Skip to main content
Top

2018 | OriginalPaper | Chapter

2. The Molecular, Cellular, and Systems-Level Structure of the Basal Ganglia

Authors : Alekhya Mandali, V. Srinivasa Chakravarthy, Ahmed A. Moustafa

Published in: Computational Neuroscience Models of the Basal Ganglia

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter provides a brief overview of the systems, cellular, and molecular structure of the various nuclei of basal ganglia (BG) such as striatum, STN, GPe, GPi, and the SNr including the various neurotransmitters impacting its function. We start with the system-level connection between cortex and BG and then cover the various cell types, receptors (such as dopaminergic, acetylcholine) present on each of the BG nuclei. The effect of Parkinson’s disease on their dynamics especially the STN–GPe oscillatory network is then discussed. The dopaminergic systems SNc and VTA are also covered in terms of their architecture and input–output synaptic projection patterns. Finally, a short intro to the multiple cortico-BG loops and their functional relevance is discussed. This brief overview helps provide background on BG structure, which is the basis of several models we present in this book.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alberico, S. L., Cassell, M. D., & Narayanan, N. S. (2015). The vulnerable ventral tegmental area in Parkinson’s disease. Basal ganglia, 5(2), 51–55. Alberico, S. L., Cassell, M. D., & Narayanan, N. S. (2015). The vulnerable ventral tegmental area in Parkinson’s disease. Basal ganglia, 5(2), 51–55.
go back to reference Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12(10), 366–375.CrossRef Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12(10), 366–375.CrossRef
go back to reference Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9(1), 357–381.CrossRef Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9(1), 357–381.CrossRef
go back to reference Aravamuthan, B., Muthusamy, K., Stein, J., Aziz, T., & Johansen-Berg, H. (2007). Topography of cortical and subcortical connections of the human pedunculopontine and subthalamic nuclei. Neuroimage, 37(3), 694–705.CrossRef Aravamuthan, B., Muthusamy, K., Stein, J., Aziz, T., & Johansen-Berg, H. (2007). Topography of cortical and subcortical connections of the human pedunculopontine and subthalamic nuclei. Neuroimage, 37(3), 694–705.CrossRef
go back to reference Basso, M. A., Powers, A. S., & Evinger, C. (1996). An explanation for reflex blink hyperexcitability in Parkinson’s disease. I. Superior colliculus. The Journal of Neuroscience, 16(22), 7308–7317. Basso, M. A., Powers, A. S., & Evinger, C. (1996). An explanation for reflex blink hyperexcitability in Parkinson’s disease. I. Superior colliculus. The Journal of Neuroscience, 16(22), 7308–7317.
go back to reference Baufreton, J., Kirkham, E., Atherton, J. F., Menard, A., Magill, P. J., Bolam, J. P., et al. (2009). Sparse but selective and potent synaptic transmission from the globus pallidus to the subthalamic nucleus. Journal of Neurophysiology, 102(1), 532–545.CrossRef Baufreton, J., Kirkham, E., Atherton, J. F., Menard, A., Magill, P. J., Bolam, J. P., et al. (2009). Sparse but selective and potent synaptic transmission from the globus pallidus to the subthalamic nucleus. Journal of Neurophysiology, 102(1), 532–545.CrossRef
go back to reference Baunez, C., Humby, T., Eagle, D. M., Ryan, L. J., Dunnett, S. B., & Robbins, T. W. (2001). Effects of STN lesions on simple vs choice reaction time tasks in the rat: preserved motor readiness, but impaired response selection. European Journal of Neuroscience, 13(8), 1609–1616.CrossRef Baunez, C., Humby, T., Eagle, D. M., Ryan, L. J., Dunnett, S. B., & Robbins, T. W. (2001). Effects of STN lesions on simple vs choice reaction time tasks in the rat: preserved motor readiness, but impaired response selection. European Journal of Neuroscience, 13(8), 1609–1616.CrossRef
go back to reference Beaulieu, J. M., & Gainetdinov, R. R. (2011). The physiology, signaling, and pharmacology of dopamine receptors. Pharmacological Reviews, 63(1), 182–217.CrossRef Beaulieu, J. M., & Gainetdinov, R. R. (2011). The physiology, signaling, and pharmacology of dopamine receptors. Pharmacological Reviews, 63(1), 182–217.CrossRef
go back to reference Benazzouz, A., Breit, S., Koudsie, A., Pollak, P., Krack, P., & Benabid, A. L. (2002). Intraoperative microrecordings of the subthalamic nucleus in Parkinson’s disease. Movement Disorders, 17(S3), S145–S149.CrossRef Benazzouz, A., Breit, S., Koudsie, A., Pollak, P., Krack, P., & Benabid, A. L. (2002). Intraoperative microrecordings of the subthalamic nucleus in Parkinson’s disease. Movement Disorders, 17(S3), S145–S149.CrossRef
go back to reference Bennett, B. D., Callaway, J. C., & Wilson, C. J. (2000). Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons. The Journal of Neuroscience, 20(22), 8493–8503. Bennett, B. D., Callaway, J. C., & Wilson, C. J. (2000). Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons. The Journal of Neuroscience, 20(22), 8493–8503.
