Skip to main content
Top

2018 | OriginalPaper | Chapter

The Geometry of Fluid Membranes: Variational Principles, Symmetries and Conservation Laws

Authors : Jemal Guven, Pablo Vázquez-Montejo

Published in: The Role of Mechanics in the Study of Lipid Bilayers

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The behavior of a lipid membrane on mesoscopic scales is captured unusually accurately by its geometrical degrees of freedom. Indeed, the membrane geometry is, very often, a direct reflection of the physical state of the membrane. In this chapter we will examine the intimate connection between the geometry and the physics of fluid membranes from a number of points of view. We begin with a review of the description of the surface geometry in terms of the metric and the extrinsic curvature, examining surface deformations in terms of the behavior of these two tensors. The shape equation describing membrane equilibrium is derived and the qualitative behavior of solutions described. We next look at the conservation laws implied by the Euclidean invariance of the energy, describing the remarkably simple relationship between the stress distributed in the membrane and its geometry. This relationship is used to examine membrane-mediated interactions. We show how this geometrical framework can be extended to accommodate constraints—both global and local—as well as additional material degrees of freedom coupling to the geometry. The conservation laws are applied to examine the response of an axially symmetric membrane to localized external forces and to characterize topologically nontrivial states. We wrap up by looking at the conformal invariance of the symmetric two-dimensional bending energy, and examine some of its consequences.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
We abbreviate \(\partial _a = \partial _a\mathbf {X} /\partial u^a\).
 
2
We are interested specifically in surface tensors and the scalars constructed out of them. Consider a surface reparametrization \((u^1,u^2) \rightarrow (\bar{u}^1(u^1,u^2),\bar{u}^2(u^1,u^2))\). Define \(J^{\bar{a}}{}_b= \partial \bar{u}^a/\partial u^b\), with inverse \(J_{\bar{a}}{}^{c}: J^{\bar{a}}{}_{c}J_{\bar{b}}{}^{c} = \delta ^{\bar{a}}{}_{\bar{b}}\). Tensor fields transform under reparametrization by matrix multiplication on each index with the Jacobian matrix of the reparametrization or its inverse. In particular, the metric transforms by \(\bar{g}_{\bar{a}\bar{b}} = J_{\bar{a}}{}^{c} J_{\bar{b}}{}^{d} g_{cd}\). Note that the three Cartesian embedding functions \(\mathbf {X}=(X^1,X^2,X^3)\) are each scalars under reparametrization: \(\bar{X}^1(\bar{u}^1,\bar{u}^2) = X^1(u^1,u^2)\), etc.
 
3
Under reparametrization, \(\sqrt{\bar{g}} = \mathrm {det} J^{-1} \sqrt{g}\).
 
4
It is simple to show that \(V^a\) transforms like a vector under reparametrization.
 
5
It is straightforward to confirm that the two remaining symmetric quadratics, \(C_1^2+C_2^2\) and \((C_1-C_2)^2\), can be expressed as linear combinations of \(K^2\) and \(\mathcal {K}_G\).
 
6
As we will show below, controlling area locally is equivalent, in equilibrium, to controlling it globally.
 
7
For simplicity we will suppose that not only the surface height but also its normal vector are fixed on the boundary.
 
8
The other half of helicoid is given by \(h = c (\pi + \varphi )\).
 
9
Under a deformation \(h(\mathbf {r}) \rightarrow h(\mathbf {r}) + \delta h(\mathbf {r}) \), fixed on the boundary, the change in area A (6), is given by
$$\begin{aligned} \delta A = \int d\mathbf {r}\, \nabla _0\cdot \mathbf {J} \, \delta h \qquad {(13)} \end{aligned}$$
where
$$\begin{aligned} \mathbf {J} = -\frac{ \nabla _0 h}{(1 +|\nabla _0 h|^2)^{1/2}} \,, \qquad {(14)} \end{aligned}$$
so that \(\nabla _0\cdot \mathbf {J}= 0\) in equilibrium. One can evaluate \(|\nabla _0h|^2 = p^2/r^2\), so that \(\mathbf {J} = p(-\sin \theta ,\cos \theta ) /r (1+ p^2/r^2)^{1/2}\) and \(\nabla _0\cdot \mathbf {J}= 0\).
 
