Skip to main content
Top

2019 | OriginalPaper | Chapter

The Next Frontier of Imaging in Ophthalmology: Machine Learning and Tissue Biomechanics

Authors : Jenna Tauber, Larry Kagemann

Published in: Ocular Fluid Dynamics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Medical imaging has revolutionized the diagnosis and management of disease in healthcare. Early integration of computers into medical imaging brought control of devices and data acquisition to new heights of precision. As computing power and sophistication of software evolve, we have reached an era of computer-based image interpretation. Machine learning approaches have been developed to automate certain quantitative measures derived from these modalities. Prospects for machine learning in ophthalmology address its potential role in approaching some of the most common causes of blindness worldwide: diabetic retinopathy, glaucoma, and age-related macular degeneration. As these analysis techniques evolve, concurrent advancements are seen in ophthalmology imaging technologies themselves, and today, the aqueous outflow tract and the optic nerve head can be visualized in more detail than ever before. The optimization and assimilation of these tools may hold clinically significant answers to screening, diagnosing, and managing disease.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
In discussing this process with radiology residents, I’ve been told that at some point in the second year of training, something clicks; a veil is lifted from their eyes, and they become aware of the vast hidden features contained in an X-ray.
 
2
In the case of MRI, some cleaver finagling is performed with magnetic fields prior to the presentation of the EMP, which is beyond the scope of this discussion.
 
Literature
1.
go back to reference Gladwell, M., Blink: The power of thinking without thinking. 2005, New York: Little, Brown and Co. Gladwell, M., Blink: The power of thinking without thinking. 2005, New York: Little, Brown and Co.
2.
go back to reference Kononenko, I., Machine learning for medical diagnosis: history, state of the art and perspective. Artif Intell Med, 2001. 23(1): p. 89-109. Kononenko, I., Machine learning for medical diagnosis: history, state of the art and perspective. Artif Intell Med, 2001. 23(1): p. 89-109.
3.
go back to reference Sajda, P., Machine learning for detection and diagnosis of disease. Annu Rev Biomed Eng, 2006. 8: p. 537-65.CrossRef Sajda, P., Machine learning for detection and diagnosis of disease. Annu Rev Biomed Eng, 2006. 8: p. 537-65.CrossRef
4.
go back to reference Torok, Z., et al., Combined Methods for Diabetic Retinopathy Screening, Using Retina Photographs and Tear Fluid Proteomics Biomarkers. J Diabetes Res, 2015. 2015: p. 623619. Torok, Z., et al., Combined Methods for Diabetic Retinopathy Screening, Using Retina Photographs and Tear Fluid Proteomics Biomarkers. J Diabetes Res, 2015. 2015: p. 623619.
5.
go back to reference Gargeya, R. and T. Leng, Automated Identification of Diabetic Retinopathy Using Deep Learning. Ophthalmology, 2017. 124(7): p. 962-969.CrossRef Gargeya, R. and T. Leng, Automated Identification of Diabetic Retinopathy Using Deep Learning. Ophthalmology, 2017. 124(7): p. 962-969.CrossRef
6.
go back to reference Balaratnasingam, C., et al., Visual Acuity Is Correlated with the Area of the Foveal Avascular Zone in Diabetic Retinopathy and Retinal Vein Occlusion. Ophthalmology, 2016. 123(11): p. 2352-2367.CrossRef Balaratnasingam, C., et al., Visual Acuity Is Correlated with the Area of the Foveal Avascular Zone in Diabetic Retinopathy and Retinal Vein Occlusion. Ophthalmology, 2016. 123(11): p. 2352-2367.CrossRef
7.
go back to reference Hwang, T.S., et al., Automated Quantification of Capillary Nonperfusion Using Optical Coherence Tomography Angiography in Diabetic Retinopathy. JAMA Ophthalmol, 2016. 134(4): p. 367-73. Hwang, T.S., et al., Automated Quantification of Capillary Nonperfusion Using Optical Coherence Tomography Angiography in Diabetic Retinopathy. JAMA Ophthalmol, 2016. 134(4): p. 367-73.