go back to reference Bergman, H., Feingold, A., Nini, A., Raz, A., Slovin, H., Abeles, M., & Vaadia, E. (1998). Physiological aspects of information processing in the basal ganglia of normal and Parkinsonian primates. Trends in Neurosciences, 21(1), 32–38. Bergman, H., Feingold, A., Nini, A., Raz, A., Slovin, H., Abeles, M., & Vaadia, E. (1998). Physiological aspects of information processing in the basal ganglia of normal and Parkinsonian primates. Trends in Neurosciences, 21(1), 32–38.
go back to reference Bergman, H., Wichmann, T., Karmon, B., & DeLong, M. (1994). The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of Parkinsonism. Journal of Neurophysiology, 72(2), 507–520.CrossRef Bergman, H., Wichmann, T., Karmon, B., & DeLong, M. (1994). The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of Parkinsonism. Journal of Neurophysiology, 72(2), 507–520.CrossRef
go back to reference Beurrier, C., Congar, P., Bioulac, B., & Hammond, C. (1999). Subthalamic nucleus neurons switch from single-spike activity to burst-firing mode. The Journal of Neuroscience, 19(2), 599–609. Beurrier, C., Congar, P., Bioulac, B., & Hammond, C. (1999). Subthalamic nucleus neurons switch from single-spike activity to burst-firing mode. The Journal of Neuroscience, 19(2), 599–609.
go back to reference Bevan, M. D., Magill, P. J., Terman, D., Bolam, J. P., & Wilson, C. J. (2002). Move to the rhythm: Oscillations in the subthalamic nucleus–external globus pallidus network. Trends in Neurosciences, 25(10), 525–531.CrossRef Bevan, M. D., Magill, P. J., Terman, D., Bolam, J. P., & Wilson, C. J. (2002). Move to the rhythm: Oscillations in the subthalamic nucleus–external globus pallidus network. Trends in Neurosciences, 25(10), 525–531.CrossRef
go back to reference Bevan, M. D., & Wilson, C. J. (1999). Mechanisms underlying spontaneous oscillation and rhythmic firing in rat subthalamic neurons. The Journal of Neuroscience, 19(17), 7617–7628. Bevan, M. D., & Wilson, C. J. (1999). Mechanisms underlying spontaneous oscillation and rhythmic firing in rat subthalamic neurons. The Journal of Neuroscience, 19(17), 7617–7628.
go back to reference Björklund, A., & Dunnett, S. B. (2007). Dopamine neuron systems in the brain: An update. Trends in Neurosciences, 30(5), 194–202.CrossRef Björklund, A., & Dunnett, S. B. (2007). Dopamine neuron systems in the brain: An update. Trends in Neurosciences, 30(5), 194–202.CrossRef
go back to reference Blandini, F. (2010). An update on the potential role of excitotoxicity in the pathogenesis of Parkinson’s disease. Functional Neurology, 25(2), 65. Blandini, F. (2010). An update on the potential role of excitotoxicity in the pathogenesis of Parkinson’s disease. Functional Neurology, 25(2), 65.
go back to reference Bolam, J., Bergman, H., Graybiel, A., Kimura, M., Plenz, D., Seung, H., … Wickens, J. (2006). Microcircuits, molecules and motivated behaviour: Microcircuits in the striatum. Paper presented at the Microcircuits: The Interface Between Neurons and Global Brain Function, Dahlem Workshop Report. Bolam, J., Bergman, H., Graybiel, A., Kimura, M., Plenz, D., Seung, H., … Wickens, J. (2006). Microcircuits, molecules and motivated behaviour: Microcircuits in the striatum. Paper presented at the Microcircuits: The Interface Between Neurons and Global Brain Function, Dahlem Workshop Report.
go back to reference Brown, P. (2003). Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. Movement Disorders, 18(4), 357–363.CrossRef Brown, P. (2003). Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. Movement Disorders, 18(4), 357–363.CrossRef
go back to reference Brown, P. (2007). Abnormal oscillatory synchronisation in the motor system leads to impaired movement. Current Opinion in Neurobiology, 17(6), 656–664.CrossRef Brown, P. (2007). Abnormal oscillatory synchronisation in the motor system leads to impaired movement. Current Opinion in Neurobiology, 17(6), 656–664.CrossRef
go back to reference Brown, P., Oliviero, A., Mazzone, P., Insola, A., Tonali, P., & Di Lazzaro, V. (2001). Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. The Journal of Neuroscience, 21(3), 1033–1038. Brown, P., Oliviero, A., Mazzone, P., Insola, A., Tonali, P., & Di Lazzaro, V. (2001). Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. The Journal of Neuroscience, 21(3), 1033–1038.
go back to reference Chakravarthy, V., Joseph, D., & Bapi, R. S. (2010). What do the basal ganglia do? A modeling perspective. Biological Cybernetics, 103(3), 237–253.MathSciNetCrossRefMATH Chakravarthy, V., Joseph, D., & Bapi, R. S. (2010). What do the basal ganglia do? A modeling perspective. Biological Cybernetics, 103(3), 237–253.MathSciNetCrossRefMATH
go back to reference Charpier, S., Beurrier, C., & Paz, J. (2010). The subthalamic nucleus: from in vitro to in vivo mechanisms. Handbook of Basal Ganglia Structure and Function, 259–273. Charpier, S., Beurrier, C., & Paz, J. (2010). The subthalamic nucleus: from in vitro to in vivo mechanisms. Handbook of Basal Ganglia Structure and Function, 259–273.
