Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 6/2024

25-03-2024 | Original Research Article

The Growth of {1 1 h}〈1 2 1/h〉 (α*-Fiber) Grains and the Evanesce of {001}〈100〉 (Cube) Grains During the Recrystallization of Warm Rolled Fe-6.5 Wt Pct Si Non-oriented Electrical Steel

Authors: Haijie Xu, Youliang He, Xuedao Shu, Yunbo Xu, Steve Yue

Published in: Metallurgical and Materials Transactions A | Issue 6/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

〈001〉//ND (normal direction) texture (including the cube, {001}〈100〉) is a desired final texture in non-oriented electrical steel (NOES) due to the alignment of two magnetically easy 〈100〉 axes in the magnetization directions of the lamination core in rotating machines. However, after conventional rolling and annealing, the final texture of NOES is usually not the desired 〈001〉//ND texture, but the unfavorable 〈111〉//ND (γ-fiber), 〈110〉//RD (rolling direction) (α-fiber), and sometimes {1 1 h}〈1 2 1/h〉 (α*-fiber) textures. How do these textures (especially the α*-fiber texture) form in the recrystallization process is still not completely understood. This paper investigates the recrystallization process of a warm rolled NOES containing 6.5 wt pct Si and tracks the growth of individual grains using a quasi in-situ EBSD (electron backscatter diffraction) technique. It is shown that the {1 1 h}〈1 2 1/h〉 (α*-fiber) grains (including {001}〈120〉, {114}〈481〉, and {112}〈241〉) normally form in the later stage of recrystallization, and mainly nucleate in the mid-thickness region of the deformed steel from grains having the 〈110〉//RD (α-fiber) orientations. Once nucleated, they can rapidly grow into the deformed matrix due to the large energy difference between the recrystallized and deformed grains and to the high-mobility grain boundaries with respect to the deformed matrix. On the other hand, although cube grains nucleate early during recrystallization, they cannot grow significantly into the deformed grains because of the very high misorientation angles with respect to the deformed grains, which may have caused “orientation pinning”. As a result, the cube grains are finally consumed by the large α*-fiber grains due to size disadvantage. The origins of the α*-fiber grains and cube grains are also analyzed using the quasi in-situ EBSD data obtained in the early stages of annealing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G. Ouyang, X. Chen, Y. Liang, C. Macziewski, and J. Cui: Review of Fe-65 wt pct Si high silicon steel: a promising soft magnetic material for sub-kHz application. J. Magnet. Magnetic Mater., 2019, vol. 481, pp. 234–50.CrossRef G. Ouyang, X. Chen, Y. Liang, C. Macziewski, and J. Cui: Review of Fe-65 wt pct Si high silicon steel: a promising soft magnetic material for sub-kHz application. J. Magnet. Magnetic Mater., 2019, vol. 481, pp. 234–50.CrossRef
2.
go back to reference T.N. Lamichhane, L. Sethuraman, A. Dalagan, H. Wang, J. Keller, and M.P. Paranthaman: Additive manufacturing of soft magnets for electrical machines-a review. Mater Today Phys., 2020, vol. 15, 100255.CrossRef T.N. Lamichhane, L. Sethuraman, A. Dalagan, H. Wang, J. Keller, and M.P. Paranthaman: Additive manufacturing of soft magnets for electrical machines-a review. Mater Today Phys., 2020, vol. 15, 100255.CrossRef
3.
go back to reference R. Liang, P. Yang, and W. Mao: Cube texture evolution and magnetic properties of 65 wt pct Si electrical steel fabricated by surface energy and three-stage rolling method. J Mag. Mag. Mater., 2018, vol. 457(2018), pp. 38–45.CrossRef R. Liang, P. Yang, and W. Mao: Cube texture evolution and magnetic properties of 65 wt pct Si electrical steel fabricated by surface energy and three-stage rolling method. J Mag. Mag. Mater., 2018, vol. 457(2018), pp. 38–45.CrossRef
4.
go back to reference X. Wang, Z. Liu, H. Li, and G. Wang: Microstructural evolution in warm-rolled and cold-rolled strip cast 6.5 wt pct Si steel thin sheets and its influence on magnetic properties. J. Mag. Mag. Mater., 2017, vol. 433, pp. 8–16.CrossRef X. Wang, Z. Liu, H. Li, and G. Wang: Microstructural evolution in warm-rolled and cold-rolled strip cast 6.5 wt pct Si steel thin sheets and its influence on magnetic properties. J. Mag. Mag. Mater., 2017, vol. 433, pp. 8–16.CrossRef
5.
