Skip to main content
Top

2016 | OriginalPaper | Chapter

6. The Neural Control of Musculotendon Lengths and Excursions Is Overdetermined

Author : Francisco J. Valero-Cuevas

Published in: Fundamentals of Neuromechanics

Publisher: Springer London

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter introduces the mathematical foundations of the concept of obligatory kinematic correlations among joint angles and musculotendon lengths. As presented in Chap. 4, tendon excursions are overdetermined because the angles and angle changes of the few joints uniquely determine the lengths and excursions, respectively, of all musculotendons. This is the opposite of redundancy: there is a single and unique set of tendon excursions that can satisfy a given limb movement. This begs the question of how the nervous system controls the excursions of all musculotendons so that the limb can move smoothly. Essentially, if for some reason any of the musculotendons undergoing an eccentric contraction fails to lengthen to satisfy the geometric requirements of the joint rotations, at the very least the limb motion will be disrupted, and at worst the limb can lock up. Physiologically, the failure to accommodate the necessary length changes could be due to anatomical interconnections among muscles or tendons, neurally mediated resistance to lengthening due to short- or long-latency reflexes, or spinally- and cortically-mediated commands to the muscles. This chapter lays the foundation for understanding the interactions between muscle coordination and reflex mechanisms necessary for natural movement by providing a mathematical framework for the overdetermined nature of tendon excursions. This is done for the simplified case with no anatomical interconnections among muscles or tendons, but the conclusions and intuition provided reinforce the notion that the neural control of movement for tendon-driven limbs is in fact not as redundant as is currently thought. Recall that, as mentioned in Chap. 4, the term tendon suffices for most mathematical and mechanical analyses as it applies to both robots and vertebrates. When the analysis continues on to consider muscle mechanics and its neural control, I will prefer to use the term musculotendon.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Recall that tendon excursions do not obligatorily define muscle fiber length changes. The latter depend on the interaction among the viscoelastic properties of tendon and muscle, as mentioned above. Only the length change of the muscle fibers determines eccentric versus concentric contractions in muscle. For the sake of simplicity and without loss of generality, I assume stiff tendons. But the correction for this assumption can be added depending on the goal of the model.
 
Literature
1.
go back to reference R.M. Murray, Z. Li, S.S. Sastry, A Mathematical Introduction to Robotic Manipulation (CRC Press, 1994) R.M. Murray, Z. Li, S.S. Sastry, A Mathematical Introduction to Robotic Manipulation (CRC Press, 1994)
2.
go back to reference T. Yoshikawa, Foundations of Robotics: Analysis and Control (MIT Press, Cambridge, 1990) T. Yoshikawa, Foundations of Robotics: Analysis and Control (MIT Press, Cambridge, 1990)
3.
go back to reference O. Bottema, B. Roth, Theoretical Kinematics (Dover Publications, 2012) O. Bottema, B. Roth, Theoretical Kinematics (Dover Publications, 2012)
4.
go back to reference S.A. Hummel, Frisbee flight simulation and throw biomechanics. Master’s thesis, University of California, (2003) S.A. Hummel, Frisbee flight simulation and throw biomechanics. Master’s thesis, University of California, (2003)
5.
go back to reference F.J. Valero-Cuevas, B.A. Cohn, H.F. Yngvason, E.L. Lawrence, Exploring the high-dimensional structure of muscle redundancy via subject-specific and generic musculoskeletal models. J. Biomech. 48(11), 2887–2896 (2015) F.J. Valero-Cuevas, B.A. Cohn, H.F. Yngvason, E.L. Lawrence, Exploring the high-dimensional structure of muscle redundancy via subject-specific and generic musculoskeletal models. J. Biomech. 48(11), 2887–2896 (2015)
6.
go back to reference D.A. Winter, Biomechanics and Motor Control of Human Movement (Wiley, NewYork, 2009) D.A. Winter, Biomechanics and Motor Control of Human Movement (Wiley, NewYork, 2009)
7.