go back to reference Chaudhuri, K. R., Healy, D. G., & Schapira, A. H. (2006). Non-motor symptoms of Parkinson’s disease: diagnosis and management. The Lancet Neurology, 5(3), 235–245.CrossRef Chaudhuri, K. R., Healy, D. G., & Schapira, A. H. (2006). Non-motor symptoms of Parkinson’s disease: diagnosis and management. The Lancet Neurology, 5(3), 235–245.CrossRef
go back to reference Chaudhuri, K. R., Odin, P., Antonini, A., & Martinez-Martin, P. (2011). Parkinson’s disease: The non-motor issues. Parkinsonism & Related Disorders, 17(10), 717–723.CrossRef Chaudhuri, K. R., Odin, P., Antonini, A., & Martinez-Martin, P. (2011). Parkinson’s disease: The non-motor issues. Parkinsonism & Related Disorders, 17(10), 717–723.CrossRef
go back to reference Chersi, F., Mirolli, M., Pezzulo, G., & Baldassarre, G. (2013). A spiking neuron model of the cortico-basal ganglia circuits for goal-directed and habitual action learning. Neural Networks, 41, 212–224.CrossRef Chersi, F., Mirolli, M., Pezzulo, G., & Baldassarre, G. (2013). A spiking neuron model of the cortico-basal ganglia circuits for goal-directed and habitual action learning. Neural Networks, 41, 212–224.CrossRef
go back to reference DeLong, M., & Wichmann, T. (2010). Changing views of basal ganglia circuits and circuit disorders. Clinical EEG and Neuroscience, 41(2), 61–67.CrossRef DeLong, M., & Wichmann, T. (2010). Changing views of basal ganglia circuits and circuit disorders. Clinical EEG and Neuroscience, 41(2), 61–67.CrossRef
go back to reference Deniau, J., Hammond, C., Riszk, A., & Feger, J. (1978). Electrophysiological properties of identified output neurons of the rat substantia nigra (pars compacta and pars reticulata): Evidences for the existence of branched neurons. Experimental Brain Research, 32(3), 409–422.CrossRef Deniau, J., Hammond, C., Riszk, A., & Feger, J. (1978). Electrophysiological properties of identified output neurons of the rat substantia nigra (pars compacta and pars reticulata): Evidences for the existence of branched neurons. Experimental Brain Research, 32(3), 409–422.CrossRef
go back to reference Fan, K. Y., Baufreton, J., Surmeier, D. J., Chan, C. S., & Bevan, M. D. (2012). Proliferation of external globus pallidus-subthalamic nucleus synapses following degeneration of midbrain dopamine neurons. The Journal of Neuroscience, 32(40), 13718–13728.CrossRef Fan, K. Y., Baufreton, J., Surmeier, D. J., Chan, C. S., & Bevan, M. D. (2012). Proliferation of external globus pallidus-subthalamic nucleus synapses following degeneration of midbrain dopamine neurons. The Journal of Neuroscience, 32(40), 13718–13728.CrossRef
go back to reference Foffani, G., Bianchi, A., Baselli, G., & Priori, A. (2005). Movement-related frequency modulation of beta oscillatory activity in the human subthalamic nucleus. The Journal of Physiology, 568(2), 699–711.CrossRef Foffani, G., Bianchi, A., Baselli, G., & Priori, A. (2005). Movement-related frequency modulation of beta oscillatory activity in the human subthalamic nucleus. The Journal of Physiology, 568(2), 699–711.CrossRef
go back to reference Gerfen, C. R. (1984). The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems. Nature, 311(5985), 461. Gerfen, C. R. (1984). The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems. Nature, 311(5985), 461.
go back to reference Gerfen, C. R., Engber, T. M., Mahan, L. C., Susel, Z., Chase, T. N., Monsma, F., & Sibley, D. R. (1990). D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science, 250(4986), 1429–1432. Gerfen, C. R., Engber, T. M., Mahan, L. C., Susel, Z., Chase, T. N., Monsma, F., & Sibley, D. R. (1990). D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science, 250(4986), 1429–1432.