10
Just as \(\ln |\mathbf {r}-\mathbf {r}'|\) is proportional to the Green’s function for the Laplacian, \(-|\mathbf {r}-\mathbf {r}'|^2 \ln |\mathbf {r}-\mathbf {r}'|\) is its counterpart for the bilaplacian.
 
11
The Green’s function of the Helmholtz operator is proportional to \(K_0(|\mathbf {r}-\mathbf {r}'|)\).
 
12
\(\nabla _a \Phi ^a =\partial _a (\sqrt{g} \Phi ^a)/\sqrt{g}\).
 
13
Note that the Ricci identify (4) implies \(R_{abcd}=-R_{bacd}\); whereas its application to the metric tensor implies \(R_{abcd}=-R_{abdc}\):
$$\begin{aligned} 0= [\nabla _a,\nabla _b] g_{cd} = R_{abcd}+ R_{abdc}\,. \qquad {(34)} \end{aligned}$$
These account for all the independent constraints on \(R_{abcd}\) on a two-dimensional surface.
 
14
The identity \(\mathrm {det}\, K^a{}_b = (K^2 - K_{ab} K^{ab})/2\) is true for the determinant of any two-dimensional symmetric matrix.
 
15
\(V_\perp ^a= \epsilon ^{ab} V_b\) is orthogonal to \(V^a\).
 
16
A later derivation accommodating the finite thickness of the membrane is presented in Lomholt and Miao (2006).
 
17
In this approach, the deformation vector \(\delta \mathbf {X}\) is never disassembled into normal and tangential parts, so that its reassembly is never necessary.
 
18
If \(\mathbf {t}=t^a\mathbf {e}_a\) is the unit tangent vector to the curve, \(\mathbf {l}\cdot \mathbf {t}=0\) or \(g_{ab} l^a t^b=0\) or \(l_a t^a=0\).
 
19
The local parametrization is fixed.
 
20
On a surface with boundary, this identity yields the volume of the cone standing on the surface patch, with its apex located at the origin.
 
21
Intriguingly, the quadratic contribution to \(T^B_{ij}\) is trace-free in this approximation, a property we would associate with scale invariance. Yet the area itself is clearly not scale invariant. The source of this peculiarity is that, in the quadratic approximation in gradients of h, the area is represented by a massless two-dimensional scalar field on the plane which is scale invariant if the plane is scaled, but not if h is. On the other hand, \(T^B_{ji}\) is not trace-free but should not have been expected to be.
 
22
Unlike the prolate, this geometry is stable with respect to membrane slippage under the ring.
 
23
This is well known in the context of global constraints. In a symmetric closed fluid membrane subject to area and volume constraints, the identity \(2\sigma A - 3 P V=0\) is a consequence of the scale invariance of the bending energy, Svetina and Žekž (1989).
 
24
\(K_{ab}\rightarrow K_{ab} = -|\mathbf { X}|^{2} \left( K_{ab} - 2 \,(\mathbf { X}\cdot \mathbf { n}) g_{ab} / |\mathbf { X}|^{-2}\right) \).
 
25
Fixing the discocyte area at \(4 \pi r_0^2\) determines \(R_S = 1.089 \, r_0\).
 
26
The bilateral symmetry (not necessarily in the original XZ plane) is preserved if the point strays off this axis; however, the up-down symmetry is broken, just as it was in the axially symmetric family.
 
27
This is the shortest distance between the two points on the surface. They are, of course, in contact in space.
 
28
An unexpected duality between the weak field behavior in one geometry and the strong field behavior in the other is evident: asymptotically, the catenoid is accurately described by the height function \(h \sim \ln r\), \(r\gg r_0\); this asymptotic region is mapped into the neighborhood of the poles described by \(h\sim -r^2 \ln r\), \(r\ll s\). Inversion provides a connection between the harmonic behavior in the former and the biharmonic behavior in the latter, Guven and Vázquez-Montejo (2013b). To understand this duality between harmonic and biharmonic function, look at the inversion in the origin \(\mathbf { x}\rightarrow \mathbf { x}/|\mathbf { x}|^2\) (for transparency set the scale to one), described in the height function representation by \((r, h) \rightarrow (r, h)/ (({r^2 +h^2})\), so that \(h \approx \ln r\) \(\rightarrow \) \(\frac{h}{r^2 + h^2}= \ln [{r}/({r^2 +h^2})]\). Now, if \(h\ll r\), then \(\frac{h}{r^2} \approx - \ln r \), and as claimed the Green function of the Laplacian is mapped to its biharmonic counterpart.
 