go back to reference H.J. Xu, Y.B. Xu, H.T. Jiao, S.F. Cheng, R.D.K. Misra, and J.P. Li: Influence of grain size and texture prior to warm rolling on microstructure, texture and magnetic properties of Fe-6.5 wt pct Si steel. J. Mag. Mag. Mater., 2018, vol. 453, pp. 236–45.CrossRef H.J. Xu, Y.B. Xu, H.T. Jiao, S.F. Cheng, R.D.K. Misra, and J.P. Li: Influence of grain size and texture prior to warm rolling on microstructure, texture and magnetic properties of Fe-6.5 wt pct Si steel. J. Mag. Mag. Mater., 2018, vol. 453, pp. 236–45.CrossRef
6.
go back to reference X. Shen, F. Meng, K.B. Lau, P. Wang, and C.H.T. Lee: Texture and microstructure characterizations of Fe-3.5 wt pct Si soft magnetic alloy fabricated via laser powder bed fusion. Mater Charact, 2022, vol. 189, p. 112012.CrossRef X. Shen, F. Meng, K.B. Lau, P. Wang, and C.H.T. Lee: Texture and microstructure characterizations of Fe-3.5 wt pct Si soft magnetic alloy fabricated via laser powder bed fusion. Mater Charact, 2022, vol. 189, p. 112012.CrossRef
7.
go back to reference Y. He and E.J. Hilinski: Textures of non-oriented electrical steel sheets produced by skew cold rolling and annealing. Metals, 2022, vol. 12(1), p. 17.CrossRef Y. He and E.J. Hilinski: Textures of non-oriented electrical steel sheets produced by skew cold rolling and annealing. Metals, 2022, vol. 12(1), p. 17.CrossRef
8.
go back to reference L. Fan, Y. Zhu, E. Yue, J. He, and L. Sun: Microstructure and texture evolution of ultra-thin high grade non-oriented silicon steel used in new energy vehicle. Mater. Res. Express, 2022, vol. 9(9), 096515.CrossRef L. Fan, Y. Zhu, E. Yue, J. He, and L. Sun: Microstructure and texture evolution of ultra-thin high grade non-oriented silicon steel used in new energy vehicle. Mater. Res. Express, 2022, vol. 9(9), 096515.CrossRef
9.
go back to reference H. Xu, Y. Xu, Y. He, H. Jiao, S. Yue, and J. Li: A quasi in-situ EBSD study of the nucleation and growth of Goss grains during primary and secondary recrystallization of a strip-cast Fe-65 wt pct Si alloy. J. Alloys Compd., 2021, vol. 861, p. 158550.CrossRef H. Xu, Y. Xu, Y. He, H. Jiao, S. Yue, and J. Li: A quasi in-situ EBSD study of the nucleation and growth of Goss grains during primary and secondary recrystallization of a strip-cast Fe-65 wt pct Si alloy. J. Alloys Compd., 2021, vol. 861, p. 158550.CrossRef
10.
go back to reference M. Yasuda, K. Murakami, and K. Ushioda: Recrystallization behavior and formation of {411}〈148〉 grain from α-fiber grains in heavily cold-rolled Fe-3%Si alloy. ISIJ Int., 2020, vol. 60(11), pp. 2558–568.CrossRef M. Yasuda, K. Murakami, and K. Ushioda: Recrystallization behavior and formation of {411}〈148〉 grain from α-fiber grains in heavily cold-rolled Fe-3%Si alloy. ISIJ Int., 2020, vol. 60(11), pp. 2558–568.CrossRef
11.
go back to reference J. Qin, J. Yang, Y. Zhang, Q. Zhou, and Y. Cao: Strong {100}〈012〉-{411}〈148〉 recrystallization textures in heavily hot-rolled non-oriented electrical steels. Mater. Lett., 2020, vol. 259, 126844.CrossRef J. Qin, J. Yang, Y. Zhang, Q. Zhou, and Y. Cao: Strong {100}〈012〉-{411}〈148〉 recrystallization textures in heavily hot-rolled non-oriented electrical steels. Mater. Lett., 2020, vol. 259, 126844.CrossRef
12.