go back to reference Gerfen, C. R., & Surmeier, D. J. (2011). Modulation of striatal projection systems by dopamine. Annual Review of Neuroscience, 34, 441.CrossRef Gerfen, C. R., & Surmeier, D. J. (2011). Modulation of striatal projection systems by dopamine. Annual Review of Neuroscience, 34, 441.CrossRef
go back to reference Gerfen, C. R., & Young, W. S. (1988). Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: An in situ hybridization histochemistry and fluorescent retrograde tracing study. Brain Research, 460(1), 161–167.CrossRef Gerfen, C. R., & Young, W. S. (1988). Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: An in situ hybridization histochemistry and fluorescent retrograde tracing study. Brain Research, 460(1), 161–167.CrossRef
go back to reference Gillies, A., Willshaw, D., Gillies, A., & Willshaw, D. (1998). A massively connected subthalamic nucleus leads to the generation of widespread pulses. Proceedings of the Royal Society of London, Series B: Biological Sciences, 265(1410), 2101–2109.CrossRef Gillies, A., Willshaw, D., Gillies, A., & Willshaw, D. (1998). A massively connected subthalamic nucleus leads to the generation of widespread pulses. Proceedings of the Royal Society of London, Series B: Biological Sciences, 265(1410), 2101–2109.CrossRef
go back to reference Grace, A., & Bunney, B. (1983). Intracellular and extracellular electrophysiology of nigral dopaminergic neurons—2. Action potential generating mechanisms and morphological correlates. Neuroscience, 10(2), 317–331.CrossRef Grace, A., & Bunney, B. (1983). Intracellular and extracellular electrophysiology of nigral dopaminergic neurons—2. Action potential generating mechanisms and morphological correlates. Neuroscience, 10(2), 317–331.CrossRef
go back to reference Graybiel, A. M., Aosaki, T., Flaherty, A. W., & Kimura, M. (1994). The basal ganglia and adaptive motor control. Science, 265(5180), 1826–1831.CrossRef Graybiel, A. M., Aosaki, T., Flaherty, A. W., & Kimura, M. (1994). The basal ganglia and adaptive motor control. Science, 265(5180), 1826–1831.CrossRef
go back to reference Gurney, K., Prescott, T. J., & Redgrave, P. (2001a). A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biological Cybernetics, 84(6), 401–410.CrossRefMATH Gurney, K., Prescott, T. J., & Redgrave, P. (2001a). A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biological Cybernetics, 84(6), 401–410.CrossRefMATH
go back to reference Gurney, K., Prescott, T. J., & Redgrave, P. (2001b). A computational model of action selection in the basal ganglia. II. Analysis and simulation of behaviour. Biological Cybernetics, 84(6), 411–423.CrossRefMATH Gurney, K., Prescott, T. J., & Redgrave, P. (2001b). A computational model of action selection in the basal ganglia. II. Analysis and simulation of behaviour. Biological Cybernetics, 84(6), 411–423.CrossRefMATH
go back to reference Haber, S. N., & Calzavara, R. (2009). The cortico-basal ganglia integrative network: The role of the thalamus. Brain Research Bulletin, 78(2), 69–74.CrossRef Haber, S. N., & Calzavara, R. (2009). The cortico-basal ganglia integrative network: The role of the thalamus. Brain Research Bulletin, 78(2), 69–74.CrossRef
go back to reference Haber, S. N., Fudge, J. L., & McFarland, N. R. (2000). Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. The Journal of Neuroscience, 20(6), 2369–2382. Haber, S. N., Fudge, J. L., & McFarland, N. R. (2000). Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. The Journal of Neuroscience, 20(6), 2369–2382.
go back to reference Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson’s disease: Networks, models and treatments. Trends in Neurosciences, 30(7), 357–364.CrossRef Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson’s disease: Networks, models and treatments. Trends in Neurosciences, 30(7), 357–364.CrossRef
go back to reference Han, X., Jing, M.-y., Zhao, T.-y., Wu, N., Song, R., & Li, J. (2017). Role of dopamine projections from ventral tegmental area to nucleus accumbens and medial prefrontal cortex in reinforcement behaviors assessed using optogenetic manipulation. Metabolic Brain Disease, 1–12. Han, X., Jing, M.-y., Zhao, T.-y., Wu, N., Song, R., & Li, J. (2017). Role of dopamine projections from ventral tegmental area to nucleus accumbens and medial prefrontal cortex in reinforcement behaviors assessed using optogenetic manipulation. Metabolic Brain Disease, 1–12.
go back to reference Hasbi, A., O’Dowd, B. F., & George, S. R. (2011). Dopamine D1-D2 receptor heteromer signaling pathway in the brain: emerging physiological relevance. Molecular Brain, 4(1), 26.CrossRef Hasbi, A., O’Dowd, B. F., & George, S. R. (2011). Dopamine D1-D2 receptor heteromer signaling pathway in the brain: emerging physiological relevance. Molecular Brain, 4(1), 26.CrossRef
go back to reference Heida, T., Lakke, E. A., & Usunoff, K. G. (2008a). Subthalamic nucleus Part I: Development, cytology, topography and connections, the advances in anatomy, embryology and cell biology. Berlin: Springer. Heida, T., Lakke, E. A., & Usunoff, K. G. (2008a). Subthalamic nucleus Part I: Development, cytology, topography and connections, the advances in anatomy, embryology and cell biology. Berlin: Springer.