8.
go back to reference Linderman, R., et al., Assessing the Accuracy of Foveal Avascular Zone Measurements Using Optical Coherence Tomography Angiography: Segmentation and Scaling. Transl Vis Sci Technol, 2017. 6(3): p. 16. Linderman, R., et al., Assessing the Accuracy of Foveal Avascular Zone Measurements Using Optical Coherence Tomography Angiography: Segmentation and Scaling. Transl Vis Sci Technol, 2017. 6(3): p. 16.
9.
go back to reference Tan, C.S., et al., Optical Coherence Tomography Angiography Evaluation of the Parafoveal Vasculature and Its Relationship With Ocular Factors. Invest Ophthalmol Vis Sci, 2016. 57(9): p. Oct224-34.CrossRef Tan, C.S., et al., Optical Coherence Tomography Angiography Evaluation of the Parafoveal Vasculature and Its Relationship With Ocular Factors. Invest Ophthalmol Vis Sci, 2016. 57(9): p. Oct224-34.CrossRef
10.
go back to reference Tang, F.Y., et al., Determinants of Quantitative Optical Coherence Tomography Angiography Metrics in Patients with Diabetes. Sci Rep, 2017. 7(1): p. 2575. Tang, F.Y., et al., Determinants of Quantitative Optical Coherence Tomography Angiography Metrics in Patients with Diabetes. Sci Rep, 2017. 7(1): p. 2575.
11.
go back to reference Khansari, M.M., et al., Automated fine structure image analysis method for discrimination of diabetic retinopathy stage using conjunctival microvasculature images. Biomed Opt Express, 2016. 7(7): p. 2597-606.CrossRef Khansari, M.M., et al., Automated fine structure image analysis method for discrimination of diabetic retinopathy stage using conjunctival microvasculature images. Biomed Opt Express, 2016. 7(7): p. 2597-606.CrossRef
12.
go back to reference Bowd, C. and M.H. Goldbaum, Machine learning classifiers in glaucoma. Optom Vis Sci, 2008. 85(6): p. 396-405.CrossRef Bowd, C. and M.H. Goldbaum, Machine learning classifiers in glaucoma. Optom Vis Sci, 2008. 85(6): p. 396-405.CrossRef
13.
go back to reference Bowd, C., et al., Bayesian machine learning classifiers for combining structural and functional measurements to classify healthy and glaucomatous eyes. Invest Ophthalmol Vis Sci, 2008. 49(3): p. 945-53. Bowd, C., et al., Bayesian machine learning classifiers for combining structural and functional measurements to classify healthy and glaucomatous eyes. Invest Ophthalmol Vis Sci, 2008. 49(3): p. 945-53.
14.
go back to reference Asaoka, R., et al., Detecting Preperimetric Glaucoma with Standard Automated Perimetry Using a Deep Learning Classifier. Ophthalmology, 2016. 123(9): p. 1974-80. Asaoka, R., et al., Detecting Preperimetric Glaucoma with Standard Automated Perimetry Using a Deep Learning Classifier. Ophthalmology, 2016. 123(9): p. 1974-80.
15.
go back to reference Chen, X., Yanwu, X., Yan, S., Wong, D.W.K., Wong, T.Y., Liu, J., Automatic feature learning for glaucoma detection based on deep learning, in International Conference on Medical Image Computing and Computer Assisted Intervention --- MICCAI 2015, N. Navab, Hornegger, J., Wells, W. M., and A.F. Frangi, Editors. 2015, Springer International Publishing: Munich, Germany. p. 669–677. Chen, X., Yanwu, X., Yan, S., Wong, D.W.K., Wong, T.Y., Liu, J., Automatic feature learning for glaucoma detection based on deep learning, in International Conference on Medical Image Computing and Computer Assisted Intervention --- MICCAI 2015, N. Navab, Hornegger, J., Wells, W. M., and A.F. Frangi, Editors. 2015, Springer International Publishing: Munich, Germany. p. 669–677.
16.
go back to reference Goldbaum, M.H., et al., Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry. Invest Ophthalmol Vis Sci, 2002. 43(1): p. 162-9. Goldbaum, M.H., et al., Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry. Invest Ophthalmol Vis Sci, 2002. 43(1): p. 162-9.