go back to reference M. Mehdi, Y. He, E.J. Hilinski, L.A.I. Kestens, and A. Edrisy: The evolution of cube ({001}〈100〉) texture in non-oriented electrical steel. Acta Mater., 2020, vol. 185, pp. 540–54.CrossRef M. Mehdi, Y. He, E.J. Hilinski, L.A.I. Kestens, and A. Edrisy: The evolution of cube ({001}〈100〉) texture in non-oriented electrical steel. Acta Mater., 2020, vol. 185, pp. 540–54.CrossRef
13.
go back to reference T.Y. Kim, T.W. Na, H.S. Shim, Y.K. Ahn, Y.K. Jeong, H.N. Han, and N.M. Hwang: Misorientation characteristics at the growth front of abnormally-growing Goss grains in Fe–3%Si steel. Met. Mater. Int., 2021, vol. 27, pp. 5114–120.CrossRef T.Y. Kim, T.W. Na, H.S. Shim, Y.K. Ahn, Y.K. Jeong, H.N. Han, and N.M. Hwang: Misorientation characteristics at the growth front of abnormally-growing Goss grains in Fe–3%Si steel. Met. Mater. Int., 2021, vol. 27, pp. 5114–120.CrossRef
14.
go back to reference M. Mehdi, Y. He, E.J. Hilinski, and A. Edrisy: Texture evolution of a 28 wt pct Si non-oriented electrical steel and the elimination of the〈111〉//ND texture. Metall. Mater. Trans. A, 2019, vol. 50, pp. 3343–357.CrossRef M. Mehdi, Y. He, E.J. Hilinski, and A. Edrisy: Texture evolution of a 28 wt pct Si non-oriented electrical steel and the elimination of the〈111〉//ND texture. Metall. Mater. Trans. A, 2019, vol. 50, pp. 3343–357.CrossRef
15.
go back to reference S. Takajo, C.C. Merriman, S.C. Vogel, and D.P. Field: In-situ EBSD study on the cube texture evolution in 3 wt pct Si steel complemented by ex-situ EBSD experiment from nucleation to grain growth. Acta Mater., 2019, vol. 166, pp. 100–12.CrossRef S. Takajo, C.C. Merriman, S.C. Vogel, and D.P. Field: In-situ EBSD study on the cube texture evolution in 3 wt pct Si steel complemented by ex-situ EBSD experiment from nucleation to grain growth. Acta Mater., 2019, vol. 166, pp. 100–12.CrossRef
16.
go back to reference D. Hawezy and S. Birosca: Disparity in recrystallization of α- & γ-fibers and its impact on Cube texture formation in non-oriented electrical steel. Acta Mater., 2021, vol. 216, 117141.CrossRef D. Hawezy and S. Birosca: Disparity in recrystallization of α- & γ-fibers and its impact on Cube texture formation in non-oriented electrical steel. Acta Mater., 2021, vol. 216, 117141.CrossRef
17.
go back to reference M. Sanjari, M. Mehdi, Y. He, E.J. Hilinski, S. Yue, L.A.I. Kestens, and A. Edrisy: Tracking the evolution of annealing textures from individual deformed grains in a cross-rolled non-oriented electrical steel. Metall. Mater. Trans. A, 2017, vol. 48, pp. 6013–26.CrossRef M. Sanjari, M. Mehdi, Y. He, E.J. Hilinski, S. Yue, L.A.I. Kestens, and A. Edrisy: Tracking the evolution of annealing textures from individual deformed grains in a cross-rolled non-oriented electrical steel. Metall. Mater. Trans. A, 2017, vol. 48, pp. 6013–26.CrossRef
18.
go back to reference H.Z. Li, Z.Y. Liu, X.L. Wang, H.M. Ren, C.G. Li, G.M. Cao, and G.D. Wang: {114}〈481〉 Annealing texture in twin-roll casting non-oriented 65 wt pct Si electrical steel. J. Mater. Sci., 2017, vol. 52(1), pp. 247–59.CrossRef H.Z. Li, Z.Y. Liu, X.L. Wang, H.M. Ren, C.G. Li, G.M. Cao, and G.D. Wang: {114}〈481〉 Annealing texture in twin-roll casting non-oriented 65 wt pct Si electrical steel. J. Mater. Sci., 2017, vol. 52(1), pp. 247–59.CrossRef
19.
