Skip to main content
Top

2015 | OriginalPaper | Chapter

The Importance of Photon Arrival Times in STED Microscopy

Authors : Giuseppe Vicidomini, Ivàn Coto Hernàndez, Alberto Diaspro, Silvia Galiani, Christian Eggeling

Published in: Advanced Photon Counting

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lens-based or far-field fluorescence microscopy is a very popular technique for investigating the living cell. However, the spatial resolution of its standard versions is limited to about 200 nm due to diffraction, impeding the imaging of molecular assemblies at smaller scales. The turn of the twenty-first century has witnessed the advent of far-field fluorescence super-resolution microscopy or nanoscopy, a fluorescence microscopy featuring a spatial resolution down to molecular scales. STED microscopy was the first of such nanoscopy techniques, but was for a long time considered as a very complex technique, hard to apply in everyday biological research. Based on developments in label and laser technology, recent years have however seen major improvements of the STED nanoscopy approach, one of which is gated continuous-wave STED (gCW-STED) microscopy. gCW-STED microscopy reduces complexity by combining STED laser operating in CW with pulsed excitation and time-gated photon detection. Here, we describe the physical principles of gCW-STED, formulate the theoretical framework which characterizes its main benefits and limitations, as well as show experimental data.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Masters BR (2010) The development of fluorescence microscopy. Wiley, ChichesterCrossRef Masters BR (2010) The development of fluorescence microscopy. Wiley, ChichesterCrossRef
2.
go back to reference Cella Zanacchi F, Bianchini P, Vicidomini G (2014) Fluorescence microscopy in the spotlight. Microsc Res Tech 77(7):479–482CrossRef Cella Zanacchi F, Bianchini P, Vicidomini G (2014) Fluorescence microscopy in the spotlight. Microsc Res Tech 77(7):479–482CrossRef
3.
go back to reference Abbe E (1873) Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung. Archiv für Mikroskopische Anatomie 9:413–468CrossRef Abbe E (1873) Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung. Archiv für Mikroskopische Anatomie 9:413–468CrossRef
4.
go back to reference Rost FWD (1995) Fluorescence microscopy, vol 2. Cambridge University Press, Cambridge Rost FWD (1995) Fluorescence microscopy, vol 2. Cambridge University Press, Cambridge
5.
go back to reference Pohl DW, Denk W, Lanz M (1984) Optical stethoscopy: image recording with resolution lambda/20. Appl Phys Lett 44:651–653CrossRef Pohl DW, Denk W, Lanz M (1984) Optical stethoscopy: image recording with resolution lambda/20. Appl Phys Lett 44:651–653CrossRef
6.
go back to reference Mivelle M, Van Zanten TS, Manzo C, Garcia-Parajo MF (2014) Nanophotonic approaches for nanoscale imaging and single-molecule detection at ultrahigh concentrations. Microsc Res Tech 77(7):537–545CrossRef Mivelle M, Van Zanten TS, Manzo C, Garcia-Parajo MF (2014) Nanophotonic approaches for nanoscale imaging and single-molecule detection at ultrahigh concentrations. Microsc Res Tech 77(7):537–545CrossRef
7.
go back to reference Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782CrossRef Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782CrossRef
8.
go back to reference Hell SW, Kroug M (1995) Ground-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit. Appl Phys B 60:495–497CrossRef Hell SW, Kroug M (1995) Ground-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit. Appl Phys B 60:495–497CrossRef
9.
10.
go back to reference Diaspro A (ed) (2009) Nanoscopy and multidimensional optical fluorescence microscopy. Chapman & Hall, New York Diaspro A (ed) (2009) Nanoscopy and multidimensional optical fluorescence microscopy. Chapman & Hall, New York
11.
go back to reference Huang B, Babcock H, Zhuang X (2010) Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143(7):1047–1058CrossRef Huang B, Babcock H, Zhuang X (2010) Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143(7):1047–1058CrossRef
12.
go back to reference Hell SW, Jakobs S, Kastrup L (2003) Imaging and writing at the nanoscale with focused visible light through saturable optical transitions. Appl Phys A Mater Sci Process 77(7):859–860CrossRef Hell SW, Jakobs S, Kastrup L (2003) Imaging and writing at the nanoscale with focused visible light through saturable optical transitions. Appl Phys A Mater Sci Process 77(7):859–860CrossRef
13.