29
In this context, note also that the symmetric saddle with \(h\sim r^2 \cos 2\theta \) maps to the biharmonic dipole \(h\sim \cos 2\theta \).
 
Literature
go back to reference L. Amoasii, K. Hnia, G. Chicanne, A. Brech, B.S. Cowling, M.M. Müller, Y. Schwab, P. Koebel, A. Ferry, B. Payrastre, J. Laporte, Myotubularin and ptdins3p remodel the sarcoplasmic reticulum in muscle in vivo. J. Cell Sci. 126(8), 1806–1819 (2013). doi:10.1242/jcs.118505 CrossRef L. Amoasii, K. Hnia, G. Chicanne, A. Brech, B.S. Cowling, M.M. Müller, Y. Schwab, P. Koebel, A. Ferry, B. Payrastre, J. Laporte, Myotubularin and ptdins3p remodel the sarcoplasmic reticulum in muscle in vivo. J. Cell Sci. 126(8), 1806–1819 (2013). doi:10.​1242/​jcs.​118505 CrossRef
go back to reference P. Bassereau, B. Sorre, A. Lévy, Bending lipid membranes: experiments after w. helfrich’s model. Adv. Colloid Interface Sci. 208, 47–57 (2014). doi:10.1016/j.cis.2014.02.002. Special issue in honour of Wolfgang Helfrich P. Bassereau, B. Sorre, A. Lévy, Bending lipid membranes: experiments after w. helfrich’s model. Adv. Colloid Interface Sci. 208, 47–57 (2014). doi:10.​1016/​j.​cis.​2014.​02.​002. Special issue in honour of Wolfgang Helfrich
go back to reference B. Božič, S.L. Das, S. Svetina, Sorting of integral membrane proteins mediated by curvature-dependent protein-lipid bilayer interaction. Soft Matter 11, 2479–2487 (2015). doi:10.1039/C4SM02289K CrossRef B. Božič, S.L. Das, S. Svetina, Sorting of integral membrane proteins mediated by curvature-dependent protein-lipid bilayer interaction. Soft Matter 11, 2479–2487 (2015). doi:10.​1039/​C4SM02289K CrossRef
go back to reference M. Deserno, Membrane elasticity and mediated interactions in continuum theory: a differential geometric approach, in Biomembrane Frontiers, ed. by R. Faller, M.L. Longo, S.H. Risbud, T. Jue. Handbook of Modern Biophysics (Humana Press, New York, 2009), pp. 41–74. doi:10.1007/978-1-60761-314-5_2 M. Deserno, Membrane elasticity and mediated interactions in continuum theory: a differential geometric approach, in Biomembrane Frontiers, ed. by R. Faller, M.L. Longo, S.H. Risbud, T. Jue. Handbook of Modern Biophysics (Humana Press, New York, 2009), pp. 41–74. doi:10.​1007/​978-1-60761-314-5_​2
go back to reference P. Diggins IV, Z.A. McDargh, M. Deserno, Curvature softening and negative compressibility of gel-phase lipid membranes. J. Am. Chem. Soc. 137(40), 12752–12755 (2015). doi:10.1021/jacs.5b06800 CrossRef P. Diggins IV, Z.A. McDargh, M. Deserno, Curvature softening and negative compressibility of gel-phase lipid membranes. J. Am. Chem. Soc. 137(40), 12752–12755 (2015). doi:10.​1021/​jacs.​5b06800 CrossRef
go back to reference M. Do Carmo, Differential Geometry of Curves and Surface (Prentice Hall, Upper Saddle River, 1976) M. Do Carmo, Differential Geometry of Curves and Surface (Prentice Hall, Upper Saddle River, 1976)
go back to reference M. Do Carmo. Riemannian Geometry. (Birkhauser, Basel, 1992) M. Do Carmo. Riemannian Geometry. (Birkhauser, Basel, 1992)
go back to reference E.A. Evans, R. Skalak, Mechanics and Thermodynamics of Biomembranes (CRC Press, Boca Raton, 1980) E.A. Evans, R. Skalak, Mechanics and Thermodynamics of Biomembranes (CRC Press, Boca Raton, 1980)