go back to reference Heida, T., Marani, E., & Usunoff, K. G. (2008b). The subthalamic nucleus: Part II: Modelling and simulation of activity. Berlin: Springer.CrossRef Heida, T., Marani, E., & Usunoff, K. G. (2008b). The subthalamic nucleus: Part II: Modelling and simulation of activity. Berlin: Springer.CrossRef
go back to reference Holgado, A. J. N., Terry, J. R., & Bogacz, R. (2010). Conditions for the generation of beta oscillations in the subthalamic nucleus–globus pallidus network. The Journal of Neuroscience, 30(37), 12340–12352.CrossRef Holgado, A. J. N., Terry, J. R., & Bogacz, R. (2010). Conditions for the generation of beta oscillations in the subthalamic nucleus–globus pallidus network. The Journal of Neuroscience, 30(37), 12340–12352.CrossRef
go back to reference Humphries, M., & Gurney, K. (2002). The role of intra-thalamic and thalamocortical circuits in action selection. Network: Computation in Neural Systems, 13(1), 131–156.CrossRefMATH Humphries, M., & Gurney, K. (2002). The role of intra-thalamic and thalamocortical circuits in action selection. Network: Computation in Neural Systems, 13(1), 131–156.CrossRefMATH
go back to reference Kawaguchi, Y. (1993). Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. The Journal of Neuroscience, 13(11), 4908–4923. Kawaguchi, Y. (1993). Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. The Journal of Neuroscience, 13(11), 4908–4923.
go back to reference Kita, H., Chang, H., & Kitai, S. (1983). The morphology of intracellularly labeled rat subthalamic neurons: A light microscopic analysis. Journal of Comparative Neurology, 215(3), 245–257.CrossRef Kita, H., Chang, H., & Kitai, S. (1983). The morphology of intracellularly labeled rat subthalamic neurons: A light microscopic analysis. Journal of Comparative Neurology, 215(3), 245–257.CrossRef
go back to reference Kita, H., & Kita, S. (1994). The morphology of globus pallidus projection neurons in the rat: An intracellular staining study. Brain Research, 636(2), 308–319.CrossRef Kita, H., & Kita, S. (1994). The morphology of globus pallidus projection neurons in the rat: An intracellular staining study. Brain Research, 636(2), 308–319.CrossRef
go back to reference Knable, M. B., & Weinberger, D. R. (1997). Dopamine, the prefrontal cortex and schizophrenia. Journal of psychopharmacology, 11(2), 123–131. Knable, M. B., & Weinberger, D. R. (1997). Dopamine, the prefrontal cortex and schizophrenia. Journal of psychopharmacology, 11(2), 123–131.
go back to reference Koós, T., & Tepper, J. M. (1999). Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nature Neuroscience, 2(5), 467–472.CrossRef Koós, T., & Tepper, J. M. (1999). Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nature Neuroscience, 2(5), 467–472.CrossRef
go back to reference Kreitzer, A. C. (2009). Physiology and pharmacology of striatal neurons. Annual Review of Neuroscience, 32, 127–147.CrossRef Kreitzer, A. C. (2009). Physiology and pharmacology of striatal neurons. Annual Review of Neuroscience, 32, 127–147.CrossRef
go back to reference Lawson, R., Seymour, B., Nord, C., Thomas, D., Roiser, J., Dayan, P., & Pilling, S. (2016). Disrupted habenula function in major depression. Molecular psychiatry, 22(2), 202. Lawson, R., Seymour, B., Nord, C., Thomas, D., Roiser, J., Dayan, P., & Pilling, S. (2016). Disrupted habenula function in major depression. Molecular psychiatry, 22(2), 202.
go back to reference Lee, C. R., & Tepper, J. M. (2009). Basal ganglia control of substantia nigra dopaminergic neurons. In Birth, life and death of dopaminergic neurons in the substantia nigra (pp. 71–90), Berlin: Springer. Lee, C. R., & Tepper, J. M. (2009). Basal ganglia control of substantia nigra dopaminergic neurons. In Birth, life and death of dopaminergic neurons in the substantia nigra (pp. 71–90), Berlin: Springer.
go back to reference Levy, R., Ashby, P., Hutchison, W. D., Lang, A. E., Lozano, A. M., & Dostrovsky, J. O. (2002). Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease. Brain, 125(6), 1196–1209.CrossRef Levy, R., Ashby, P., Hutchison, W. D., Lang, A. E., Lozano, A. M., & Dostrovsky, J. O. (2002). Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease. Brain, 125(6), 1196–1209.CrossRef
go back to reference Mallet, N., Le Moine, C., Charpier, S., & Gonon, F. (2005). Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo. The Journal of Neuroscience, 25(15), 3857–3869.CrossRef Mallet, N., Le Moine, C., Charpier, S., & Gonon, F. (2005). Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo. The Journal of Neuroscience, 25(15), 3857–3869.CrossRef
go back to reference Marsden, C. (1986). Movement disorders and the basal ganglia. Trends in neurosciences, 9, 512–515. Marsden, C. (1986). Movement disorders and the basal ganglia. Trends in neurosciences, 9, 512–515.
go back to reference Maurice, N., Deniau, J.-M., Glowinski, J., & Thierry, A.-M. (1998). Relationships between the prefrontal cortex and the basal ganglia in the rat: physiology of the corticosubthalamic circuits. The Journal of Neuroscience, 18(22), 9539–9546. Maurice, N., Deniau, J.-M., Glowinski, J., & Thierry, A.-M. (1998). Relationships between the prefrontal cortex and the basal ganglia in the rat: physiology of the corticosubthalamic circuits. The Journal of Neuroscience, 18(22), 9539–9546.