14.
go back to reference Eggeling C, Heilemann M (2014) Editorial overview: molecular imaging. Curr Opin Chem Biol 20:v–vii Eggeling C, Heilemann M (2014) Editorial overview: molecular imaging. Curr Opin Chem Biol 20:v–vii
15.
go back to reference Eggeling C, Willig KI, Barrantes FJ (2013) STED microscopy of living cells: new frontiers in membrane and neurobiology. J Neurochem 126(2):203–212CrossRef Eggeling C, Willig KI, Barrantes FJ (2013) STED microscopy of living cells: new frontiers in membrane and neurobiology. J Neurochem 126(2):203–212CrossRef
16.
go back to reference Blom H, Widengren J (2014) STED microscopy: towards broadened use and scope of applications. Curr Opin Chem Biol 20:127–133CrossRef Blom H, Widengren J (2014) STED microscopy: towards broadened use and scope of applications. Curr Opin Chem Biol 20:127–133CrossRef
17.
go back to reference Klar TA, Hell SW (1999) Subdiffraction resolution in far-field fluorescence microscopy. Opt Lett 24(14):954–956CrossRef Klar TA, Hell SW (1999) Subdiffraction resolution in far-field fluorescence microscopy. Opt Lett 24(14):954–956CrossRef
18.
go back to reference Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97(15):8206–8210CrossRef Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97(15):8206–8210CrossRef
19.
go back to reference Clausen MP, Galiani S, Bernardino de la Serna J, Fritzsche M, Chojnacki J, Gehmlich K, Lagerholm BC, Eggeling C (2013) Pathways to optical STED microscopy. NanoBioImaging 1(1):1–12 Clausen MP, Galiani S, Bernardino de la Serna J, Fritzsche M, Chojnacki J, Gehmlich K, Lagerholm BC, Eggeling C (2013) Pathways to optical STED microscopy. NanoBioImaging 1(1):1–12
20.
go back to reference Dyba M, Hell SW (2003) Photostability of a fluorescent marker under pulsed excited-state depletion through stimulated emission. Appl Optics 42(25):5123–5129CrossRef Dyba M, Hell SW (2003) Photostability of a fluorescent marker under pulsed excited-state depletion through stimulated emission. Appl Optics 42(25):5123–5129CrossRef
21.
go back to reference J-i H, Fron E, Dedecker P, Janssen KPF, Li C, Müllen K, Harke B, Bückers J, Hell SW, Hofkens J (2010) Spectroscopic rationale for efficient stimulated-emission depletion microscopy fluorophores. J Am Chem Soc 132(14):5021–5023CrossRef J-i H, Fron E, Dedecker P, Janssen KPF, Li C, Müllen K, Harke B, Bückers J, Hell SW, Hofkens J (2010) Spectroscopic rationale for efficient stimulated-emission depletion microscopy fluorophores. J Am Chem Soc 132(14):5021–5023CrossRef
22.
go back to reference Leutenegger M, Eggeling C, Hell SW (2010) Analytical description of STED microscopy performance. Opt Express 18(25):26417–26429CrossRef Leutenegger M, Eggeling C, Hell SW (2010) Analytical description of STED microscopy performance. Opt Express 18(25):26417–26429CrossRef
23.
go back to reference Vicidomini G, Moneron G, Eggeling C, Rittweger E, Hell SW (2012) STED with wavelengths closer to the emission maximum. Opt Express 20(5):5225–5236CrossRef Vicidomini G, Moneron G, Eggeling C, Rittweger E, Hell SW (2012) STED with wavelengths closer to the emission maximum. Opt Express 20(5):5225–5236CrossRef
24.
go back to reference Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW (2006) STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440(7086):935–939CrossRef Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW (2006) STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440(7086):935–939CrossRef
25.
