Skip to main content
Top

2013 | OriginalPaper | Chapter

15. The Median Hypothesis

Authors : Ran Gilad-Bachrach, Chris J. C. Burges

Published in: Empirical Inference

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The classification task uses observations and prior knowledge to select a hypothesis that will predict class assignments well. In this work we ask the question: what is the best hypothesis to select from a given hypothesis class? To address this question we adopt a PAC-Bayesian approach. According to this viewpoint, the observations and prior knowledge are combined to form a belief probability over the hypothesis class. Therefore, we focus on the next part of the learning process, in which one has to choose the hypothesis to be used given the belief. We call this problem the hypothesis selection problem. Based on recent findings in PAC-Bayesian analysis, we suggest that a good hypothesis has to be close to the Bayesian optimal hypothesis. We define a measure of “depth” for hypotheses to measure their proximity to the Bayesian optimal hypothesis and we show that deeper hypotheses have stronger generalization bounds. Therefore, we propose algorithms to find the deepest hypothesis. Following the definitions of depth in multivariate statistics, we refer to the deepest hypothesis as the median hypothesis. We show that similarly to the univariate and multivariate medians, the median hypothesis has good stability properties in terms of the breakdown point. Moreover, we show that the Tukey median is a special case of the median hypothesis. Therefore, the algorithms proposed here also provide a polynomial time approximation for the Tukey median. This algorithm makes the mildest assumptions compared to other efficient approximation algorithms for the Tukey median.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The Bayes optimal hypothesis is also known as the Bayes optimal classifier. It performs a weighted majority vote on each prediction according to the posterior.
 