go back to reference E. Todorov, Probabilistic inference of multijoint movements, skeletal parameters and marker attachments from diverse motion capture data. IEEE Trans. Biomed. Eng. 54(11), 1927–1939 (2007)CrossRef E. Todorov, Probabilistic inference of multijoint movements, skeletal parameters and marker attachments from diverse motion capture data. IEEE Trans. Biomed. Eng. 54(11), 1927–1939 (2007)CrossRef
8.
go back to reference J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake, M. Cook, R. Moore, Real-time human pose recognition in parts from single depth images. Commun. ACM 56(1), 116–124 (2013)CrossRef J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake, M. Cook, R. Moore, Real-time human pose recognition in parts from single depth images. Commun. ACM 56(1), 116–124 (2013)CrossRef
9.
go back to reference F.E. Zajac, Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17(4), 359–411 (1989) F.E. Zajac, Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17(4), 359–411 (1989)
10.
go back to reference Y.T. Lee, H.R. Choi, W.K. Chung, Y. Youm, Stiffness control of a coupled tendon-driven robot hand. IEEE Control Syst. 14(5), 10–19 (1994)CrossRef Y.T. Lee, H.R. Choi, W.K. Chung, Y. Youm, Stiffness control of a coupled tendon-driven robot hand. IEEE Control Syst. 14(5), 10–19 (1994)CrossRef
11.
go back to reference R. Alexander, G.M.O. Maloiy, R.F. Ker, A.S. Jayes, C.N. Warui, The role of tendon elasticity in the locomotion of the camel (camelus dromedarius). J. Zool. 198(3), 293–313 (1982)CrossRef R. Alexander, G.M.O. Maloiy, R.F. Ker, A.S. Jayes, C.N. Warui, The role of tendon elasticity in the locomotion of the camel (camelus dromedarius). J. Zool. 198(3), 293–313 (1982)CrossRef
12.
go back to reference L.A. Elias, R.N. Watanabe, A.F. Kohn, Spinal mechanisms may provide a combination of intermittent and continuous control of human posture: predictions from a biologically based neuromusculoskeletal model. PLoS Comput. Biol. 10(11), e1003944 (2014)CrossRef L.A. Elias, R.N. Watanabe, A.F. Kohn, Spinal mechanisms may provide a combination of intermittent and continuous control of human posture: predictions from a biologically based neuromusculoskeletal model. PLoS Comput. Biol. 10(11), e1003944 (2014)CrossRef
13.
go back to reference I.D. Loram, C.N. Maganaris, M. Lakie, Active, non-spring-like muscle movements in human postural sway: how might paradoxical changes in muscle length be produced? J. Physiol. 564(1), 281–293 (2005)CrossRef I.D. Loram, C.N. Maganaris, M. Lakie, Active, non-spring-like muscle movements in human postural sway: how might paradoxical changes in muscle length be produced? J. Physiol. 564(1), 281–293 (2005)CrossRef
14.
go back to reference R.I. Griffiths, Shortening of muscle fibres during stretch of the active cat medial gastrocnemius muscle: the role of tendon compliance. J. Physiol. 436(1), 219–236 (1991)CrossRef R.I. Griffiths, Shortening of muscle fibres during stretch of the active cat medial gastrocnemius muscle: the role of tendon compliance. J. Physiol. 436(1), 219–236 (1991)CrossRef
15.
go back to reference T.A. McMahon, Muscles, Reflexes, and Locomotion (Princeton University Press, New Jersey, 1984) T.A. McMahon, Muscles, Reflexes, and Locomotion (Princeton University Press, New Jersey, 1984)
16.
go back to reference R.L. Lieber, Skeletal Muscle Structure, Function, and Plasticity (Lippincott Williams & Wilkins, Philadelphia, 2002) R.L. Lieber, Skeletal Muscle Structure, Function, and Plasticity (Lippincott Williams & Wilkins, Philadelphia, 2002)
17.
go back to reference K.G. Keenan, V.J. Santos, M. Venkadesan, F.J. Valero-Cuevas, Maximal voluntary fingertip force production is not limited by movement speed in combined motion and force tasks. J. Neurosci. 29, 8784–8789 (2009) K.G. Keenan, V.J. Santos, M. Venkadesan, F.J. Valero-Cuevas, Maximal voluntary fingertip force production is not limited by movement speed in combined motion and force tasks. J. Neurosci. 29, 8784–8789 (2009)
18.