go back to reference Merello, M. (2007). Non-motor disorders in Parkinson’s disease. Revista de neurologia, 47(5), 261–270. Merello, M. (2007). Non-motor disorders in Parkinson’s disease. Revista de neurologia, 47(5), 261–270.
go back to reference Middleton, F. A., & Strick, P. L. (1996). The temporal lobe is a target of output from the basal ganglia. Proceedings of the national academy of sciences, 93(16), 8683–8687. Middleton, F. A., & Strick, P. L. (1996). The temporal lobe is a target of output from the basal ganglia. Proceedings of the national academy of sciences, 93(16), 8683–8687.
go back to reference Morales, M., & Margolis, E. B. (2017). Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nature Reviews Neuroscience, 18(2), 73–85. Morales, M., & Margolis, E. B. (2017). Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nature Reviews Neuroscience, 18(2), 73–85.
go back to reference Nakanishi, H., Kita, H., & Kitai, S. (1987). Intracellular study of rat substantia nigra pars reticulata neurons in an in vitro slice preparation: Electrical membrane properties and response characteristics to subthalamic stimulation. Brain Research, 437(1), 45–55.CrossRef Nakanishi, H., Kita, H., & Kitai, S. (1987). Intracellular study of rat substantia nigra pars reticulata neurons in an in vitro slice preparation: Electrical membrane properties and response characteristics to subthalamic stimulation. Brain Research, 437(1), 45–55.CrossRef
go back to reference Nakano, K. (2000). Neural circuits and topographic organization of the basal ganglia and related regions. Brain and Development, 22, 5–16.CrossRef Nakano, K. (2000). Neural circuits and topographic organization of the basal ganglia and related regions. Brain and Development, 22, 5–16.CrossRef
go back to reference Nambu, A., Tokuno, H., & Takada, M. (2002). Functional significance of the cortico–subthalamo–pallidal ‘hyperdirect’ pathway. Neuroscience Research, 43(2), 111–117.CrossRef Nambu, A., Tokuno, H., & Takada, M. (2002). Functional significance of the cortico–subthalamo–pallidal ‘hyperdirect’ pathway. Neuroscience Research, 43(2), 111–117.CrossRef
go back to reference Nicola, S. M., Surmeier, D. J., & Malenka, R. C. (2000). Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annual Review of Neuroscience, 23(1), 185–215.CrossRef Nicola, S. M., Surmeier, D. J., & Malenka, R. C. (2000). Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annual Review of Neuroscience, 23(1), 185–215.CrossRef
go back to reference Oliva, I., & Wanat, M. J. (2016). Ventral tegmental area afferents and drug-dependent behaviors. Frontiers in psychiatry, 7. Oliva, I., & Wanat, M. J. (2016). Ventral tegmental area afferents and drug-dependent behaviors. Frontiers in psychiatry, 7.
go back to reference Park, C., Worth, R. M., & Rubchinsky, L. L. (2010). Fine temporal structure of beta oscillations synchronization in subthalamic nucleus in Parkinson’s disease. Journal of Neurophysiology, 103(5), 2707–2716.CrossRef Park, C., Worth, R. M., & Rubchinsky, L. L. (2010). Fine temporal structure of beta oscillations synchronization in subthalamic nucleus in Parkinson’s disease. Journal of Neurophysiology, 103(5), 2707–2716.CrossRef
go back to reference Park, C., Worth, R. M., & Rubchinsky, L. L. (2011). Neural dynamics in Parkinsonian brain: The boundary between synchronized and nonsynchronized dynamics. Physical Review E, 83(4), 042901.CrossRef Park, C., Worth, R. M., & Rubchinsky, L. L. (2011). Neural dynamics in Parkinsonian brain: The boundary between synchronized and nonsynchronized dynamics. Physical Review E, 83(4), 042901.CrossRef
go back to reference Plenz, D., & Kitai, S. T. (1998). Up and down states in striatal medium spiny neurons simultaneously recorded with spontaneous activity in fast-spiking interneurons studied in cortex–striatum–substantia nigra organotypic cultures. The Journal of Neuroscience, 18(1), 266–283. Plenz, D., & Kitai, S. T. (1998). Up and down states in striatal medium spiny neurons simultaneously recorded with spontaneous activity in fast-spiking interneurons studied in cortex–striatum–substantia nigra organotypic cultures. The Journal of Neuroscience, 18(1), 266–283.
go back to reference Plenz, D., & Kital, S. T. (1999). A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature, 400(6745), 677–682.CrossRef Plenz, D., & Kital, S. T. (1999). A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature, 400(6745), 677–682.CrossRef
go back to reference Rashid, A. J., So, C. H., Kong, M. M., Furtak, T., El-Ghundi, M., Cheng, R., … George, S. R. (2007). D1–D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proceedings of the National Academy of Sciences, 104(2), 654–659. Rashid, A. J., So, C. H., Kong, M. M., Furtak, T., El-Ghundi, M., Cheng, R., … George, S. R. (2007). D1–D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proceedings of the National Academy of Sciences, 104(2), 654–659.
go back to reference Raz, A., Vaadia, E., & Bergman, H. (2000). Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine vervet model of Parkinsonism. The Journal of Neuroscience, 20(22), 8559–8571. Raz, A., Vaadia, E., & Bergman, H. (2000). Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine vervet model of Parkinsonism. The Journal of Neuroscience, 20(22), 8559–8571.