17.
go back to reference Bizios, D., et al., Machine learning classifiers for glaucoma diagnosis based on classification of retinal nerve fibre layer thickness parameters measured by Stratus OCT. Acta Ophthalmol, 2010. 88(1): p. 44-52. Bizios, D., et al., Machine learning classifiers for glaucoma diagnosis based on classification of retinal nerve fibre layer thickness parameters measured by Stratus OCT. Acta Ophthalmol, 2010. 88(1): p. 44-52.
18.
go back to reference Barella, K.A., et al., Glaucoma Diagnostic Accuracy of Machine Learning Classifiers Using Retinal Nerve Fiber Layer and Optic Nerve Data from SD-OCT. J Ophthalmol, 2013. 2013: p. 789129. Barella, K.A., et al., Glaucoma Diagnostic Accuracy of Machine Learning Classifiers Using Retinal Nerve Fiber Layer and Optic Nerve Data from SD-OCT. J Ophthalmol, 2013. 2013: p. 789129.
19.
go back to reference Kim, S.J., K.J. Cho, and S. Oh, Development of machine learning models for diagnosis of glaucoma. PLoS One, 2017. 12(5): p. e0177726.CrossRef Kim, S.J., K.J. Cho, and S. Oh, Development of machine learning models for diagnosis of glaucoma. PLoS One, 2017. 12(5): p. e0177726.CrossRef
20.
go back to reference Zilly, J., J.M. Buhmann, and D. Mahapatra, Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Comput Med Imaging Graph, 2017. 55: p. 28-41.CrossRef Zilly, J., J.M. Buhmann, and D. Mahapatra, Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Comput Med Imaging Graph, 2017. 55: p. 28-41.CrossRef
21.
go back to reference Miri, M.S., et al., A machine-learning graph-based approach for 3D segmentation of Bruch’s membrane opening from glaucomatous SD-OCT volumes. Med Image Anal, 2017. 39: p. 206-217. Miri, M.S., et al., A machine-learning graph-based approach for 3D segmentation of Bruch’s membrane opening from glaucomatous SD-OCT volumes. Med Image Anal, 2017. 39: p. 206-217.
22.
go back to reference Chauhan, B.C., et al., Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter. Ophthalmology, 2013. 120(3): p. 535-43. Chauhan, B.C., et al., Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter. Ophthalmology, 2013. 120(3): p. 535-43.
23.
go back to reference Mookiah, M.R., et al., Decision support system for age-related macular degeneration using discrete wavelet transform. Med Biol Eng Comput, 2014. 52(9): p. 781-96.CrossRef Mookiah, M.R., et al., Decision support system for age-related macular degeneration using discrete wavelet transform. Med Biol Eng Comput, 2014. 52(9): p. 781-96.CrossRef
24.
go back to reference Fraccaro, P., et al., Combining macula clinical signs and patient characteristics for age--related macular degeneration diagnosis: a machine learning approach. BMC Ophthalmol, 2015. 15: p. 10. Fraccaro, P., et al., Combining macula clinical signs and patient characteristics for age--related macular degeneration diagnosis: a machine learning approach. BMC Ophthalmol, 2015. 15: p. 10.
25.
go back to reference Bogunovic, H., et al., Machine Learning of the Progression of Intermediate Age-Related Macular Degeneration Based on OCT Imaging. Invest Ophthalmol Vis Sci, 2017. 58(6): p. Bio141-bio150.CrossRef Bogunovic, H., et al., Machine Learning of the Progression of Intermediate Age-Related Macular Degeneration Based on OCT Imaging. Invest Ophthalmol Vis Sci, 2017. 58(6): p. Bio141-bio150.CrossRef
26.
go back to reference Bogunovic, H., et al., Prediction of Anti-VEGF Treatment Requirements in Neovascular AMD Using a Machine Learning Approach. Invest Ophthalmol Vis Sci, 2017. 58(7): p. 3240-3248. Bogunovic, H., et al., Prediction of Anti-VEGF Treatment Requirements in Neovascular AMD Using a Machine Learning Approach. Invest Ophthalmol Vis Sci, 2017. 58(7): p. 3240-3248.