2
Due to space constraints we omit proofs, all of which can be found in [14].
 
3
Note that we can restrict the half-spaces in (15.2) to those half-spaces for which x lies on the boundary.
 
4
Note that this is not necessarily the same as the expected error of the Bayes optimal hypothesis.
 
5
A function is defined to be consistent with a labelled sample if it labels correctly all the instances in the sample.
 
Literature
1.
go back to reference Ben-David, S., Eiron, N., Long, P.M.: On the difficulty of approximately maximizing agreements. J. Comput. Syst. Sci. 66(3), 496–514 (2003)MathSciNetCrossRefMATH Ben-David, S., Eiron, N., Long, P.M.: On the difficulty of approximately maximizing agreements. J. Comput. Syst. Sci. 66(3), 496–514 (2003)MathSciNetCrossRefMATH
2.
go back to reference Billor, N., Abebe, A., Turkmen, A., Nudurupati, S.V.: Classification based on depth transvariations. J. Classif. 25(2), 249–260 (2008)MathSciNetCrossRefMATH Billor, N., Abebe, A., Turkmen, A., Nudurupati, S.V.: Classification based on depth transvariations. J. Classif. 25(2), 249–260 (2008)MathSciNetCrossRefMATH
4.
go back to reference Chan, T.M.: An optimal randomized algorithm for maximum Tukey depth. In: SODA, New Orleans, pp. 430–436 (2004) Chan, T.M.: An optimal randomized algorithm for maximum Tukey depth. In: SODA, New Orleans, pp. 430–436 (2004)
5.
go back to reference Christmann, A.: Regression depth and support vector machine. DIMACS Ser. Discret. Math. Theor. Comput. Sci. 72, 71 (2006) Christmann, A.: Regression depth and support vector machine. DIMACS Ser. Discret. Math. Theor. Comput. Sci. 72, 71 (2006)
6.
go back to reference Clarkson, K.L., Eppstein, D., Miller, G.L., Sturtivant, C., Teng, S.H.: Approximating center points with iterative Radon points. Int. J. Comput. Geom. Appl. 6(3), 357–377 (1996)MathSciNetCrossRefMATH Clarkson, K.L., Eppstein, D., Miller, G.L., Sturtivant, C., Teng, S.H.: Approximating center points with iterative Radon points. Int. J. Comput. Geom. Appl. 6(3), 357–377 (1996)MathSciNetCrossRefMATH
8.
go back to reference Cuevas, A., Febrero, M., Fraiman, R.: Robust estimation and classification for functional data via projection-based depth notions. Comput. Stat. 22, 481–496 (2007)MathSciNetCrossRefMATH Cuevas, A., Febrero, M., Fraiman, R.: Robust estimation and classification for functional data via projection-based depth notions. Comput. Stat. 22, 481–496 (2007)MathSciNetCrossRefMATH
9.
go back to reference Fine, S., Gilad-Bachrach, R., Shamir, E.: Query by committee, linear separation and random walks. Theor. Comput. Sci. 284(1), 25–51 (2002)MathSciNetCrossRefMATH Fine, S., Gilad-Bachrach, R., Shamir, E.: Query by committee, linear separation and random walks. Theor. Comput. Sci. 284(1), 25–51 (2002)MathSciNetCrossRefMATH
11.
go back to reference Germain, P., Lacasse, A., Laviolette, F., Marchand, M., Shanian, S.: From PAC-Bayes bounds to KL regularization. In: NIPS, Vancouver (2009) Germain, P., Lacasse, A., Laviolette, F., Marchand, M., Shanian, S.: From PAC-Bayes bounds to KL regularization. In: NIPS, Vancouver (2009)
12.
go back to reference Ghosh, A., Chaudhuri, P.: On data depth and distribution-free discriminant analysis using separating surfaces. Bernoulli 11(1), 1–27 (2005)MathSciNetCrossRefMATH Ghosh, A., Chaudhuri, P.: On data depth and distribution-free discriminant analysis using separating surfaces. Bernoulli 11(1), 1–27 (2005)MathSciNetCrossRefMATH
14.
go back to reference Gilad-Bachrach, R., Burges, C.J.C.: Classifier selection using the predicate depth. Technical Report MSR-TR-2013-8, Microsoft Research (2013) Gilad-Bachrach, R., Burges, C.J.C.: Classifier selection using the predicate depth. Technical Report MSR-TR-2013-8, Microsoft Research (2013)
15.
go back to reference Gilad-Bachrach, R., Navot, A., Tishby, N.: Bayes and Tukey meet at the center point. In: Proceedings of the Conference on Learning Theory (COLT), Banff, pp. 549–563. Springer (2004) Gilad-Bachrach, R., Navot, A., Tishby, N.: Bayes and Tukey meet at the center point. In: Proceedings of the Conference on Learning Theory (COLT), Banff, pp. 549–563. Springer (2004)
16.
go back to reference Gilad-Bachrach, R., Navot, A., Tishby, N.: Query by committee made real. In: NIPS, Vancouver (2005) Gilad-Bachrach, R., Navot, A., Tishby, N.: Query by committee made real. In: NIPS, Vancouver (2005)
18.
go back to reference Herbrich, R., Graepel, T., Campbell, C.: Bayes point machines. J. Mach. Learn. Res. 1, 245–279 (2001)MathSciNetMATH Herbrich, R., Graepel, T., Campbell, C.: Bayes point machines. J. Mach. Learn. Res. 1, 245–279 (2001)MathSciNetMATH
19.
go back to reference Jörnsten, R.: Clustering and classification based on the L1 data depth. J. Multivar. Anal. 90, 67–89 (2004)CrossRefMATH Jörnsten, R.: Clustering and classification based on the L1 data depth. J. Multivar. Anal. 90, 67–89 (2004)CrossRefMATH
20.
go back to reference Liu, R.Y.: On a notion of data depth based on random simplices. Ann. Stat. 18(1), 405-414 (1990)CrossRefMATH Liu, R.Y.: On a notion of data depth based on random simplices. Ann. Stat. 18(1), 405-414 (1990)CrossRefMATH
21.
go back to reference Liu, R.Y., Parelius, J.M., Singh, K.: Multivariate analysis by data depth: descriptive statistics, graphics and inference (with discussion and a rejoinder by Liu and Singh). Ann. Stat. 27(3), 783–858 (1999)MathSciNetCrossRefMATH Liu, R.Y., Parelius, J.M., Singh, K.: Multivariate analysis by data depth: descriptive statistics, graphics and inference (with discussion and a rejoinder by Liu and Singh). Ann. Stat. 27(3), 783–858 (1999)MathSciNetCrossRefMATH
22.
go back to reference López-Pintado, S., Romo, J.: On the concept of depth for functional data. J. Am. Stat. Assoc. 104, 718–734 (2009)CrossRef López-Pintado, S., Romo, J.: On the concept of depth for functional data. J. Am. Stat. Assoc. 104, 718–734 (2009)CrossRef
23.
24.
26.
go back to reference Tukey, J.: Mathematics and the picturing of data. In: Proceedings of the International Congress of Mathematicians, Vancouver (1975) Tukey, J.: Mathematics and the picturing of data. In: Proceedings of the International Congress of Mathematicians, Vancouver (1975)
27.
go back to reference Zuo, Y.: Projection-based depth functions and associated medians. Ann. Stat. 31, 1460–1490 (2003)CrossRefMATH Zuo, Y.: Projection-based depth functions and associated medians. Ann. Stat. 31, 1460–1490 (2003)CrossRefMATH
Metadata
Title
The Median Hypothesis
Authors
Ran Gilad-Bachrach
Chris J. C. Burges
Copyright Year
2013
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-41136-6_15

Premium Partner