go back to reference G. Zu, X. Zhang, J. Zhao, Y. Wang, Y. Cui, Y. Yan, and Z. Jiang: Analysis of {411}〈148〉 recrystallisation texture in twin-roll strip casting of 4.5 wt pct Si non-oriented electrical steel. Mater. Lett., 2016, vol. 180, pp. 63–67.CrossRef G. Zu, X. Zhang, J. Zhao, Y. Wang, Y. Cui, Y. Yan, and Z. Jiang: Analysis of {411}〈148〉 recrystallisation texture in twin-roll strip casting of 4.5 wt pct Si non-oriented electrical steel. Mater. Lett., 2016, vol. 180, pp. 63–67.CrossRef
20.
go back to reference N. Zhang, P. Yang, and W. Mao: 001}〈120〉-{113}〈361〉 recrystallization textures induced by initial {001 grains and related microstructure evolution in heavily rolled electrical steel. Mater Charact, 2016, vol. 119, pp. 225–32.CrossRef N. Zhang, P. Yang, and W. Mao: 001}〈120〉-{113}〈361〉 recrystallization textures induced by initial {001 grains and related microstructure evolution in heavily rolled electrical steel. Mater Charact, 2016, vol. 119, pp. 225–32.CrossRef
21.
go back to reference C.X. He, F.Y. Yang, G. Ma, X. Chen, and L. Meng: {411}〈148〉 texture in thin-gauge grain-oriented silicon steel. Acta Metall. Sin. (English Lett.), 2016, vol. 29(6), pp. 554–60.CrossRef C.X. He, F.Y. Yang, G. Ma, X. Chen, and L. Meng: {411}〈148〉 texture in thin-gauge grain-oriented silicon steel. Acta Metall. Sin. (English Lett.), 2016, vol. 29(6), pp. 554–60.CrossRef
22.
go back to reference M. Sanjari, Y. He, E.J. Hilinski, S. Yue, and L.A.I. Kestens: Development of the {113}〈uvw〉 texture during the annealing of a skew cold rolled non-oriented electrical steel. Scip. Mater., 2016, vol. 124, pp. 179–83.CrossRef M. Sanjari, Y. He, E.J. Hilinski, S. Yue, and L.A.I. Kestens: Development of the {113}〈uvw〉 texture during the annealing of a skew cold rolled non-oriented electrical steel. Scip. Mater., 2016, vol. 124, pp. 179–83.CrossRef
23.
go back to reference H. Xu, Y. Xu, Y. He, S. Cheng, H. Jiao, S. Yue, and J. Li: Two-stage warm cross rolling and its effect on the microstructure, texture and magnetic properties of an Fe-65 wt pct Si non-oriented electrical steel. J. Mater. Sci., 2020, vol. 55(26), pp. 12525–2543.CrossRef H. Xu, Y. Xu, Y. He, S. Cheng, H. Jiao, S. Yue, and J. Li: Two-stage warm cross rolling and its effect on the microstructure, texture and magnetic properties of an Fe-65 wt pct Si non-oriented electrical steel. J. Mater. Sci., 2020, vol. 55(26), pp. 12525–2543.CrossRef
24.
go back to reference P. Gobernado, R.H. Petrov, J. Moerman, C. Barbatti, and L.A.I. Kestens: Recrystallization texture of ferrite steels: beyond the γ-fibre. Mater. Sci. Forum, 2012, vol. 702–703, pp. 790–93. P. Gobernado, R.H. Petrov, J. Moerman, C. Barbatti, and L.A.I. Kestens: Recrystallization texture of ferrite steels: beyond the γ-fibre. Mater. Sci. Forum, 2012, vol. 702–703, pp. 790–93.
25.
go back to reference L. Kestens and S. Jacobs: Texture control during the manufacturing of nonoriented electrical steels. Texture Stress Microstruct., 2008, vol. 2008, 173083.CrossRef L. Kestens and S. Jacobs: Texture control during the manufacturing of nonoriented electrical steels. Texture Stress Microstruct., 2008, vol. 2008, 173083.CrossRef
26.
go back to reference P. Gobernado, R.H. Petrov, and L.A.I. Kestens: Recrystallized {311}〈136〉 orientation in ferrite steels. Scrip. Mater., 2012, vol. 66(9), pp. 623–26.CrossRef P. Gobernado, R.H. Petrov, and L.A.I. Kestens: Recrystallized {311}〈136〉 orientation in ferrite steels. Scrip. Mater., 2012, vol. 66(9), pp. 623–26.CrossRef
27.
