Skip to main content
Top
Published in: Topics in Catalysis 17-18/2016

29-07-2016

The Mechanism of Alkane Selective Oxidation by the M1 Phase of Mo–V–Nb–Te Mixed Metal Oxides: Suggestions for Improved Catalysts

Authors: Mu-Jeng Cheng, William A. Goddard III

Published in: Topics in Catalysis | Issue 17-18/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We report here first principles predictions (density functional theory with periodic boundary conditions) of the structures, mechanisms, and activation barriers for the catalytic activation and functionalization of propane by the M1 phase of the Mitsubishi-BP America generation of Mo–V–Nb–Te–O mixed metal oxide (MMO) catalysts. Our calculations show that the reduction-coupled oxo activation (ROA) principle, which we reported at Irsee VI to play the critical role for the selective oxidation of n-butane to maleic anhydride by vanadium phosphorous oxide, also plays the critical role for the MMO activation of propane, as speculated during Irsee VI. However for MMO, this ROA principle involves Te=O and V rather than P=O and V. The ability of the Te=O bond to activate the propane CH bond depends sensitively upon the number of V atoms that are coupled through a bridging O to the Te=O center. Based on this ROA mechanism, we suggest synthetic procedures aimed at developing a single phase MMO catalyst with dramatically improved selectivity for ammoxidation. We also suggest a modified single phase composition suitable for simultaneous oxidative dehydrogenation of ethane and propane to ethene and propene, respectively, which is becoming more important with the increase in petroleum fracking. Moreover, we also suggest some organometallic molecules that activate alkane CH bonds through the ROA principle.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cheng MJ, Nielsen RJ, Tahir-Kheli J, Goddard WA (2011) The magnetic and electronic structure of vanadyl pyrophosphate from density functional theory. Phys Chem Chem Phys 13:9831–9838CrossRef Cheng MJ, Nielsen RJ, Tahir-Kheli J, Goddard WA (2011) The magnetic and electronic structure of vanadyl pyrophosphate from density functional theory. Phys Chem Chem Phys 13:9831–9838CrossRef
2.
go back to reference Cheng MJ, Goddard WA, Fu R (2014) The reduction-coupled oxo activation (ROA) mechanism responsible for the catalytic selective activation and functionalization of n-butane to maleic anhydride by vanadium phosphate oxide. Top Catal 57:1171–1187CrossRef Cheng MJ, Goddard WA, Fu R (2014) The reduction-coupled oxo activation (ROA) mechanism responsible for the catalytic selective activation and functionalization of n-butane to maleic anhydride by vanadium phosphate oxide. Top Catal 57:1171–1187CrossRef
3.
go back to reference Cheng MJ, Goddard WA (2013) The critical role of phosphate in vanadium phosphate oxide for the catalytic activation and functionalization of n-butane to maleic anhydride. J Am Chem Soc 135:4600–4603CrossRef Cheng MJ, Goddard WA (2013) The critical role of phosphate in vanadium phosphate oxide for the catalytic activation and functionalization of n-butane to maleic anhydride. J Am Chem Soc 135:4600–4603CrossRef
4.
go back to reference Li X, Buttrey DJ, Blom DA, Vogt T (2011) Improvement of the structural model for the M1 phase Mo–V–Nb–Te–O propane (amm)oxidation catalyst. Top Catal 54:614–626CrossRef Li X, Buttrey DJ, Blom DA, Vogt T (2011) Improvement of the structural model for the M1 phase Mo–V–Nb–Te–O propane (amm)oxidation catalyst. Top Catal 54:614–626CrossRef
5.
go back to reference Cheng MJ, Goddard WA (2015) In silico design of highly selective Mo–V–Te–Nb–O mixed metal oxide catalysts for ammoxidation and oxidative dehydrogenation of propane and ethane. J Am Chem Soc 137:13224–13227CrossRef Cheng MJ, Goddard WA (2015) In silico design of highly selective Mo–V–Te–Nb–O mixed metal oxide catalysts for ammoxidation and oxidative dehydrogenation of propane and ethane. J Am Chem Soc 137:13224–13227CrossRef
6.