27.
go back to reference Caixinha, M. and S. Nunes, Machine Learning Techniques in Clinical Vision Sciences. Curr Eye Res, 2017. 42(1): p. 1-15.CrossRef Caixinha, M. and S. Nunes, Machine Learning Techniques in Clinical Vision Sciences. Curr Eye Res, 2017. 42(1): p. 1-15.CrossRef
28.
go back to reference Rosner, B., R.J. Glynn, and M.L. Lee, A nonparametric test for observational non-normally distributed ophthalmic data with eye-specific exposures and outcomes. Ophthalmic Epidemiol, 2007. 14(4): p. 243-50.CrossRef Rosner, B., R.J. Glynn, and M.L. Lee, A nonparametric test for observational non-normally distributed ophthalmic data with eye-specific exposures and outcomes. Ophthalmic Epidemiol, 2007. 14(4): p. 243-50.CrossRef
29.
go back to reference Grant, W.M., Clinical measurements of aqueous outflow. AMA Arch Ophthalmol, 1951. 46(2): p. 113-31. Grant, W.M., Clinical measurements of aqueous outflow. AMA Arch Ophthalmol, 1951. 46(2): p. 113-31.
30.
go back to reference Stamer, W.D., et al., Biomechanics of Schlemm’s canal endothelium and intraocular pressure reduction. Prog Retin Eye Res, 2015. 44: p. 86-98. Stamer, W.D., et al., Biomechanics of Schlemm’s canal endothelium and intraocular pressure reduction. Prog Retin Eye Res, 2015. 44: p. 86-98.
31.
go back to reference Carreon, T., et al., Aqueous outflow --- A continuum from trabecular meshwork to episcleral veins. Prog Retin Eye Res, 2017. 57: p. 108-133. Carreon, T., et al., Aqueous outflow --- A continuum from trabecular meshwork to episcleral veins. Prog Retin Eye Res, 2017. 57: p. 108-133.
32.
go back to reference Zeng, D., et al., Young’s modulus of elasticity of Schlemm’s canal endothelial cells. Biomech Model Mechanobiol, 2010. 9(1): p. 19-33. Zeng, D., et al., Young’s modulus of elasticity of Schlemm’s canal endothelial cells. Biomech Model Mechanobiol, 2010. 9(1): p. 19-33.
33.
go back to reference Kagemann, L., et al., Identification and assessment of Schlemm’s canal by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci, 2010. 51(8): p. 4054-9. Kagemann, L., et al., Identification and assessment of Schlemm’s canal by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci, 2010. 51(8): p. 4054-9.
34.
go back to reference Kagemann, L., et al., IOP elevation reduces Schlemm’s canal cross-sectional area. Invest Ophthalmol Vis Sci, 2014. 55(3): p. 1805-9. Kagemann, L., et al., IOP elevation reduces Schlemm’s canal cross-sectional area. Invest Ophthalmol Vis Sci, 2014. 55(3): p. 1805-9.
35.
go back to reference Wang, F., et al., Comparison of Schlemm’s canal’s biological parameters in primary open-angle glaucoma and normal human eyes with swept source optical. J Biomed Opt, 2012. 17(11): p. 116008. Wang, F., et al., Comparison of Schlemm’s canal’s biological parameters in primary open-angle glaucoma and normal human eyes with swept source optical. J Biomed Opt, 2012. 17(11): p. 116008.
36.
go back to reference Pant, A.D., Kagemann, L., Schuman, J.S., Sigal, I.A., Amini, R., An imaged-based inverse finite element method to determine in-vivo mechanical properties of the human trabecular meshwork. Journal for Modeling in Ophthalmology, 2017. 3: p. 100-111. Pant, A.D., Kagemann, L., Schuman, J.S., Sigal, I.A., Amini, R., An imaged-based inverse finite element method to determine in-vivo mechanical properties of the human trabecular meshwork. Journal for Modeling in Ophthalmology, 2017. 3: p. 100-111.