go back to reference R. Goetz, W. Helfrich, The egg carton: theory of a periodic superstructure of some lipid membranes. J. Phys. II Fr. 6(2), 215–223 (1996). doi:10.1051/jp2:1996178 R. Goetz, W. Helfrich, The egg carton: theory of a periodic superstructure of some lipid membranes. J. Phys. II Fr. 6(2), 215–223 (1996). doi:10.​1051/​jp2:​1996178
go back to reference J. Guven, M.M. Müller, P. Vázquez-Montejo, Conical instabilities on paper. J. Phys. A Math. Theo. 45(1), 015203 (2012). doi:10.1088/1751-8113 J. Guven, M.M. Müller, P. Vázquez-Montejo, Conical instabilities on paper. J. Phys. A Math. Theo. 45(1), 015203 (2012). doi:10.​1088/​1751-8113
go back to reference J.H. Jellett. Sur la surface dont la courbure moyenne est constante. Journal de Mathematiques Pures et Appliquees, 163–167 (1853) J.H. Jellett. Sur la surface dont la courbure moyenne est constante. Journal de Mathematiques Pures et Appliquees, 163–167 (1853)
go back to reference F. Jülicher, The morphology of vesicles of higher topological genus: conformal degeneracy and conformal modes. J. Phys. II Fr. 6(12), 1797–1824 (1996). doi:10.1051/jp2:1996161 F. Jülicher, The morphology of vesicles of higher topological genus: conformal degeneracy and conformal modes. J. Phys. II Fr. 6(12), 1797–1824 (1996). doi:10.​1051/​jp2:​1996161
go back to reference V. Kralj-Iglič, V. Heinrich, S. Svetina, B. Žekž, Free energy of closed membrane with anisotropic inclusions. Eur. Phys. J. B - Condens. Matter Complex Syst. 10(1), 5–8 (1999). doi:10.1007/s100510050822 V. Kralj-Iglič, V. Heinrich, S. Svetina, B. Žekž, Free energy of closed membrane with anisotropic inclusions. Eur. Phys. J. B - Condens. Matter Complex Syst. 10(1), 5–8 (1999). doi:10.​1007/​s100510050822
go back to reference E. Kreyszig, Differential Geometry (Dover Publications, New York, 1991)MATH E. Kreyszig, Differential Geometry (Dover Publications, New York, 1991)MATH
go back to reference R. Kusner, Geometric analysis and computer graphics, in Mathematical Sciences Research Institute Publications, vol. 17, ed. by P. Concus, R. Finn, D.A. Hoffman (Springer, New York, 1991), pp. 103–108. doi:10.1007/978-1-4613-9711-3_11 R. Kusner, Geometric analysis and computer graphics, in Mathematical Sciences Research Institute Publications, vol. 17, ed. by P. Concus, R. Finn, D.A. Hoffman (Springer, New York, 1991), pp. 103–108. doi:10.​1007/​978-1-4613-9711-3_​11
go back to reference R. Lipowsky, Spontaneous tubulation of membranes and vesicles reveals membrane tension generated by spontaneous curvature. Faraday Discuss. 161, 305–331 (2013). doi:10.1039/C2FD20105D CrossRef R. Lipowsky, Spontaneous tubulation of membranes and vesicles reveals membrane tension generated by spontaneous curvature. Faraday Discuss. 161, 305–331 (2013). doi:10.​1039/​C2FD20105D CrossRef
go back to reference M.M. Müller, Theoretical studies of fluid membrane mechanics, Ph.D. thesis, University of Mainz (Germany), 2007 M.M. Müller, Theoretical studies of fluid membrane mechanics, Ph.D. thesis, University of Mainz (Germany), 2007
go back to reference H. Noguchi, Membrane tubule formation by banana-shaped proteins with or without transient network structur. Sci. Rep. 6, 20935 (2016b). doi:10.1038/srep20935 H. Noguchi, Membrane tubule formation by banana-shaped proteins with or without transient network structur. Sci. Rep. 6, 20935 (2016b). doi:10.​1038/​srep20935