go back to reference Cheng MJ, Fu R, Goddard WA (2014) Design and validation of non-metal oxo complexes for C–H activation. Chem Commun 50:1748–1750CrossRef Cheng MJ, Fu R, Goddard WA (2014) Design and validation of non-metal oxo complexes for C–H activation. Chem Commun 50:1748–1750CrossRef
7.
go back to reference Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRef Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRef
8.
go back to reference Garrity KF, Bennett JW, Rabe KM, Vanderbilt D (2014) Pseudopotentials for high-throughput DFT calculations. Comput Mater Sci 81:446–452CrossRef Garrity KF, Bennett JW, Rabe KM, Vanderbilt D (2014) Pseudopotentials for high-throughput DFT calculations. Comput Mater Sci 81:446–452CrossRef
9.
go back to reference Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502CrossRef Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502CrossRef
10.
go back to reference Holmberg J, Grasselli RK, Andersson A (2004) Catalytic behaviour of M1, M2, and M1/M2 physical mixtures of the Mo–V–Nb–Te-oxide system in propane and propene ammoxidation. Appl Catal A 270:121–134CrossRef Holmberg J, Grasselli RK, Andersson A (2004) Catalytic behaviour of M1, M2, and M1/M2 physical mixtures of the Mo–V–Nb–Te-oxide system in propane and propene ammoxidation. Appl Catal A 270:121–134CrossRef
11.
go back to reference Grasselli RK, Burrington JD, Buttrey DJ, DeSanto P, Lugmair CG, Volpe AF, Weingand T (2003) Multifunctionality of active centers in (amm)oxidation catalysts: from Bi–Mo–O-x to Mo–V–Nb–(Te, Sb)–O-x. Top Catal 23:5–22CrossRef Grasselli RK, Burrington JD, Buttrey DJ, DeSanto P, Lugmair CG, Volpe AF, Weingand T (2003) Multifunctionality of active centers in (amm)oxidation catalysts: from Bi–Mo–O-x to Mo–V–Nb–(Te, Sb)–O-x. Top Catal 23:5–22CrossRef
12.
go back to reference Centi G, Trifiro F, Ebner JR, Franchetti VM (1988) Mechanistic aspects of maleic-anhydride synthesis from C4-hydrocarbons over phosphorus vanadium-oxide. Chem Rev 88:55–80CrossRef Centi G, Trifiro F, Ebner JR, Franchetti VM (1988) Mechanistic aspects of maleic-anhydride synthesis from C4-hydrocarbons over phosphorus vanadium-oxide. Chem Rev 88:55–80CrossRef
13.
go back to reference Saito T, Terashima T, Azuma M, Takano M, Goto T, Ohta H, Utsumi W, Bordet P, Johnston DC (2000) Single crystal growth of the high pressure phase of (VO)(2)P2O7 at 3 GPa. J Solid State Chem 153:124–131CrossRef Saito T, Terashima T, Azuma M, Takano M, Goto T, Ohta H, Utsumi W, Bordet P, Johnston DC (2000) Single crystal growth of the high pressure phase of (VO)(2)P2O7 at 3 GPa. J Solid State Chem 153:124–131CrossRef
14.
go back to reference Busca G, Centi G, Trifiro F, Lorenzelli V (1986) Surface-acidity of vanadyl pyrophosphate, active phase in normal-butane selective oxidation. J Phys Chem 90:1337–1344CrossRef Busca G, Centi G, Trifiro F, Lorenzelli V (1986) Surface-acidity of vanadyl pyrophosphate, active phase in normal-butane selective oxidation. J Phys Chem 90:1337–1344CrossRef
15.
go back to reference Schuurman Y, Gleaves JT (1994) Activation of vanadium phosphorus oxide catalysts for alkane oxidation—the influence of the oxidation-state on catalyst selectivity. Ind Eng Chem Res 33:2935–2941CrossRef Schuurman Y, Gleaves JT (1994) Activation of vanadium phosphorus oxide catalysts for alkane oxidation—the influence of the oxidation-state on catalyst selectivity. Ind Eng Chem Res 33:2935–2941CrossRef
16.