go back to reference M. Sanjari, Y. He, E.J. Hilinski, S. Yue, and L.A. Kestens: Development of the {113}〈uvw〉 texture during the annealing of a skew cold rolled non-oriented electrical steel. Scrip. Mater., 2016, vol. 124, pp. 179–83.CrossRef M. Sanjari, Y. He, E.J. Hilinski, S. Yue, and L.A. Kestens: Development of the {113}〈uvw〉 texture during the annealing of a skew cold rolled non-oriented electrical steel. Scrip. Mater., 2016, vol. 124, pp. 179–83.CrossRef
28.
go back to reference P. Gobernado, R. Petrov, D. Ruiz, E. Leunis, and L. Kestens: Texture evolution in Si-alloyed ultra low-carbon steels after severe plastic deformation. Adv. Eng. Mater., 2010, vol. 12(10), pp. 1077–81.CrossRef P. Gobernado, R. Petrov, D. Ruiz, E. Leunis, and L. Kestens: Texture evolution in Si-alloyed ultra low-carbon steels after severe plastic deformation. Adv. Eng. Mater., 2010, vol. 12(10), pp. 1077–81.CrossRef
29.
go back to reference L. Kestens, J. Jonas, P. Van Houtte, and E. Aernoudt: Orientation selection during static recrystallization of cross rolled non-oriented electrical steels. Text. Stress. Microst., 1996, vol. 26, pp. 321–35.CrossRef L. Kestens, J. Jonas, P. Van Houtte, and E. Aernoudt: Orientation selection during static recrystallization of cross rolled non-oriented electrical steels. Text. Stress. Microst., 1996, vol. 26, pp. 321–35.CrossRef
30.
go back to reference K. Verbeken, L. Kestens, and M. Nave: Re-evaluation of the Ibe-Lücke growth selection experiment in a Fe–Si single crystal. Acta Mater., 2005, vol. 53(9), pp. 2675–682.CrossRef K. Verbeken, L. Kestens, and M. Nave: Re-evaluation of the Ibe-Lücke growth selection experiment in a Fe–Si single crystal. Acta Mater., 2005, vol. 53(9), pp. 2675–682.CrossRef
31.
go back to reference K.K. Alaneme and E.A. Okotete: Recrystallization mechanisms and microstructure development in emerging metallic materials: a review. J. Sci., 2019, vol. 4(1), pp. 19–33. K.K. Alaneme and E.A. Okotete: Recrystallization mechanisms and microstructure development in emerging metallic materials: a review. J. Sci., 2019, vol. 4(1), pp. 19–33.
32.
go back to reference F. Gao, Y. Chen, Q. Zhu, Y. Nan, S. Tang, Z. Cai, F. Zhang, W. Xue, X. Cai, F. Yu, and Z. Liu: Formation of recrystallization texture and its effect on deep drawability for high-purified ferritic stainless steel by two step cold rolling. Mater. Des., 2023, vol. 226, 111679.CrossRef F. Gao, Y. Chen, Q. Zhu, Y. Nan, S. Tang, Z. Cai, F. Zhang, W. Xue, X. Cai, F. Yu, and Z. Liu: Formation of recrystallization texture and its effect on deep drawability for high-purified ferritic stainless steel by two step cold rolling. Mater. Des., 2023, vol. 226, 111679.CrossRef
33.
go back to reference A. Després, J.D. Mithieux, and C.W. Sinclair: Modelling the relationship between deformed microstructures and static recrystallization textures: application to ferritic stainless steels. Acta Mater., 2021, vol. 219, 117226.CrossRef A. Després, J.D. Mithieux, and C.W. Sinclair: Modelling the relationship between deformed microstructures and static recrystallization textures: application to ferritic stainless steels. Acta Mater., 2021, vol. 219, 117226.CrossRef
34.
go back to reference F. Fang, J. Wang, J. Yang, Y. Zhang, Y. Wang, G. Yuan, X. Zhang, R.D.K. Misra, and G. Wang: Formation of η-oriented shear bands and its significant impact on recrystallization texture in strip-cast electrical steel. J. Market. Res., 2022, vol. 21, pp. 1770–783. F. Fang, J. Wang, J. Yang, Y. Zhang, Y. Wang, G. Yuan, X. Zhang, R.D.K. Misra, and G. Wang: Formation of η-oriented shear bands and its significant impact on recrystallization texture in strip-cast electrical steel. J. Market. Res., 2022, vol. 21, pp. 1770–783.
