Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 12/2015

14-10-2015

The Initiation and Propagation of Dynamic Abnormal Grain Growth in Molybdenum

Authors: Philip J. Noell, Daniel L. Worthington, Eric M. Taleff

Published in: Metallurgical and Materials Transactions A | Issue 12/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Plastic straining can initiate and propagate abnormal grains at temperatures significantly lower than is possible by static annealing. This phenomenon is termed dynamic abnormal grain growth (DAGG). Experiments that produce DAGG in commercial-purity molybdenum sheet materials are used to study the initiation and propagation of abnormal grains by plastic straining at temperatures from 1673 K to 2073 K (1400 \(^\circ \)C to 1800 \(^\circ \)C). The minimum strain necessary to initiate DAGG, termed the critical strain, decreases approximately linearly with increasing temperature. The variation in critical strain values observed at a single temperature and strain rate is well described by a normal distribution. An increased fraction of grains aligned with the \(\left\langle 110\right\rangle \) along the tensile axis, a preferred orientation for DAGG grains, appears to decrease the critical strain for DAGG initiation. DAGG grains preferentially grow into the finest-grained polycrystalline regions, which suggests that the driving force for DAGG propagation is primarily from grain-boundary curvature. No effects of local crystallographic texture variation on growth are evident in microstructures containing DAGG grains. Together, these observations support the hypothesis that plastic straining during DAGG acts primarily to increase boundary mobility, rather than to increase the driving force for boundary migration.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J.G. Byrne, Recovery, recrystallization, and grain growth (The Macmillan Company, New York, 1965), p. 106 J.G. Byrne, Recovery, recrystallization, and grain growth (The Macmillan Company, New York, 1965), p. 106
3.
go back to reference F. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd edn. (Elsevier, New York, 2004), pp. 24–25 F. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd edn. (Elsevier, New York, 2004), pp. 24–25
5.
go back to reference C. Briant, F. Zaverl, W. Carter, Acta Metall. Mater. 42, 2811–2821 (1994)CrossRef C. Briant, F. Zaverl, W. Carter, Acta Metall. Mater. 42, 2811–2821 (1994)CrossRef
7.
go back to reference T. Fujii, Y. Hiraoka, and R. Watanabe, United States Patent No. 4,491,560, January 1 1985 T. Fujii, Y. Hiraoka, and R. Watanabe, United States Patent No. 4,491,560, January 1 1985
8.
go back to reference K. Takebe and Y. Hiraoka: Japan Patent No. JP6248384, September 6, 1990 K. Takebe and Y. Hiraoka: Japan Patent No. JP6248384, September 6, 1990
9.
go back to reference D. Dorner, S. Zaefferer, L. Lahn, D. Raabe, J. Magn. Magn. Mater. 304, 183–186 (2006)CrossRef D. Dorner, S. Zaefferer, L. Lahn, D. Raabe, J. Magn. Magn. Mater. 304, 183–186 (2006)CrossRef
11.
go back to reference A.D. Rollett, A.P. Brahme, C. Roberts, Mater. Sci. Forum 558, 33–42 (2007)CrossRef A.D. Rollett, A.P. Brahme, C. Roberts, Mater. Sci. Forum 558, 33–42 (2007)CrossRef
13.
go back to reference D.L. Worthington, N.A. Pedrazas, P.J. Noell, E.M. Taleff, Metall. Mater. Trans. A 44, 5025–5038 (2013)CrossRef D.L. Worthington, N.A. Pedrazas, P.J. Noell, E.M. Taleff, Metall. Mater. Trans. A 44, 5025–5038 (2013)CrossRef
14.
go back to reference N.A. Pedrazas, T.E. Buchheit, E.A. Holm, E.M. Taleff, Mater. Sci. Eng. A 610, 76–84 (2014)CrossRef N.A. Pedrazas, T.E. Buchheit, E.A. Holm, E.M. Taleff, Mater. Sci. Eng. A 610, 76–84 (2014)CrossRef
16.
go back to reference Y.C. Zhu, J.H. Mao, F.T. Tan, X.L. Qiao, Appl. Mech. Mater. 127, 89–94 (2012)CrossRef Y.C. Zhu, J.H. Mao, F.T. Tan, X.L. Qiao, Appl. Mech. Mater. 127, 89–94 (2012)CrossRef
17.
18.
go back to reference A. Agnoli, M. Bernacki, R.E. Logé, J.-M. Franchet, J. Laigo, and N. Bozzolo: Superalloys 2012: The 12th International Symposium on Superalloys, 2012, pp. 73–82 A. Agnoli, M. Bernacki, R.E. Logé, J.-M. Franchet, J. Laigo, and N. Bozzolo: Superalloys 2012: The 12th International Symposium on Superalloys, 2012, pp. 73–82
19.
22.
go back to reference ASTM International, Standard Specification for Molybdenum and Molybdenum Alloy Plate, Sheet, Strip and Foil, Standard Designation B 306–03 (ASTM International, West Conshohocken, PA, 2003) ASTM International, Standard Specification for Molybdenum and Molybdenum Alloy Plate, Sheet, Strip and Foil, Standard Designation B 306–03 (ASTM International, West Conshohocken, PA, 2003)
23.
go back to reference ASTM International, Standard Test Method for Determination of Carbon in Refractory and Reactive Metals and Their Alloys, Standard Designation E 1941–04 (ASTM International, West Conshohocken, PA, 2008) ASTM International, Standard Test Method for Determination of Carbon in Refractory and Reactive Metals and Their Alloys, Standard Designation E 1941–04 (ASTM International, West Conshohocken, PA, 2008)
24.
go back to reference R. Barto, L. Ebert, Metall. Trans. 2, 1643–1649 (1971) R. Barto, L. Ebert, Metall. Trans. 2, 1643–1649 (1971)
25.
go back to reference HKL Channel 5, Oxford Instruments PLC, Oxon HKL Channel 5, Oxford Instruments PLC, Oxon
26.
go back to reference ASTM International, Standard Test Methods for Determining Average Grain Size, Standard Designation E 112–13, ASTM International, West Conshohocken, 2013 ASTM International, Standard Test Methods for Determining Average Grain Size, Standard Designation E 112–13, ASTM International, West Conshohocken, 2013
27.
go back to reference W. Green, M. Smith, and D. Olson: Trans. Metall. Soc. AIME, 1959, vol. 215, pp. 1061–66 W. Green, M. Smith, and D. Olson: Trans. Metall. Soc. AIME, 1959, vol. 215, pp. 1061–66
28.
29.
go back to reference G. Gottstein, L.S. Shvindlerman, Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications, 2nd edn. (CRC Press, New York, 2009), pp. 140–144CrossRef G. Gottstein, L.S. Shvindlerman, Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications, 2nd edn. (CRC Press, New York, 2009), pp. 140–144CrossRef
Metadata
Title
The Initiation and Propagation of Dynamic Abnormal Grain Growth in Molybdenum
Authors
Philip J. Noell
Daniel L. Worthington
Eric M. Taleff
Publication date
14-10-2015
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 12/2015
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-015-3188-6

Other articles of this Issue 12/2015

Metallurgical and Materials Transactions A 12/2015 Go to the issue

Premium Partners