go back to reference Joly JP, Mehier C, Bere KE, Abon M (1998) TPD study of labile oxygen on a (VO)(2)P2O7 catalyst active in n-butane partial oxidation. Appl Catal A 169:55–63CrossRef Joly JP, Mehier C, Bere KE, Abon M (1998) TPD study of labile oxygen on a (VO)(2)P2O7 catalyst active in n-butane partial oxidation. Appl Catal A 169:55–63CrossRef
17.
go back to reference Agaskar PA, Decaul L, Grasselli RK (1994) A molecular-level mechanism of n-butane oxidation to maleic-anhydride over vanadyl pyrophosphate. Catal Lett 23:339–351CrossRef Agaskar PA, Decaul L, Grasselli RK (1994) A molecular-level mechanism of n-butane oxidation to maleic-anhydride over vanadyl pyrophosphate. Catal Lett 23:339–351CrossRef
18.
go back to reference Volta JC (1996) Dynamic processes on vanadium phosphorous oxides for selective alkane oxidation. Catal Today 32:29–36CrossRef Volta JC (1996) Dynamic processes on vanadium phosphorous oxides for selective alkane oxidation. Catal Today 32:29–36CrossRef
19.
go back to reference Hutchings GJ, Desmartinchomel A, Olier R, Volta JC (1994) Role of the product in the transformation of a catalyst to its active state. Nature 368:41–45CrossRef Hutchings GJ, Desmartinchomel A, Olier R, Volta JC (1994) Role of the product in the transformation of a catalyst to its active state. Nature 368:41–45CrossRef
20.
go back to reference Coulston GW, Bare SR, Kung H, Birkeland K, Bethke GK, Harlow R, Herron N, Lee PL (1997) The kinetic significance of V5+ in n-butane oxidation catalyzed by vanadium phosphates. Science 275:191–193CrossRef Coulston GW, Bare SR, Kung H, Birkeland K, Bethke GK, Harlow R, Herron N, Lee PL (1997) The kinetic significance of V5+ in n-butane oxidation catalyzed by vanadium phosphates. Science 275:191–193CrossRef
21.
go back to reference Tachez M, Theobald F, Bordes E (1981) A structural explanation for the polymorphism of the alpha-form of anhydrous vanadyl phosphate. J Solid State Chem 40:280–283CrossRef Tachez M, Theobald F, Bordes E (1981) A structural explanation for the polymorphism of the alpha-form of anhydrous vanadyl phosphate. J Solid State Chem 40:280–283CrossRef
22.
go back to reference Jordan BD, Calvo C (1976) Alpha-V1. 08P0. 92O5 at 22 °C. Acta Crystallogr B 32:2899–2900CrossRef Jordan BD, Calvo C (1976) Alpha-V1. 08P0. 92O5 at 22 °C. Acta Crystallogr B 32:2899–2900CrossRef
23.
go back to reference Shimoda T, Okuhara T, Misono M (1985) Preparation of vanadium-phosphorus mixed-oxide (P/V = 1) catalysts and their application to oxidation of butane to maleic-anhydride. Bull Chem Soc Jpn 58:2163–2171CrossRef Shimoda T, Okuhara T, Misono M (1985) Preparation of vanadium-phosphorus mixed-oxide (P/V = 1) catalysts and their application to oxidation of butane to maleic-anhydride. Bull Chem Soc Jpn 58:2163–2171CrossRef
24.
go back to reference Koyano G, Okuhara T, Misono M (1998) Structural changes of surface layer of vanadyl pyrophosphate catalysts by oxidation–reduction and their relationships with selective oxidation of n-butane. J Am Chem Soc 120:767–774CrossRef Koyano G, Okuhara T, Misono M (1998) Structural changes of surface layer of vanadyl pyrophosphate catalysts by oxidation–reduction and their relationships with selective oxidation of n-butane. J Am Chem Soc 120:767–774CrossRef
25.