go back to reference A.A. Biewener, J.M. Wakeling, S.S. Lee, A.S. Arnold, Validation of hill-type muscle models in relation to neuromuscular recruitment and force–velocity properties: predicting patterns of in vivo muscle force. Integr. Comp. Biol. 54(6), 1072–1083, page icu070, (2014) A.A. Biewener, J.M. Wakeling, S.S. Lee, A.S. Arnold, Validation of hill-type muscle models in relation to neuromuscular recruitment and force–velocity properties: predicting patterns of in vivo muscle force. Integr. Comp. Biol. 54(6), 1072–1083, page icu070, (2014)
19.
go back to reference R.H. Miller, A comparison of muscle energy models for simulating human walking in three dimensions. J. Biomech. 47(6), 1373–1381 (2014)CrossRef R.H. Miller, A comparison of muscle energy models for simulating human walking in three dimensions. J. Biomech. 47(6), 1373–1381 (2014)CrossRef
20.
go back to reference G.A. Tsianos, C. Rustin, G.E. Loeb, Mammalian muscle model for predicting force and energetics during physiological behaviors. IEEE Trans. Neural Syst. Rehabil. Eng. 20(2), 117–133 (2012)CrossRef G.A. Tsianos, C. Rustin, G.E. Loeb, Mammalian muscle model for predicting force and energetics during physiological behaviors. IEEE Trans. Neural Syst. Rehabil. Eng. 20(2), 117–133 (2012)CrossRef
21.
go back to reference M.R. Rehorn, A.K. Schroer, S.S. Blemker, The passive properties of muscle fibers are velocity dependent. J. Biomech. 47(3), 687–693 (2014)CrossRef M.R. Rehorn, A.K. Schroer, S.S. Blemker, The passive properties of muscle fibers are velocity dependent. J. Biomech. 47(3), 687–693 (2014)CrossRef
22.
go back to reference E.J. Cheng, I.E. Brown, G.E. Loeb, Virtual muscle: a computational approach to understanding the effects of muscle properties on motor control. J. Neurosci. Methods 101(2), 117–130 (2000)CrossRef E.J. Cheng, I.E. Brown, G.E. Loeb, Virtual muscle: a computational approach to understanding the effects of muscle properties on motor control. J. Neurosci. Methods 101(2), 117–130 (2000)CrossRef
23.
go back to reference K.C. Nishikawa, J.A. Monroy, T.E. Uyeno, S.H. Yeo, D.K. Pai, S.L. Lindstedt, Is titin a ‘winding filament’? A new twist on muscle contraction. Proc. R. Soc. Lond. B: Biol. Sci. 279(1730), 981–990 (2012)CrossRef K.C. Nishikawa, J.A. Monroy, T.E. Uyeno, S.H. Yeo, D.K. Pai, S.L. Lindstedt, Is titin a ‘winding filament’? A new twist on muscle contraction. Proc. R. Soc. Lond. B: Biol. Sci. 279(1730), 981–990 (2012)CrossRef
24.
go back to reference W. Herzog, M. Duvall, T.R. Leonard, Molecular mechanisms of muscle force regulation: a role for titin? Exerc. Sport. Sci. Rev. 40(1), 50–57 (2012)CrossRef W. Herzog, M. Duvall, T.R. Leonard, Molecular mechanisms of muscle force regulation: a role for titin? Exerc. Sport. Sci. Rev. 40(1), 50–57 (2012)CrossRef
25.
go back to reference T.R. Leonard, W. Herzog, Regulation of muscle force in the absence of actin-myosin-based cross-bridge interaction. Am. J. Physiol.-Cell Physiol. 299(1), C14–C20 (2010)CrossRef T.R. Leonard, W. Herzog, Regulation of muscle force in the absence of actin-myosin-based cross-bridge interaction. Am. J. Physiol.-Cell Physiol. 299(1), C14–C20 (2010)CrossRef
26.