go back to reference Reig, R., & Silberberg, G. (2014). Multisensory integration in the mouse striatum. Neuron, 83(5), 1200–1212.CrossRef Reig, R., & Silberberg, G. (2014). Multisensory integration in the mouse striatum. Neuron, 83(5), 1200–1212.CrossRef
go back to reference Robledo, P., & Féger, J. (1990). Excitatory influence of rat subthalamic nucleus to substantia nigra pars reticulata and the pallidal complex: Electrophysiological data. Brain Research, 518(1), 47–54.CrossRef Robledo, P., & Féger, J. (1990). Excitatory influence of rat subthalamic nucleus to substantia nigra pars reticulata and the pallidal complex: Electrophysiological data. Brain Research, 518(1), 47–54.CrossRef
go back to reference Rodriguez-Oroz, M. C., López-Azcárate, J., Garcia-Garcia, D., Alegre, M., Toledo, J., Valencia, M., … Obeso, J. A. (2010). Involvement of the subthalamic nucleus in impulse control disorders associated with Parkinson’s disease. Brain, awq301. Rodriguez-Oroz, M. C., López-Azcárate, J., Garcia-Garcia, D., Alegre, M., Toledo, J., Valencia, M., … Obeso, J. A. (2010). Involvement of the subthalamic nucleus in impulse control disorders associated with Parkinson’s disease. Brain, awq301.
go back to reference Rubin, J. E., & Terman, D. (2004). High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of Computational Neuroscience, 16(3), 211–235.CrossRef Rubin, J. E., & Terman, D. (2004). High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of Computational Neuroscience, 16(3), 211–235.CrossRef
go back to reference Sato, F., Lavallée, P., Lévesque, M., & Parent, A. (2000). Single-axon tracing study of neurons of the external segment of the globus pallidus in primate. Journal of Comparative Neurology, 417(1), 17–31.CrossRef Sato, F., Lavallée, P., Lévesque, M., & Parent, A. (2000). Single-axon tracing study of neurons of the external segment of the globus pallidus in primate. Journal of Comparative Neurology, 417(1), 17–31.CrossRef
go back to reference Schrag, A., & Quinn, N. (2000). Dyskinesias and motor fluctuations in Parkinson’s disease. Brain, 123(11), 2297–2305.CrossRef Schrag, A., & Quinn, N. (2000). Dyskinesias and motor fluctuations in Parkinson’s disease. Brain, 123(11), 2297–2305.CrossRef
go back to reference Schroll, H., Vitay, J., & Hamker, F. H. (2012). Working memory and response selection: A computational account of interactions among cortico-basalganglio-thalamic loops. Neural Networks, 26, 59–74.CrossRef Schroll, H., Vitay, J., & Hamker, F. H. (2012). Working memory and response selection: A computational account of interactions among cortico-basalganglio-thalamic loops. Neural Networks, 26, 59–74.CrossRef
go back to reference Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of neurophysiology, 80(1), 1–27. Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of neurophysiology, 80(1), 1–27.
go back to reference Seeman, P. (1980). Brain dopamine receptors. Pharmacological Reviews, 32(3), 229–313. Seeman, P. (1980). Brain dopamine receptors. Pharmacological Reviews, 32(3), 229–313.
go back to reference Singleton, A., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., … Nussbaum, R. (2003). α-Synuclein locus triplication causes Parkinson’s disease. Science, 302(5646), 841–841. Singleton, A., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., … Nussbaum, R. (2003). α-Synuclein locus triplication causes Parkinson’s disease. Science, 302(5646), 841–841.
go back to reference Stamatakis, A. M., Jennings, J. H., Ung, R. L., Blair, G. A., Weinberg, R. J., Neve, R. L., … Deisseroth, K. (2013). A unique population of ventral tegmental area neurons inhibits the lateral habenula to promote reward. Neuron, 80(4), 1039–1053. Stamatakis, A. M., Jennings, J. H., Ung, R. L., Blair, G. A., Weinberg, R. J., Neve, R. L., … Deisseroth, K. (2013). A unique population of ventral tegmental area neurons inhibits the lateral habenula to promote reward. Neuron, 80(4), 1039–1053.
go back to reference Steiner, H., & Tseng, K. Y. (2010). Handbook of Basal Ganglia Structure and Function: A Decade of Progress (Vol. 20), Access Online via Elsevier. Steiner, H., & Tseng, K. Y. (2010). Handbook of Basal Ganglia Structure and Function: A Decade of Progress (Vol. 20), Access Online via Elsevier.
go back to reference Surmeier, D. J., Ding, J., Day, M., Wang, Z., & Shen, W. (2007). D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends in Neurosciences, 30(5), 228–235.CrossRef Surmeier, D. J., Ding, J., Day, M., Wang, Z., & Shen, W. (2007). D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends in Neurosciences, 30(5), 228–235.CrossRef
go back to reference Surmeier, D. J., Song, W.-J., & Yan, Z. (1996). Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. The Journal of Neuroscience, 16(20), 6579–6591. Surmeier, D. J., Song, W.-J., & Yan, Z. (1996). Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. The Journal of Neuroscience, 16(20), 6579–6591.