go back to reference Grasselli RK (2005) Selectivity issues in (amm)oxidation catalysis. Catal Today 99:23–31CrossRef Grasselli RK (2005) Selectivity issues in (amm)oxidation catalysis. Catal Today 99:23–31CrossRef
26.
go back to reference Goddard WA, Liu LC, Mueller JE, Pudar S, Nielsen RJ (2011) Structures, mechanisms, and kinetics of ammoxidation and selective oxidation of propane over the M2 phase of MoVNbTeO catalysts. Top Catal 54:659–668CrossRef Goddard WA, Liu LC, Mueller JE, Pudar S, Nielsen RJ (2011) Structures, mechanisms, and kinetics of ammoxidation and selective oxidation of propane over the M2 phase of MoVNbTeO catalysts. Top Catal 54:659–668CrossRef
27.
go back to reference Chenoweth K, van Duin ACT, Goddard WA (2009) The reaxFF Monte Carlo reactive dynamics method for predicting atomistic structures of disordered ceramics: application to the Mo3VOx catalyst. Angew Chem Int Edit 48:7630–7634CrossRef Chenoweth K, van Duin ACT, Goddard WA (2009) The reaxFF Monte Carlo reactive dynamics method for predicting atomistic structures of disordered ceramics: application to the Mo3VOx catalyst. Angew Chem Int Edit 48:7630–7634CrossRef
28.
go back to reference Fu G, Xu X, Sautet P (2012) Vanadium distribution in four-component Mo–V–Te–Nb mixed-oxide catalysts from first principles: how to explore the numerous configurations? Angew Chem Int Edit 51:12854–12858CrossRef Fu G, Xu X, Sautet P (2012) Vanadium distribution in four-component Mo–V–Te–Nb mixed-oxide catalysts from first principles: how to explore the numerous configurations? Angew Chem Int Edit 51:12854–12858CrossRef
29.
go back to reference Grasselli RK, Buttrey DJ, DeSanto P, Burrington JD, Lugmair CG, Volpe AF, Weingand T (2004) Active centers in Mo–V–Nb–Te–O-x (amm)oxidation catalysts. Catal Today 91-2:251–258CrossRef Grasselli RK, Buttrey DJ, DeSanto P, Burrington JD, Lugmair CG, Volpe AF, Weingand T (2004) Active centers in Mo–V–Nb–Te–O-x (amm)oxidation catalysts. Catal Today 91-2:251–258CrossRef
30.
go back to reference Guliants VV, Bhandari R, Brongersma HH, Knoester A, Gaffney AM, Han S (2005) A study of the surface region of the Mo–V–Te–O catalysts for propane oxidation to acrylic acid. J Phys Chem B 109:10234–10242CrossRef Guliants VV, Bhandari R, Brongersma HH, Knoester A, Gaffney AM, Han S (2005) A study of the surface region of the Mo–V–Te–O catalysts for propane oxidation to acrylic acid. J Phys Chem B 109:10234–10242CrossRef
31.
go back to reference Ueda W, Vitry D, Katou T (2005) Crystalline Mo–V–O based complex oxides as selective oxidation catalysts of propane. Catal Today 99:43–49CrossRef Ueda W, Vitry D, Katou T (2005) Crystalline Mo–V–O based complex oxides as selective oxidation catalysts of propane. Catal Today 99:43–49CrossRef
32.
go back to reference Oliver JM, Nieto JML, Botella P (2004) Selective oxidation and ammoxidation of propane on a Mo–V–Te–Nb–O mixed metal oxide catalyst: a comparative study. Catal Today 96:241–249CrossRef Oliver JM, Nieto JML, Botella P (2004) Selective oxidation and ammoxidation of propane on a Mo–V–Te–Nb–O mixed metal oxide catalyst: a comparative study. Catal Today 96:241–249CrossRef
33.
go back to reference Jang YH, Goddard WA (2001) Selective oxidation and ammoxidation of propene on bismuth molybdates, ab initio calculations. Top Catal 15:273–289CrossRef Jang YH, Goddard WA (2001) Selective oxidation and ammoxidation of propene on bismuth molybdates, ab initio calculations. Top Catal 15:273–289CrossRef
34.