35.
go back to reference J. Saha, R. Saha, and P.P. Bhattacharjee: Microstructure and texture development in CoCrNi medium entropy alloy processed by severe warm cross-rolling and annealing. Intermetallics, 2022, vol. 143, 107463.CrossRef J. Saha, R. Saha, and P.P. Bhattacharjee: Microstructure and texture development in CoCrNi medium entropy alloy processed by severe warm cross-rolling and annealing. Intermetallics, 2022, vol. 143, 107463.CrossRef
36.
go back to reference W. Liu, Z. Liu, W. Luo, H. Liu, Q. Wang, and R. Zhang: Influence of Zr on grain orientation, texture, and mechanical properties in hot- and warm-rolled FeCrAl alloys. Mater Charact, 2022, vol. 183, 111602.CrossRef W. Liu, Z. Liu, W. Luo, H. Liu, Q. Wang, and R. Zhang: Influence of Zr on grain orientation, texture, and mechanical properties in hot- and warm-rolled FeCrAl alloys. Mater Charact, 2022, vol. 183, 111602.CrossRef
37.
go back to reference Y. Li, Z. Du, J. Fan, Y. Lv, Y. Lv, L. Ye, and P. Li: Microstructure and texture evolution in warm-rolled fine-grained tungsten. Int. J. Refract Metal Hard Mater., 2021, vol. 101, 105690.CrossRef Y. Li, Z. Du, J. Fan, Y. Lv, Y. Lv, L. Ye, and P. Li: Microstructure and texture evolution in warm-rolled fine-grained tungsten. Int. J. Refract Metal Hard Mater., 2021, vol. 101, 105690.CrossRef
38.
go back to reference J. Saha, R. Saha, and P.P. Bhattacharjee: Microstructure and texture of severely warm-rolled and annealed coarse-grained CoCrNi medium entropy alloy (MEA): a perspective on the initial grain size effect. J. Alloys Compd., 2022, vol. 904, 163954.CrossRef J. Saha, R. Saha, and P.P. Bhattacharjee: Microstructure and texture of severely warm-rolled and annealed coarse-grained CoCrNi medium entropy alloy (MEA): a perspective on the initial grain size effect. J. Alloys Compd., 2022, vol. 904, 163954.CrossRef
39.
go back to reference H.T. Jiao, Y. Xu, L.Z. Zhao, R.D.K. Misra, Y.C. Tang, M.J. Zhao, D.J. Liu, Y. Hu, and M.X. Shen: Microstructural evolution and magnetic properties in strip cast non-oriented silicon steel produced by warm rolling. Mater.Charact., 2019, vol. 156, 109876.CrossRef H.T. Jiao, Y. Xu, L.Z. Zhao, R.D.K. Misra, Y.C. Tang, M.J. Zhao, D.J. Liu, Y. Hu, and M.X. Shen: Microstructural evolution and magnetic properties in strip cast non-oriented silicon steel produced by warm rolling. Mater.Charact., 2019, vol. 156, 109876.CrossRef
40.
go back to reference S. Lee and B.C. De Cooman: Effect of warm rolling on the rolling and recrystallization textures of non-oriented 3% Si steel. ISIJ Int., 2011, vol. 51(9), pp. 1545–552.CrossRef S. Lee and B.C. De Cooman: Effect of warm rolling on the rolling and recrystallization textures of non-oriented 3% Si steel. ISIJ Int., 2011, vol. 51(9), pp. 1545–552.CrossRef
41.
go back to reference J. Jonas: Effects of shear band formation on texture development in warm-rolled IF steels. J. Mater. Process. Technol., 2001, vol. 117(3), pp. 293–99.CrossRef J. Jonas: Effects of shear band formation on texture development in warm-rolled IF steels. J. Mater. Process. Technol., 2001, vol. 117(3), pp. 293–99.CrossRef
42.
go back to reference R. Machado, A. Kasama, A. Jorge Jr., C. Kiminami, W.B. Fo, and C. Bolfarini: Evolution of the texture of spray-formed Fe-65 wt% Si-10 wt% Al alloy during warm-rolling. Mater. Sci. Eng. A, 2007, vol. 449, pp. 854–57.CrossRef R. Machado, A. Kasama, A. Jorge Jr., C. Kiminami, W.B. Fo, and C. Bolfarini: Evolution of the texture of spray-formed Fe-65 wt% Si-10 wt% Al alloy during warm-rolling. Mater. Sci. Eng. A, 2007, vol. 449, pp. 854–57.CrossRef
43.