go back to reference Wildanger D, Rittweger E, Kastrup L, Hell SW (2008) STED microscopy with a supercontinuum laser source. Opt Express 16(13):9614–9621CrossRef Wildanger D, Rittweger E, Kastrup L, Hell SW (2008) STED microscopy with a supercontinuum laser source. Opt Express 16(13):9614–9621CrossRef
26.
go back to reference Bückers J, Wildanger D, Vicidomini G, Kastrup L, Hell SW (2011) Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses. Opt Express 19(4):3130–3143CrossRef Bückers J, Wildanger D, Vicidomini G, Kastrup L, Hell SW (2011) Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses. Opt Express 19(4):3130–3143CrossRef
27.
go back to reference Galiani S, Harke B, Vicidomini G, Lignani G, Benfenati F, Diaspro A, Bianchini P (2012) Strategies to maximize the performance of a STED microscope. Opt Express 20(7):7362–7374CrossRef Galiani S, Harke B, Vicidomini G, Lignani G, Benfenati F, Diaspro A, Bianchini P (2012) Strategies to maximize the performance of a STED microscope. Opt Express 20(7):7362–7374CrossRef
28.
go back to reference Rankin BR, Hell SW (2009) STED microscopy with a MHz pulsed stimulated-Raman-scattering source. Opt Express 17(18):15679–15684CrossRef Rankin BR, Hell SW (2009) STED microscopy with a MHz pulsed stimulated-Raman-scattering source. Opt Express 17(18):15679–15684CrossRef
29.
go back to reference Rittweger E, Han KY, Irvine SE, Eggeling C, Hell SW (2009) STED microscopy reveals crystal colour centres with nanometric resolution. Nat Photonics 3:144–147CrossRef Rittweger E, Han KY, Irvine SE, Eggeling C, Hell SW (2009) STED microscopy reveals crystal colour centres with nanometric resolution. Nat Photonics 3:144–147CrossRef
30.
go back to reference Schrof S, Staudt T, Rittweger E, Wittenmayer N, Dresbach T, Engelhardt J, Hell SW (2011) STED nanoscopy with mass-produced laser diodes. Opt Express 19(9):8066–8072CrossRef Schrof S, Staudt T, Rittweger E, Wittenmayer N, Dresbach T, Engelhardt J, Hell SW (2011) STED nanoscopy with mass-produced laser diodes. Opt Express 19(9):8066–8072CrossRef
31.
go back to reference Göttfert F, Wurm CA, Mueller V, Berning S, Cordes VC, Honigmann A, Hell SW (2013) Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20 nm resolution. Biophys J 105:L01–L03CrossRef Göttfert F, Wurm CA, Mueller V, Berning S, Cordes VC, Honigmann A, Hell SW (2013) Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20 nm resolution. Biophys J 105:L01–L03CrossRef
32.
go back to reference Willig KI, Harke B, Medda R, Hell SW (2007) STED microscopy with continuous wave beams. Nat Methods 4(11):915–918CrossRef Willig KI, Harke B, Medda R, Hell SW (2007) STED microscopy with continuous wave beams. Nat Methods 4(11):915–918CrossRef
33.
go back to reference Honigmann A, Eggeling C, Schulze M, Lepert A (2012) Super-resolution STED microscopy advances with yellow CW OPSL. Laser Focus World 48(1):75–79 Honigmann A, Eggeling C, Schulze M, Lepert A (2012) Super-resolution STED microscopy advances with yellow CW OPSL. Laser Focus World 48(1):75–79
34.
go back to reference Honigmann A, Mueller V, Fernando UP, Eggeling C, Sperling J (2013) Simplifying STED microscopy of photostable red-emitting labels. Laser + Potonik 5:40–42 Honigmann A, Mueller V, Fernando UP, Eggeling C, Sperling J (2013) Simplifying STED microscopy of photostable red-emitting labels. Laser + Potonik 5:40–42
35.