go back to reference Jang YH, Goddard WA (2002) Mechanism of selective oxidation and ammoxidation of propene on bismuth molybdates from DFT calculations on model clusters. J Phys Chem B 106:5997–6013CrossRef Jang YH, Goddard WA (2002) Mechanism of selective oxidation and ammoxidation of propene on bismuth molybdates from DFT calculations on model clusters. J Phys Chem B 106:5997–6013CrossRef
35.
go back to reference Grasselli RK (2002) Fundamental principles of selective heterogeneous oxidation catalysis. Top Catal 21:79–88CrossRef Grasselli RK (2002) Fundamental principles of selective heterogeneous oxidation catalysis. Top Catal 21:79–88CrossRef
36.
go back to reference Grasselli RK, Lugmair CG, Volpe AF (2011) Towards an understanding of the reaction pathways in propane ammoxidation based on the distribution of elements at the active centers of the M1 phase of the MoV(Nb, Ta)TeO system. Top Catal 54:595–604CrossRef Grasselli RK, Lugmair CG, Volpe AF (2011) Towards an understanding of the reaction pathways in propane ammoxidation based on the distribution of elements at the active centers of the M1 phase of the MoV(Nb, Ta)TeO system. Top Catal 54:595–604CrossRef
37.
go back to reference Grasselli RK, Volpe AF (2014) Catalytic consequences of a revised distribution of key elements at the active centers of the M1 phase of the MoVNbTeOx system. Top Catal 57:1124–1137CrossRef Grasselli RK, Volpe AF (2014) Catalytic consequences of a revised distribution of key elements at the active centers of the M1 phase of the MoVNbTeOx system. Top Catal 57:1124–1137CrossRef
38.
go back to reference Nieto JML, Botella P, Vazquez MI, Vazquez MI, Dejoz A (2002) The selective oxidative dehydrogenation of ethane over hydrothermally synthesised MoVTeNb catalysts. Chem Commun 17:1906–1907CrossRef Nieto JML, Botella P, Vazquez MI, Vazquez MI, Dejoz A (2002) The selective oxidative dehydrogenation of ethane over hydrothermally synthesised MoVTeNb catalysts. Chem Commun 17:1906–1907CrossRef
39.
go back to reference Hashiguchi BG, Bischof SM, Konnick MM, Periana RA (2012) Designing catalysts for functionalization of unactivated C–H bonds based on the CH activation reaction. Acc Chem Res 45:885–898CrossRef Hashiguchi BG, Bischof SM, Konnick MM, Periana RA (2012) Designing catalysts for functionalization of unactivated C–H bonds based on the CH activation reaction. Acc Chem Res 45:885–898CrossRef
40.
go back to reference Shilov AE, Shul’pin GB (1997) Activation of C–H bonds by metal complexes. Chem Rev 97:2879–2932CrossRef Shilov AE, Shul’pin GB (1997) Activation of C–H bonds by metal complexes. Chem Rev 97:2879–2932CrossRef
41.
go back to reference Groves JT (1985) Key elements of the chemistry of cytochrome-P-450—the oxygen rebound mechanism. J Chem Educ 62:928–931CrossRef Groves JT (1985) Key elements of the chemistry of cytochrome-P-450—the oxygen rebound mechanism. J Chem Educ 62:928–931CrossRef
42.
go back to reference Bauer RC, Gloaguen Y, Lutz M, Reek JNH, de Bruin B, van der Vlugt JI (2011) Pincer ligands with an all-phosphorus donor set: subtle differences between rhodium and palladium. Dalton Trans 40:8822–8829CrossRef Bauer RC, Gloaguen Y, Lutz M, Reek JNH, de Bruin B, van der Vlugt JI (2011) Pincer ligands with an all-phosphorus donor set: subtle differences between rhodium and palladium. Dalton Trans 40:8822–8829CrossRef
43.