go back to reference H. Xu, Y. Xu, Y. He, S. Yue, and J. Li: Tracing the recrystallization of warm temper-rolled Fe-65 wt pct Si non-oriented electrical steel using a quasi in situ EBSD technique. J. Mater. Sci., 2020, vol. 55, pp. 17183–7203.CrossRef H. Xu, Y. Xu, Y. He, S. Yue, and J. Li: Tracing the recrystallization of warm temper-rolled Fe-65 wt pct Si non-oriented electrical steel using a quasi in situ EBSD technique. J. Mater. Sci., 2020, vol. 55, pp. 17183–7203.CrossRef
44.
go back to reference X. Wang, W. Zhang, Z. Liu, H. Li, and G. Wang: Improvement on room-temperature ductility of 65 wt% Si steel by stress-relief annealing treatments after warm rolling. Mater Charact, 2016, vol. 122, pp. 206–14.CrossRef X. Wang, W. Zhang, Z. Liu, H. Li, and G. Wang: Improvement on room-temperature ductility of 65 wt% Si steel by stress-relief annealing treatments after warm rolling. Mater Charact, 2016, vol. 122, pp. 206–14.CrossRef
45.
go back to reference H. Yu, K. Ming, H. Wu, Y. Yu, and X. Bi: Ordering suppression and excellent ductility in soft-magnetic Fe-6.5 wt pct Si sheet by Hf addition. J. Alloys Compd., 2018, vol. 766, pp. 186–93.CrossRef H. Yu, K. Ming, H. Wu, Y. Yu, and X. Bi: Ordering suppression and excellent ductility in soft-magnetic Fe-6.5 wt pct Si sheet by Hf addition. J. Alloys Compd., 2018, vol. 766, pp. 186–93.CrossRef
46.
go back to reference H. Dun, Y. Zhang, N. Wang, Y. Wang, F. Fang, G. Yuan, R.D.K. Misra, and X. Zhang: Effect of Σ3 grain boundaries on microstructure and properties of oriented Fe-65 wt pct Si in twin-roll strip casting. J. Mag. Mag. Mater., 2022, vol. 559, p. 169552.CrossRef H. Dun, Y. Zhang, N. Wang, Y. Wang, F. Fang, G. Yuan, R.D.K. Misra, and X. Zhang: Effect of Σ3 grain boundaries on microstructure and properties of oriented Fe-65 wt pct Si in twin-roll strip casting. J. Mag. Mag. Mater., 2022, vol. 559, p. 169552.CrossRef
47.
go back to reference F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Elsevier Ltd, Oxford, 2004. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Elsevier Ltd, Oxford, 2004.
48.
go back to reference I. Samajdar, B. Verlinden, L. Kestens, and P.V. Houtte: Physical parameters related to the developments of recrystallization textures in an ultra low carbon steel. Acta Mater., 1998, vol. 47(1), pp. 55–65.CrossRef I. Samajdar, B. Verlinden, L. Kestens, and P.V. Houtte: Physical parameters related to the developments of recrystallization textures in an ultra low carbon steel. Acta Mater., 1998, vol. 47(1), pp. 55–65.CrossRef
49.
go back to reference R.K. Ray, J.J. Jonas, and R.E. Hook: Cold rolling and annealing textures in low carbon and extra low carbon steels. Metall. Rev., 1994, vol. 39(4), pp. 129–72.CrossRef R.K. Ray, J.J. Jonas, and R.E. Hook: Cold rolling and annealing textures in low carbon and extra low carbon steels. Metall. Rev., 1994, vol. 39(4), pp. 129–72.CrossRef
50.
go back to reference R.L. Every and M. Hatherly: Oriented nucleation in low-carbon steels. Texture, 1974, vol. 1(3), pp. 183–94.CrossRef R.L. Every and M. Hatherly: Oriented nucleation in low-carbon steels. Texture, 1974, vol. 1(3), pp. 183–94.CrossRef
51.
go back to reference R. Sandsttrom: Subgrain growth occurring by boundary migration. Acta Metall., 1977, vol. 25(8), pp. 905–11.CrossRef R. Sandsttrom: Subgrain growth occurring by boundary migration. Acta Metall., 1977, vol. 25(8), pp. 905–11.CrossRef
52.