go back to reference A.S.H. Noguchi, M. Imai, Shape transformations of toroidal vesicles. Soft Matter 11, 193–201 (2015)CrossRef A.S.H. Noguchi, M. Imai, Shape transformations of toroidal vesicles. Soft Matter 11, 193–201 (2015)CrossRef
go back to reference Z.-C. Ou-Yang, W. Helfrich, Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys. Rev. A 39, 5280–5288 (1989). doi:10.1103/PhysRevA.39.5280 CrossRef Z.-C. Ou-Yang, W. Helfrich, Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys. Rev. A 39, 5280–5288 (1989). doi:10.​1103/​PhysRevA.​39.​5280 CrossRef
go back to reference Z.C. Ou-Yang, J.X. Liu, Y.Z. Xie, X. Yu-Zhang, Geometric Methods in the Elastic Theory of Membranes in Liquid Crystal Phases, Advanced series on theoretical physical science (World Scientific, Singapore, 1999)MATH Z.C. Ou-Yang, J.X. Liu, Y.Z. Xie, X. Yu-Zhang, Geometric Methods in the Elastic Theory of Membranes in Liquid Crystal Phases, Advanced series on theoretical physical science (World Scientific, Singapore, 1999)MATH
go back to reference U. Pinkall, Cyclides of Dupin, in Mathematical Models from the Collections of Universities and Museums, ed. by E.G. Fischer. Advanced Lectures in Mathematics Series (Friedrick Vieweg & Son, Braunschweig, 1986), pp. 28–30. Chap. 3.3 U. Pinkall, Cyclides of Dupin, in Mathematical Models from the Collections of Universities and Museums, ed. by E.G. Fischer. Advanced Lectures in Mathematics Series (Friedrick Vieweg & Son, Braunschweig, 1986), pp. 28–30. Chap. 3.3
go back to reference B.J. Reynwar, G. Illya, V.A. Harmandaris, M.M. Müller, K. Kremer, M. Deserno, Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature 447, 461–464 (2007). doi:10.1038/nature05840 CrossRef B.J. Reynwar, G. Illya, V.A. Harmandaris, M.M. Müller, K. Kremer, M. Deserno, Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature 447, 461–464 (2007). doi:10.​1038/​nature05840 CrossRef
go back to reference U. Seifert, R. Lipowsky, Morphology of vesicles, in Structure and Dynamics of Membranes From Cells to Vesicles, ed. by R. Lipowsky, E. Sackmann. Handbook of Biological Physics, vol. 1 (North-Holland, Amsterdam, 1995), pp. 403–463. doi:10.1016/S1383-8121(06)80025-4 U. Seifert, R. Lipowsky, Morphology of vesicles, in Structure and Dynamics of Membranes From Cells to Vesicles, ed. by R. Lipowsky, E. Sackmann. Handbook of Biological Physics, vol. 1 (North-Holland, Amsterdam, 1995), pp. 403–463. doi:10.​1016/​S1383-8121(06)80025-4
go back to reference H. Shiba, H. Noguchi, J.-B. Fournier, Monte carlo study of the frame, fluctuation and internal tensions of fluctuating membranes with fixed area. Soft Matter 12, 2373–2380 (2016). doi:10.1039/C5SM01900A H. Shiba, H. Noguchi, J.-B. Fournier, Monte carlo study of the frame, fluctuation and internal tensions of fluctuating membranes with fixed area. Soft Matter 12, 2373–2380 (2016). doi:10.​1039/​C5SM01900A
go back to reference M. Spivak, A Comprehensive Introduction to Differential Geometry, vol. 1–5, 3rd edn. (Publish or Perish, Inc., Houston, 1999) M. Spivak, A Comprehensive Introduction to Differential Geometry, vol. 1–5, 3rd edn. (Publish or Perish, Inc., Houston, 1999)
go back to reference S. Svetina, B. Žekž, Membrane bending energy and shape determination of phospholipid vesicles and red blood cells. Eur. Biophys. J. 17(2), 101–111 (1989). doi:10.1007/BF00257107 CrossRef S. Svetina, B. Žekž, Membrane bending energy and shape determination of phospholipid vesicles and red blood cells. Eur. Biophys. J. 17(2), 101–111 (1989). doi:10.​1007/​BF00257107 CrossRef