go back to reference Coto Hernàndez I, d’Amora M, Diaspro A, Vicidomini G (2014) Influence of laser intensity noise on gated CW-STED microscopy. Laser Phys Lett 11(9):095603CrossRef Coto Hernàndez I, d’Amora M, Diaspro A, Vicidomini G (2014) Influence of laser intensity noise on gated CW-STED microscopy. Laser Phys Lett 11(9):095603CrossRef
36.
go back to reference Moffitt JR, Osseforth C, Michaelis J (2011) Time-gating improves the spatial resolution of STED microscopy. Opt Express 19(5):4242CrossRef Moffitt JR, Osseforth C, Michaelis J (2011) Time-gating improves the spatial resolution of STED microscopy. Opt Express 19(5):4242CrossRef
37.
go back to reference Vicidomini G, Moneron G, Han KY, Westphal V, Ta H, Reuss M, Engelhardt J, Eggeling C, Hell SW (2011) Sharper low-power STED nanoscopy by time gating. Nat Methods 8(7):571–573CrossRef Vicidomini G, Moneron G, Han KY, Westphal V, Ta H, Reuss M, Engelhardt J, Eggeling C, Hell SW (2011) Sharper low-power STED nanoscopy by time gating. Nat Methods 8(7):571–573CrossRef
38.
go back to reference Vicidomini G, Schönle A, Ta H, Han KY, Moneron G, Eggeling C, Hell SW (2013) STED nanoscopy with time-gated detection: theoretical and experimental aspects. PLoS One 8(1):e54421CrossRef Vicidomini G, Schönle A, Ta H, Han KY, Moneron G, Eggeling C, Hell SW (2013) STED nanoscopy with time-gated detection: theoretical and experimental aspects. PLoS One 8(1):e54421CrossRef
39.
go back to reference Leutenegger M, Rao R, Leitgeb RA, Lasser T (2006) Fast focus field calculations. Opt Express 14(23):11277–11291CrossRef Leutenegger M, Rao R, Leitgeb RA, Lasser T (2006) Fast focus field calculations. Opt Express 14(23):11277–11291CrossRef
40.
go back to reference Westphal V, Hell SW (2005) Nanoscale resolution in the focal plane of an optical microscope. Phys Rev Lett 94:143903CrossRef Westphal V, Hell SW (2005) Nanoscale resolution in the focal plane of an optical microscope. Phys Rev Lett 94:143903CrossRef
41.
go back to reference Vicidomini G, Coto Hernández I, d’Amora M, Cella Zanacchi F, Bianchini P, Diaspro A (2014) Gated CW-STED microscopy: a versatile tool for biological nanometer scale investigation. Methods 66(2):124–130CrossRef Vicidomini G, Coto Hernández I, d’Amora M, Cella Zanacchi F, Bianchini P, Diaspro A (2014) Gated CW-STED microscopy: a versatile tool for biological nanometer scale investigation. Methods 66(2):124–130CrossRef
42.
go back to reference Moneron G, Medda R, Hein B, Giske A, Westphal V, Hell SW (2010) Fast STED microscopy with continuous wave fiber lasers. Opt Express 18(2):1302–1309CrossRef Moneron G, Medda R, Hein B, Giske A, Westphal V, Hell SW (2010) Fast STED microscopy with continuous wave fiber lasers. Opt Express 18(2):1302–1309CrossRef
43.
go back to reference Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schonle A, Hell SW (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457(7233):1159–1162CrossRef Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schonle A, Hell SW (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457(7233):1159–1162CrossRef
44.
go back to reference Westin L, Reuss M, Lindskog M, Aperia A, Brismar H (2014) Nanoscopic spine localization of Norbin, an mGluR5 accessory protein. BMC Neurosci 15(1):45CrossRef Westin L, Reuss M, Lindskog M, Aperia A, Brismar H (2014) Nanoscopic spine localization of Norbin, an mGluR5 accessory protein. BMC Neurosci 15(1):45CrossRef
45.
go back to reference Eggeling C, Widengren J, Rigler R, Seidel CAM (1998) Photobleaching of fluorescent dyes under conditions used for single-molecule detection: evidence of two-step photolysis. Anal Chem 70:2651–2659CrossRef Eggeling C, Widengren J, Rigler R, Seidel CAM (1998) Photobleaching of fluorescent dyes under conditions used for single-molecule detection: evidence of two-step photolysis. Anal Chem 70:2651–2659CrossRef
48.