go back to reference Swanson, L. (1982). The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain research bulletin, 9(1), 321–353. Swanson, L. (1982). The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain research bulletin, 9(1), 321–353.
go back to reference Tachibana, Y., Iwamuro, H., Kita, H., Takada, M., & Nambu, A. (2011). Subthalamo-pallidal interactions underlying Parkinsonian neuronal oscillations in the primate basal ganglia. European Journal of Neuroscience, 34(9), 1470–1484.CrossRef Tachibana, Y., Iwamuro, H., Kita, H., Takada, M., & Nambu, A. (2011). Subthalamo-pallidal interactions underlying Parkinsonian neuronal oscillations in the primate basal ganglia. European Journal of Neuroscience, 34(9), 1470–1484.CrossRef
go back to reference Tepper, J., Martin, L., & Anderson, D. (1995). GABA~A Receptor-Mediated Inhibition of Rat Substantia Nigra Dopaminergic Neurons by Pars Reticulata Projection Neurons. Journal of Neuroscience, 15(4), 3092–3103. Tepper, J., Martin, L., & Anderson, D. (1995). GABA~A Receptor-Mediated Inhibition of Rat Substantia Nigra Dopaminergic Neurons by Pars Reticulata Projection Neurons. Journal of Neuroscience, 15(4), 3092–3103.
go back to reference Weinberger, M., & Dostrovsky, J. O. (2011). A basis for the pathological oscillations in basal ganglia: the crucial role of dopamine. NeuroReport, 22(4), 151.CrossRef Weinberger, M., & Dostrovsky, J. O. (2011). A basis for the pathological oscillations in basal ganglia: the crucial role of dopamine. NeuroReport, 22(4), 151.CrossRef
go back to reference Willshaw, D., & Li, Z. (2002). Subthalamic–pallidal interactions are critical in determining normal and abnormal functioning of the basal ganglia. Proceedings of the Royal Society of London, Series B: Biological Sciences, 269(1491), 545–551.CrossRef Willshaw, D., & Li, Z. (2002). Subthalamic–pallidal interactions are critical in determining normal and abnormal functioning of the basal ganglia. Proceedings of the Royal Society of London, Series B: Biological Sciences, 269(1491), 545–551.CrossRef
go back to reference Wilson, C. J., & Bevan, M. D. (2011). Intrinsic dynamics and synaptic inputs control the activity patterns of subthalamic nucleus neurons in health and in Parkinson’s disease. Neuroscience, 198, 54–68.CrossRef Wilson, C. J., & Bevan, M. D. (2011). Intrinsic dynamics and synaptic inputs control the activity patterns of subthalamic nucleus neurons in health and in Parkinson’s disease. Neuroscience, 198, 54–68.CrossRef
go back to reference Wood-Kaczmar, A., Gandhi, S., & Wood, N. (2006). Understanding the molecular causes of Parkinson’s disease. Trends in Molecular Medicine, 12(11), 521–528.CrossRef Wood-Kaczmar, A., Gandhi, S., & Wood, N. (2006). Understanding the molecular causes of Parkinson’s disease. Trends in Molecular Medicine, 12(11), 521–528.CrossRef
go back to reference Xia, R., & Mao, Z.-H. (2012). Progression of motor symptoms in Parkinson’s disease. Neuroscience Bulletin, 28(1), 39–48.CrossRef Xia, R., & Mao, Z.-H. (2012). Progression of motor symptoms in Parkinson’s disease. Neuroscience Bulletin, 28(1), 39–48.CrossRef
go back to reference Yelnik, J. (2002). Functional anatomy of the basal ganglia. Movement Disorders, 17(S3), S15–S21.CrossRef Yelnik, J. (2002). Functional anatomy of the basal ganglia. Movement Disorders, 17(S3), S15–S21.CrossRef
go back to reference Yamaguchi, T., Wang, H.-L., Li, X., Ng, T. H., & Morales, M. (2011). Mesocorticolimbic glutamatergic pathway. Journal of Neuroscience, 31(23), 8476–8490. Yamaguchi, T., Wang, H.-L., Li, X., Ng, T. H., & Morales, M. (2011). Mesocorticolimbic glutamatergic pathway. Journal of Neuroscience, 31(23), 8476–8490.
go back to reference Yucelgen, C., Denizdurduran, B., Metin, S., Elibol, R., & Sengor, N. S. (2012). A biophysical network model displaying the role of basal ganglia pathways in action selection. In Artificial neural networks and machine learning–ICANN 2012 (pp. 177–184), Berlin: Springer. Yucelgen, C., Denizdurduran, B., Metin, S., Elibol, R., & Sengor, N. S. (2012). A biophysical network model displaying the role of basal ganglia pathways in action selection. In Artificial neural networks and machine learning–ICANN 2012 (pp. 177–184), Berlin: Springer.
Metadata
Title
The Molecular, Cellular, and Systems-Level Structure of the Basal Ganglia
Authors
Alekhya Mandali
V. Srinivasa Chakravarthy
Ahmed A. Moustafa
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-8494-2_2