go back to reference S. Dayanidhi, R.L. Lieber, Skeletal muscle satellite cells: mediators of muscle growth during development and implications for developmental disorders. Muscle Nerve 50(5), 723–732 (2014)CrossRef S. Dayanidhi, R.L. Lieber, Skeletal muscle satellite cells: mediators of muscle growth during development and implications for developmental disorders. Muscle Nerve 50(5), 723–732 (2014)CrossRef
27.
go back to reference F.J. Valero-Cuevas, H. Hoffmann, M.U. Kurse, J.J. Kutch, E.A. Theodorou, Computational models for neuromuscular function. IEEE Rev. Biomed. Eng. 2, 110–135 (2009)CrossRef F.J. Valero-Cuevas, H. Hoffmann, M.U. Kurse, J.J. Kutch, E.A. Theodorou, Computational models for neuromuscular function. IEEE Rev. Biomed. Eng. 2, 110–135 (2009)CrossRef
28.
go back to reference B.W. Tobalske, T.L. Hedrick, K.P. Dial, A.A. Biewener, Comparative power curves in bird flight. Nature 421(6921), 363–366 (2003)CrossRef B.W. Tobalske, T.L. Hedrick, K.P. Dial, A.A. Biewener, Comparative power curves in bird flight. Nature 421(6921), 363–366 (2003)CrossRef
29.
go back to reference A.A. Biewener, Patterns of mechanical energy change in tetrapod gait: pendula, springs and work. J. Exp. Zool. Part A: Comp. Exp. Biol. 305(11), 899–911 (2006)CrossRef A.A. Biewener, Patterns of mechanical energy change in tetrapod gait: pendula, springs and work. J. Exp. Zool. Part A: Comp. Exp. Biol. 305(11), 899–911 (2006)CrossRef
30.
go back to reference J.M. Donelan, R. Kram, A.D. Kuo, Simultaneous positive and negative external mechanical work in human walking. J. Biomech. 35(1), 117–124 (2002)CrossRef J.M. Donelan, R. Kram, A.D. Kuo, Simultaneous positive and negative external mechanical work in human walking. J. Biomech. 35(1), 117–124 (2002)CrossRef
31.
go back to reference M.J. Srinivasan, A. Ruina, Computer optimization of a minimal biped model discovers walking and running. Nature 439(7072), 72–75 (2006) M.J. Srinivasan, A. Ruina, Computer optimization of a minimal biped model discovers walking and running. Nature 439(7072), 72–75 (2006)
32.
go back to reference E. Pierrot-Deseilligny, D. Burke, The Circuitry of the Human Spinal Cord: Its Role in Motor Control and Movement Disorders (Cambridge University Press, Cambridge, 2005) E. Pierrot-Deseilligny, D. Burke, The Circuitry of the Human Spinal Cord: Its Role in Motor Control and Movement Disorders (Cambridge University Press, Cambridge, 2005)
33.
go back to reference T.D. Sanger, D. Chen, D.L. Fehlings, M. Hallett, A.E. Lang, J.W. Mink, H.S. Singer, K. Alter, H. Ben-Pazi, E.E. Butler et al., Definition and classification of hyperkinetic movements in childhood. Mov. Disord. 25(11), 1538–1549 (2010)CrossRef T.D. Sanger, D. Chen, D.L. Fehlings, M. Hallett, A.E. Lang, J.W. Mink, H.S. Singer, K. Alter, H. Ben-Pazi, E.E. Butler et al., Definition and classification of hyperkinetic movements in childhood. Mov. Disord. 25(11), 1538–1549 (2010)CrossRef
34.
go back to reference C.S. Sherrington, Reflex inhibition as a factor in the co-ordination of movements and postures. Exp. Physiol. 6(3), 251–310 (1913)CrossRef C.S. Sherrington, Reflex inhibition as a factor in the co-ordination of movements and postures. Exp. Physiol. 6(3), 251–310 (1913)CrossRef
35.
go back to reference C. Capaday, R.B. Stein, Amplitude modulation of the soleus H-reflex in the human during walking and standing. J. Neurosci. 6(5), 1308–1313 (1986) C. Capaday, R.B. Stein, Amplitude modulation of the soleus H-reflex in the human during walking and standing. J. Neurosci. 6(5), 1308–1313 (1986)
36.
