E., Öztireli, C., Gross, M.: Towards better understanding of gradient-based attribution methods for deep neural networks. In: International Conference on Learning Representations (2018) Ancona, M., Ceolini, E., Öztireli, C., Gross, M.: Towards better understanding of gradient-based attribution methods for deep neural networks. In: International Conference on Learning Representations (2018)
3.
go back to reference Ancona, M., Oztireli, C., Gross, M.: Explaining deep neural networks with a polynomial time algorithm for shapley value approximation. In: Proceedings of the 36th International Conference on Machine Learning (2019) Ancona, M., Oztireli, C., Gross, M.: Explaining deep neural networks with a polynomial time algorithm for shapley value approximation. In: Proceedings of the 36th International Conference on Machine Learning (2019)
4.
go back to reference Chen, J., Song, L., Wainwright, M.J., Jordan, M.I.: L-shapley and c-shapley: efficient model interpretation for structured data. arXiv preprint arXiv:1808.02610 (2018) Chen, J., Song, L., Wainwright, M.J., Jordan, M.I.: L-shapley and c-shapley: efficient model interpretation for structured data. arXiv preprint arXiv:​1808.​02610 (2018)
5.
go back to reference Cohen, S.B., Ruppin, E., Dror, G.: Feature selection based on the shapley value. IJCAI 5, 665–670 (2005) Cohen, S.B., Ruppin, E., Dror, G.: Feature selection based on the shapley value. IJCAI 5, 665–670 (2005)
6.
go back to reference Datta, A., Sen, S., Zick, Y.: Algorithmic transparency via quantitative input influence: theory and experiments with learning systems. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 598–617. IEEE (2016) Datta, A., Sen, S., Zick, Y.: Algorithmic transparency via quantitative input influence: theory and experiments with learning systems. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 598–617. IEEE (2016)
9.
go back to reference Ghorbani, A., Zou, J.: Data shapley: equitable valuation of data for machine learning. In: Proceedings of the 36th International Conference on Machine Learning (2019) Ghorbani, A., Zou, J.: Data shapley: equitable valuation of data for machine learning. In: Proceedings of the 36th International Conference on Machine Learning (2019)
10.
go back to reference Hesslow, G.: The problem of causal selection. In: Hilton, D.J. (ed.) Contemporary Science and Natural Explanation: Commonsense Conceptions of Causality. New York University Press, New York (1988) Hesslow, G.: The problem of causal selection. In: Hilton, D.J. (ed.) Contemporary Science and Natural Explanation: Commonsense Conceptions of Causality. New York University Press, New York (1988)
11.
go back to reference Hitchcock, C., Knobecaus, J.: Cause and norm. J. Philos. 106(11), 587–612 (2009)CrossRef Hitchcock, C., Knobecaus, J.: Cause and norm. J. Philos. 106(11), 587–612 (2009)CrossRef
13.
go back to reference Hunt, X.J., Abbey, R., Tharrington, R., Huiskens, J., Wesdorp, N.: An AI-augmented lesion detection framework for liver metastases with model interpretability. arXiv preprint arXiv:1907.07713 (2019) Hunt, X.J., Abbey, R., Tharrington, R., Huiskens, J., Wesdorp, N.: An AI-augmented lesion detection framework for liver metastases with model interpretability. arXiv preprint arXiv:​1907.​07713 (2019)
14.
go back to reference Janzing, D., Minorics, L., Blöbaum, P.: Feature relevance quantification in explainable AI: a causal problem. arXiv preprint arXiv:1910.13413 (2019) Janzing, D., Minorics, L., Blöbaum, P.: Feature relevance quantification in explainable AI: a causal problem. arXiv preprint arXiv:​1910.​13413 (2019)
15.
go back to reference Kahneman, D., Miller, D.T.: Norm theory: comparing reality to its alternatives. Psychol. Rev. 93(2), 136 (1986)CrossRef Kahneman, D., Miller, D.T.: Norm theory: comparing reality to its alternatives. Psychol. Rev. 93(2), 136 (1986)CrossRef
16.
go back to reference Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems, pp. 3146–3154 (2017) Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems, pp. 3146–3154 (2017)
18.
go back to reference Lundberg, S.M., Erion, G.G., Lee, S.I.: Consistent individualized feature attribution for tree ensembles. arXiv preprint arXiv:1802.03888 (2018) Lundberg, S.M., Erion, G.G., Lee, S.I.: Consistent individualized feature attribution for tree ensembles. arXiv preprint arXiv:​1802.​03888 (2018)
19.
go back to reference Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems, pp. 4765–4774 (2017) Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems, pp. 4765–4774 (2017)
20.
go back to reference Maleki, S., Tran-Thanh, L., Hines, G., Rahwan, T., Rogers, A.: Bounding the estimation error of sampling-based shapley value approximation. arXiv preprint arXiv:1306.4265 (2013) Maleki, S., Tran-Thanh, L., Hines, G., Rahwan, T., Rogers, A.: Bounding the estimation error of sampling-based shapley value approximation. arXiv preprint arXiv:​1306.​4265 (2013)
21.
22.
go back to reference Mittelstadt, B., Russell, C., Wachter, S.: Explaining explanations in AI. In: Proceedings of the Conference on Fairness, Accountability, and Transparency, pp. 279–288. ACM (2019) Mittelstadt, B., Russell, C., Wachter, S.: Explaining explanations in AI. In: Proceedings of the Conference on Fairness, Accountability, and Transparency, pp. 279–288. ACM (2019)
23.
go back to reference Ribeiro, M.T., Singh, S., Guestrin, C.: Why should I trust you?: explaining the predictions of any classifier. In: SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016) Ribeiro, M.T., Singh, S., Guestrin, C.: Why should I trust you?: explaining the predictions of any classifier. In: SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)
24.
25.
go back to reference Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. In: 34th International Conference on Machine Learning-Volume 70, pp. 3145–3153 (2017) Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. In: 34th International Conference on Machine Learning-Volume 70, pp. 3145–3153 (2017)
26.
go back to reference Štrumbelj, E., Kononenko, I.: An efficient explanation of individual classifications using game theory. J. Mach. Learn. Res. 11, 1–18 (2010)MathSciNetMATH Štrumbelj, E., Kononenko, I.: An efficient explanation of individual classifications using game theory. J. Mach. Learn. Res. 11, 1–18 (2010)MathSciNetMATH
29.
go back to reference Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 3319–3328 (2017). JMLR.org Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 3319–3328 (2017). JMLR.​org
Metadata
Title
The Explanation Game: Explaining Machine Learning Models Using Shapley Values
Authors
Luke Merrick
Ankur Taly
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-57321-8_2

Premium Partner