go back to reference Derrah EJ, Ladeira S, Bouhadir G, Miqueu K, Bourissou D (2011) Original phenyl-P(O) bond cleavage at palladium(0): a combined experimental and computational study. Chem Commun 47:8611–8613CrossRef Derrah EJ, Ladeira S, Bouhadir G, Miqueu K, Bourissou D (2011) Original phenyl-P(O) bond cleavage at palladium(0): a combined experimental and computational study. Chem Commun 47:8611–8613CrossRef
44.
go back to reference Derrah EJ, Martin C, Ladeira S, Miqueu K, Bouhadir G, Bourissou D (2012) Coordination of a diphosphine-phosphine oxide to Au, Ag and Rh: when polyfunctionality rhymes with versatility. Dalton Trans 41:14274–14280CrossRef Derrah EJ, Martin C, Ladeira S, Miqueu K, Bouhadir G, Bourissou D (2012) Coordination of a diphosphine-phosphine oxide to Au, Ag and Rh: when polyfunctionality rhymes with versatility. Dalton Trans 41:14274–14280CrossRef
45.
go back to reference Gloaguen Y, Jacobs W, de Bruin B, Lutz M, van der Vlugt JI (2013) Reactivity of a mononuclear iridium(I) species bearing a terminal phosphido fragment embedded in a triphosphorus ligand. Inorg Chem 52:1682–1684CrossRef Gloaguen Y, Jacobs W, de Bruin B, Lutz M, van der Vlugt JI (2013) Reactivity of a mononuclear iridium(I) species bearing a terminal phosphido fragment embedded in a triphosphorus ligand. Inorg Chem 52:1682–1684CrossRef
46.
go back to reference Mazzeo M, Lamberti M, Massa A, Scettri A, Pellecchia C, Peters JC (2008) Phosphido pincer complexes of palladium as new efficient catalysts for allylation of aldehydes. Organometallics 27:5741–5743CrossRef Mazzeo M, Lamberti M, Massa A, Scettri A, Pellecchia C, Peters JC (2008) Phosphido pincer complexes of palladium as new efficient catalysts for allylation of aldehydes. Organometallics 27:5741–5743CrossRef
47.
go back to reference Mazzeo M, Strianese M, Kuhl O, Peters JC (2011) Phosphido pincer complexes of platinum: synthesis, structure and reactivity. Dalton Trans 40:9026–9033CrossRef Mazzeo M, Strianese M, Kuhl O, Peters JC (2011) Phosphido pincer complexes of platinum: synthesis, structure and reactivity. Dalton Trans 40:9026–9033CrossRef
48.
go back to reference Pan BF, Bezpalko MW, Foxman BM, Thomas CM (2011) Coordination of an N-heterocyclic phosphenium containing pincer ligand to a Co(CO)(2) fragment allows oxidation to form an unusual N-heterocyclic phosphinito species. Organometallics 30:5560–5563CrossRef Pan BF, Bezpalko MW, Foxman BM, Thomas CM (2011) Coordination of an N-heterocyclic phosphenium containing pincer ligand to a Co(CO)(2) fragment allows oxidation to form an unusual N-heterocyclic phosphinito species. Organometallics 30:5560–5563CrossRef
49.
go back to reference Pan BF, Bezpalko MW, Foxman BM, Thomas CM (2012) Heterolytic addition of E–H bonds across Pt–P bonds in Pt N-heterocyclic phosphenium/phosphido complexes. Dalton Trans 41:9083–9090CrossRef Pan BF, Bezpalko MW, Foxman BM, Thomas CM (2012) Heterolytic addition of E–H bonds across Pt–P bonds in Pt N-heterocyclic phosphenium/phosphido complexes. Dalton Trans 41:9083–9090CrossRef
Metadata
Title
The Mechanism of Alkane Selective Oxidation by the M1 Phase of Mo–V–Nb–Te Mixed Metal Oxides: Suggestions for Improved Catalysts
Authors
Mu-Jeng Cheng
William A. Goddard III
Publication date
29-07-2016
Publisher
Springer US
Published in
Topics in Catalysis / Issue 17-18/2016
Print ISSN: 1022-5528
Electronic ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-016-0669-9

Other articles of this Issue 17-18/2016

Topics in Catalysis 17-18/2016 Go to the issue

Premium Partners