go back to reference X. Hu, N.L. Suresh, W.Z. Rymer, Estimating the time course of population excitatory postsynaptic potentials in motoneurons of spastic stroke survivors. J. Neurophysiol. 113 (6), 1952–1957, pp. jn-00946, (2014) X. Hu, N.L. Suresh, W.Z. Rymer, Estimating the time course of population excitatory postsynaptic potentials in motoneurons of spastic stroke survivors. J. Neurophysiol. 113 (6), 1952–1957, pp. jn-00946, (2014)
37.
go back to reference C.M. Niu, S.K. Nandyala, T.D. Sanger, Emulated muscle spindle and spiking afferents validates vlsi neuromorphic hardware as a testbed for sensorimotor function and disease. Front. Comput. Neurosci. 8, (2014) C.M. Niu, S.K. Nandyala, T.D. Sanger, Emulated muscle spindle and spiking afferents validates vlsi neuromorphic hardware as a testbed for sensorimotor function and disease. Front. Comput. Neurosci. 8, (2014)
38.
go back to reference C.M. Niu, J. Rocamora, W.J. Sohn, F.J. Valero-Cuevas, T.D. Sanger, Force–velocity property of muscle is critical for stabilizing a tendon-driven robotic joint controlled by neuromorphic hardware, in Proceedings of the 6th International IEEE/EMBS Conference of Neural Engineering. (IEEE/EMBS, 2013) C.M. Niu, J. Rocamora, W.J. Sohn, F.J. Valero-Cuevas, T.D. Sanger, Force–velocity property of muscle is critical for stabilizing a tendon-driven robotic joint controlled by neuromorphic hardware, in Proceedings of the 6th International IEEE/EMBS Conference of Neural Engineering. (IEEE/EMBS, 2013)
39.
go back to reference T. Buhrmann, E.A. Di Paolo, Spinal circuits can accommodate interaction torques during multijoint limb movements. Front. Comput. Neurosci. 8, (2014) T. Buhrmann, E.A. Di Paolo, Spinal circuits can accommodate interaction torques during multijoint limb movements. Front. Comput. Neurosci. 8, (2014)
40.
go back to reference Y. Masugi, T. Kitamura, K. Kamibayashi, T. Ogawa, T. Ogata, N. Kawashima, K. Nakazawa, Velocity-dependent suppression of the soleus H-reflex during robot-assisted passive stepping. Neurosci. Lett. 584, 337–341 (2015)CrossRef Y. Masugi, T. Kitamura, K. Kamibayashi, T. Ogawa, T. Ogata, N. Kawashima, K. Nakazawa, Velocity-dependent suppression of the soleus H-reflex during robot-assisted passive stepping. Neurosci. Lett. 584, 337–341 (2015)CrossRef
41.
go back to reference B.A. Garner, M.G. Pandy, Estimation of musculotendon properties in the human upper limb. Ann. Biomed. Eng. 31(2), 207–220 (2003)CrossRef B.A. Garner, M.G. Pandy, Estimation of musculotendon properties in the human upper limb. Ann. Biomed. Eng. 31(2), 207–220 (2003)CrossRef
42.
go back to reference R.V. Gonzalez, T.S. Buchanan, S.L. Delp, How muscle architecture and moment arms affect wrist flexion-extension moments. J. Biomech. 30(7), 705–712 (1997)CrossRef R.V. Gonzalez, T.S. Buchanan, S.L. Delp, How muscle architecture and moment arms affect wrist flexion-extension moments. J. Biomech. 30(7), 705–712 (1997)CrossRef
43.
go back to reference E.Y. Chao, K.N. An, Graphical interpretation of the solution to the redundant problem in biomechanics. J. Biomech. Eng. 100, 159–167 (1978)CrossRef E.Y. Chao, K.N. An, Graphical interpretation of the solution to the redundant problem in biomechanics. J. Biomech. Eng. 100, 159–167 (1978)CrossRef
44.
go back to reference B.I. Prilutsky, Muscle coordination: the discussion continues. Mot. Control 4(1), 97–116 (2000) B.I. Prilutsky, Muscle coordination: the discussion continues. Mot. Control 4(1), 97–116 (2000)
45.