go back to reference S. Svetina, B. Žekš, Nonlocal membrane bending: a reflection, the facts and its relevance. Adv. Colloid Interface Sci. 208, 189–196 (2014). doi:10.1016/j.cis.2014.01.010. Special issue in honour of Wolfgang Helfrich S. Svetina, B. Žekš, Nonlocal membrane bending: a reflection, the facts and its relevance. Adv. Colloid Interface Sci. 208, 189–196 (2014). doi:10.​1016/​j.​cis.​2014.​01.​010. Special issue in honour of Wolfgang Helfrich
go back to reference M. Terasaki, T. Shemesh, N. Kasthuri, R.W. Klemm, R. Schalek, K.J. Hayworth, A.R. Hand, M. Yankova, G. Huber, J.W. Lichtman, T.A. Rapoport, M.M. Kozlov, Stacked endoplasmic reticulum sheets are connected by helicoidal membrane motifs. Cell 154, 285–296 (2013). doi:10.1016/j.cell.2013.06.031 CrossRef M. Terasaki, T. Shemesh, N. Kasthuri, R.W. Klemm, R. Schalek, K.J. Hayworth, A.R. Hand, M. Yankova, G. Huber, J.W. Lichtman, T.A. Rapoport, M.M. Kozlov, Stacked endoplasmic reticulum sheets are connected by helicoidal membrane motifs. Cell 154, 285–296 (2013). doi:10.​1016/​j.​cell.​2013.​06.​031 CrossRef
go back to reference Z.C. Tu, Z.C. Ou-Yang, Recent theoretical advances in elasticity of membranes following helfrich’s spontaneous curvature model. Adv. Colloid Interface Sci. 208, 66–75 (2014). doi:10.1016/j.cis.2014.01.008. Special issue in honour of Wolfgang Helfrich Z.C. Tu, Z.C. Ou-Yang, Recent theoretical advances in elasticity of membranes following helfrich’s spontaneous curvature model. Adv. Colloid Interface Sci. 208, 66–75 (2014). doi:10.​1016/​j.​cis.​2014.​01.​008. Special issue in honour of Wolfgang Helfrich
go back to reference R.M. Wald, General Relativity (University of Chicago Press, Chicago, 2010)MATH R.M. Wald, General Relativity (University of Chicago Press, Chicago, 2010)MATH
go back to reference T.J. Willmore, Note on embedded surfaces. An. St. Univ. Iasi, sIa Mat. B 12, 493–496 (1965) T.J. Willmore, Note on embedded surfaces. An. St. Univ. Iasi, sIa Mat. B 12, 493–496 (1965)
go back to reference T.J. Willmore, Total Curvature in Riemannian Geometry (Ellis Horwood, Chichester, 1982)MATH T.J. Willmore, Total Curvature in Riemannian Geometry (Ellis Horwood, Chichester, 1982)MATH
go back to reference T.J. Willmore, Riemannian Geometry (Oxford University Press, Oxford, 1996)MATH T.J. Willmore, Riemannian Geometry (Oxford University Press, Oxford, 1996)MATH
go back to reference C. Yolcu, R.C. Haussman, M. Deserno, The effective field theory approach towards membrane-mediated interactions between particles. Adv. Colloid Interface Sci. 208, 89–109 (2014). doi:10.1016/j.cis.2014.02.017. Special issue in honour of Wolfgang Helfrich C. Yolcu, R.C. Haussman, M. Deserno, The effective field theory approach towards membrane-mediated interactions between particles. Adv. Colloid Interface Sci. 208, 89–109 (2014). doi:10.​1016/​j.​cis.​2014.​02.​017. Special issue in honour of Wolfgang Helfrich
Metadata
Title
The Geometry of Fluid Membranes: Variational Principles, Symmetries and Conservation Laws
Authors
Jemal Guven
Pablo Vázquez-Montejo
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-56348-0_4

Premium Partners