go back to reference Ronzitti E, Harke B, Diaspro A (2013) Frequency dependent detection in a STED microscope using modulated excitation light. Opt Express 21(1):210–219CrossRef Ronzitti E, Harke B, Diaspro A (2013) Frequency dependent detection in a STED microscope using modulated excitation light. Opt Express 21(1):210–219CrossRef
49.
go back to reference Coto Hernàndez I, Peres C, Cella Zanacchi F, d’Amora M, Christodoulou S, Bianchini P, Diaspro A, Vicidomini G (2014) A new filtering technique for removing anti-stokes emission background in gated CW-STED microscopy. J Biophotonics 7(6):376–380CrossRef Coto Hernàndez I, Peres C, Cella Zanacchi F, d’Amora M, Christodoulou S, Bianchini P, Diaspro A, Vicidomini G (2014) A new filtering technique for removing anti-stokes emission background in gated CW-STED microscopy. J Biophotonics 7(6):376–380CrossRef
50.
go back to reference Wang Y, Kuang C, Gu Z, Xu Y, Li S, Hao X, Liu X (2013) Time-gated stimulated emission depletion nanoscopy. Opt Eng 52(9):093107CrossRef Wang Y, Kuang C, Gu Z, Xu Y, Li S, Hao X, Liu X (2013) Time-gated stimulated emission depletion nanoscopy. Opt Eng 52(9):093107CrossRef
51.
go back to reference Bertero M, Boccacci P, Desiderá G, Vicidomini G (2009) Image deblurring with Poisson data: from cells to galaxies. Inverse Probl 25(12):123006CrossRef Bertero M, Boccacci P, Desiderá G, Vicidomini G (2009) Image deblurring with Poisson data: from cells to galaxies. Inverse Probl 25(12):123006CrossRef
52.
go back to reference Zanella R, Zanghirati G, Cavicchioli R, Zanni L, Boccacci P, Bertero M, Vicidomini G (2013) Towards real-time image deconvolution: application to confocal and STED microscopy. Sci Rep 3:2523CrossRef Zanella R, Zanghirati G, Cavicchioli R, Zanni L, Boccacci P, Bertero M, Vicidomini G (2013) Towards real-time image deconvolution: application to confocal and STED microscopy. Sci Rep 3:2523CrossRef
53.
go back to reference Donnert G, Eggeling C, Hell SW (2007) Major signal increase in fluorescence microscopy through dark-state relaxation. Nat Methods 4(1):81–86CrossRef Donnert G, Eggeling C, Hell SW (2007) Major signal increase in fluorescence microscopy through dark-state relaxation. Nat Methods 4(1):81–86CrossRef
54.
go back to reference Donnert G, Eggeling C, Hell SW (2009) Triplet-relaxation microscopy with bunched pulsed excitation. Photochem Photobiol 8:481–485CrossRef Donnert G, Eggeling C, Hell SW (2009) Triplet-relaxation microscopy with bunched pulsed excitation. Photochem Photobiol 8:481–485CrossRef
55.
go back to reference Donnert G, Keller J, Medda R, Andrei MA, Rizzoli SO, Lührmann R, Jahn R, Eggeling C, Hell SW (2006) Macromolecular-scale resolution in biological fluorescence microscopy. Proc Natl Acad Sci 103(31):11440–11445CrossRef Donnert G, Keller J, Medda R, Andrei MA, Rizzoli SO, Lührmann R, Jahn R, Eggeling C, Hell SW (2006) Macromolecular-scale resolution in biological fluorescence microscopy. Proc Natl Acad Sci 103(31):11440–11445CrossRef
Metadata
Title
The Importance of Photon Arrival Times in STED Microscopy
Authors
Giuseppe Vicidomini
Ivàn Coto Hernàndez
Alberto Diaspro
Silvia Galiani
Christian Eggeling
Copyright Year
2015
DOI
https://doi.org/10.1007/4243_2014_73