go back to reference H. Hultborn, Spinal reflexes, mechanisms and concepts: from Eccles to Lundberg and beyond. Prog. Neurobiol. 78(3), 215–232 (2006)CrossRef H. Hultborn, Spinal reflexes, mechanisms and concepts: from Eccles to Lundberg and beyond. Prog. Neurobiol. 78(3), 215–232 (2006)CrossRef
46.
go back to reference E.P. Zehr, R.B. Stein, What functions do reflexes serve during human locomotion? Prog. Neurobiol. 58(2), 185–205 (1999)CrossRef E.P. Zehr, R.B. Stein, What functions do reflexes serve during human locomotion? Prog. Neurobiol. 58(2), 185–205 (1999)CrossRef
47.
go back to reference G.E. Loeb, Overcomplete musculature or underspecified tasks? Mot. Control 4(1), 81–83 (2000) G.E. Loeb, Overcomplete musculature or underspecified tasks? Mot. Control 4(1), 81–83 (2000)
48.
go back to reference T.D. Sanger, D. Chen, M.R. Delgado, D. Gaebler-Spira, M. Hallett, J.W. Mink et al., Definition and classification of negative motor signs in childhood. Pediatrics 118(5), 2159–2167 (2006)CrossRef T.D. Sanger, D. Chen, M.R. Delgado, D. Gaebler-Spira, M. Hallett, J.W. Mink et al., Definition and classification of negative motor signs in childhood. Pediatrics 118(5), 2159–2167 (2006)CrossRef
49.
go back to reference F.E. Zajac, How musculotendon architecture and joint geometry affect the capacity of muscles to move and exert force on objects: a review with application to arm and forearm tendon transfer design. J. Am. Hand Surg. 17(5), 799–804 (1992)CrossRef F.E. Zajac, How musculotendon architecture and joint geometry affect the capacity of muscles to move and exert force on objects: a review with application to arm and forearm tendon transfer design. J. Am. Hand Surg. 17(5), 799–804 (1992)CrossRef
50.
go back to reference A. Andrew, Muscle and tendon contributions to force, work, and elastic energy savings: a comparative perspective. Exerc. Sport. Sci. Rev. 28(3), 99–107 (2000) A. Andrew, Muscle and tendon contributions to force, work, and elastic energy savings: a comparative perspective. Exerc. Sport. Sci. Rev. 28(3), 99–107 (2000)
51.
go back to reference N. Konow, T.J. Roberts, The series elastic shock absorber: tendon elasticity modulates energy dissipation by muscle during burst deceleration. Proc. R. Soc. Lond. B: Biol. Sci. 282(1804):2014–2800 (2015) N. Konow, T.J. Roberts, The series elastic shock absorber: tendon elasticity modulates energy dissipation by muscle during burst deceleration. Proc. R. Soc. Lond. B: Biol. Sci. 282(1804):2014–2800 (2015)
52.
go back to reference C. Hanson-Carbonneau, M. Eng, A.S. Arnold, D.E. Lieberman, A.A. Biewener, The capacity of the human iliotibial band to store elastic energy during running. J. Biomech. (2015) C. Hanson-Carbonneau, M. Eng, A.S. Arnold, D.E. Lieberman, A.A. Biewener, The capacity of the human iliotibial band to store elastic energy during running. J. Biomech. (2015)
53.
go back to reference R.M. Alexander, Tendon elasticity and muscle function. Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol. 133(4), 1001–1011 (2002) R.M. Alexander, Tendon elasticity and muscle function. Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol. 133(4), 1001–1011 (2002)
54.
go back to reference C.N. Holt, T.J. Roberts, G.N. Askew, The energetic benefits of tendon springs in running: is the reduction of muscle work important? J. Exp. Biol. 217(24), 4365–4371 (2014) C.N. Holt, T.J. Roberts, G.N. Askew, The energetic benefits of tendon springs in running: is the reduction of muscle work important? J. Exp. Biol. 217(24), 4365–4371 (2014)
Metadata
Title
The Neural Control of Musculotendon Lengths and Excursions Is Overdetermined
Author
Francisco J. Valero-Cuevas
Copyright Year
2016
Publisher
Springer London
DOI
https://doi.org/10.1007/978-1-4471-6747-1_6