go back to reference Y. Sha, C. Sun, F. Zhang, D. Patel, X. Chen, S. Kalidindi, and L. Zuo: Strong cube recrystallization texture in silicon steel by twin-roll casting process. Acta Mater., 2014, vol. 76(9), pp. 106–17.CrossRef Y. Sha, C. Sun, F. Zhang, D. Patel, X. Chen, S. Kalidindi, and L. Zuo: Strong cube recrystallization texture in silicon steel by twin-roll casting process. Acta Mater., 2014, vol. 76(9), pp. 106–17.CrossRef
53.
go back to reference H. Jiao, Y. Xu, L. Zhao, R. Misra, Y. Tang, D. Liu, Y. Hu, M. Zhao, and M. Shen: Texture evolution in twin-roll strip cast non-oriented electrical steel with strong Cube and Goss texture. Acta Mater., 2020, vol. 199(10), pp. 311–25.CrossRef H. Jiao, Y. Xu, L. Zhao, R. Misra, Y. Tang, D. Liu, Y. Hu, M. Zhao, and M. Shen: Texture evolution in twin-roll strip cast non-oriented electrical steel with strong Cube and Goss texture. Acta Mater., 2020, vol. 199(10), pp. 311–25.CrossRef
54.
go back to reference O. Engler: On the influence of orientation pinning on growth selection of recrystallisation. Acta Mater., 1998, vol. 46(5), pp. 1555–68.CrossRef O. Engler: On the influence of orientation pinning on growth selection of recrystallisation. Acta Mater., 1998, vol. 46(5), pp. 1555–68.CrossRef
55.
go back to reference D.J. Jensen: Growth rates and misorientation relationships between growing nuclei/grains and the surrounding deformed matrix during recrystallization. Acta Metall. Mater., 1995, vol. 43(11), pp. 4117–29.CrossRef D.J. Jensen: Growth rates and misorientation relationships between growing nuclei/grains and the surrounding deformed matrix during recrystallization. Acta Metall. Mater., 1995, vol. 43(11), pp. 4117–29.CrossRef
56.
go back to reference R. Saha and R.K. Ray: Effect of severe cold rolling and annealing on the development of texture, microstructure and grain boundary character distribution in an interstitial free (IF) steel. ISIJ Int., 2008, vol. 48(7), pp. 976–83.CrossRef R. Saha and R.K. Ray: Effect of severe cold rolling and annealing on the development of texture, microstructure and grain boundary character distribution in an interstitial free (IF) steel. ISIJ Int., 2008, vol. 48(7), pp. 976–83.CrossRef
57.
go back to reference K. Verbeken, L. Kestens, and J. Jonas: Microtextural study of orientation change during nucleation and growth in a cold rolled ULC steel. Scrip. Mater., 2003, vol. 48(10), pp. 1457–62.CrossRef K. Verbeken, L. Kestens, and J. Jonas: Microtextural study of orientation change during nucleation and growth in a cold rolled ULC steel. Scrip. Mater., 2003, vol. 48(10), pp. 1457–62.CrossRef
58.
go back to reference T. Nguyen-Minh, J. Sidor, R. Petrov, and L. Kestens: Occurrence of shear bands in rotated Goss ({110}〈110〉) orientations of metals with bcc crystal structure. Scrip. Mater., 2012, vol. 67(12), pp. 935–38.CrossRef T. Nguyen-Minh, J. Sidor, R. Petrov, and L. Kestens: Occurrence of shear bands in rotated Goss ({110}〈110〉) orientations of metals with bcc crystal structure. Scrip. Mater., 2012, vol. 67(12), pp. 935–38.CrossRef
Metadata
Title
The Growth of {1 1 h}〈1 2 1/h〉 (α*-Fiber) Grains and the Evanesce of {001}〈100〉 (Cube) Grains During the Recrystallization of Warm Rolled Fe-6.5 Wt Pct Si Non-oriented Electrical Steel
Authors
Haijie Xu
Youliang He
Xuedao Shu
Yunbo Xu
Steve Yue
Publication date
25-03-2024
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 6/2024
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-024-07370-3

Other articles of this Issue 6/2024

Metallurgical and Materials Transactions A 6/2024 Go to the issue

Premium Partners