37.
go back to reference Xin, C., et al., Aqueous outflow regulation: Optical coherence tomography implicates pressure-dependent tissue motion. Exp Eye Res, 2017. 158: p. 171-186. Xin, C., et al., Aqueous outflow regulation: Optical coherence tomography implicates pressure-dependent tissue motion. Exp Eye Res, 2017. 158: p. 171-186.
38.
go back to reference Hariri, S., et al., Platform to investigate aqueous outflow system structure and pressure-dependent motion using high-resolution spectral domain optical coherence tomography. J Biomed Opt, 2014. 19(10): p. 106013.CrossRef Hariri, S., et al., Platform to investigate aqueous outflow system structure and pressure-dependent motion using high-resolution spectral domain optical coherence tomography. J Biomed Opt, 2014. 19(10): p. 106013.CrossRef
39.
go back to reference Francis, A.W., et al., Morphometric analysis of aqueous humor outflow structures with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci, 2012. 53(9): p. 5198-207. Francis, A.W., et al., Morphometric analysis of aqueous humor outflow structures with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci, 2012. 53(9): p. 5198-207.
40.
go back to reference Li, P., et al., Pulsatile motion of the trabecular meshwork in healthy human subjects quantified by phase-sensitive optical coherence tomography. Biomed Opt Express, 2013. 4(10): p. 2051-65. Li, P., et al., Pulsatile motion of the trabecular meshwork in healthy human subjects quantified by phase-sensitive optical coherence tomography. Biomed Opt Express, 2013. 4(10): p. 2051-65.
41.
go back to reference Sun, Y.C., et al., Pulsatile motion of trabecular meshwork in a patient with iris cyst by phase-sensitive optical coherence tomography: a case report. Quant Imaging Med Surg, 2015. 5(1): p. 171-3. Sun, Y.C., et al., Pulsatile motion of trabecular meshwork in a patient with iris cyst by phase-sensitive optical coherence tomography: a case report. Quant Imaging Med Surg, 2015. 5(1): p. 171-3.
42.
go back to reference Burgoyne, C.F., et al., The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res, 2005. 24(1): p. 39-73. Burgoyne, C.F., et al., The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res, 2005. 24(1): p. 39-73.
43.
go back to reference Girard, M.J., et al., Translating ocular biomechanics into clinical practice: current state and future prospects. Curr Eye Res, 2015. 40(1): p. 1-18. Girard, M.J., et al., Translating ocular biomechanics into clinical practice: current state and future prospects. Curr Eye Res, 2015. 40(1): p. 1-18.
44.
go back to reference Spaide, R.F., H. Koizumi, and M.C. Pozzoni, Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol, 2008. 146(4): p. 496-500. Spaide, R.F., H. Koizumi, and M.C. Pozzoni, Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol, 2008. 146(4): p. 496-500.
45.
go back to reference Lee, E.J., et al., Visualization of the lamina cribrosa using enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol, 2011. 152(1): p. 87-95.e1. Lee, E.J., et al., Visualization of the lamina cribrosa using enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol, 2011. 152(1): p. 87-95.e1.
46.
go back to reference Park, S.C., et al., Enhanced depth imaging optical coherence tomography of deep optic nerve complex structures in glaucoma. Ophthalmology, 2012. 119(1): p. 3-9. Park, S.C., et al., Enhanced depth imaging optical coherence tomography of deep optic nerve complex structures in glaucoma. Ophthalmology, 2012. 119(1): p. 3-9.
47.
go back to reference Nadler, Z., et al., Automated lamina cribrosa microstructural segmentation in optical coherence tomography scans of healthy and glaucomatous eyes. Biomed Opt Express, 2013. 4(11): p. 2596-608. Nadler, Z., et al., Automated lamina cribrosa microstructural segmentation in optical coherence tomography scans of healthy and glaucomatous eyes. Biomed Opt Express, 2013. 4(11): p. 2596-608.
48.
go back to reference Omodaka, K., et al., 3D evaluation of the lamina cribrosa with swept-source optical coherence tomography in normal tension glaucoma. PLoS One, 2015. 10(4): p. e0122347.CrossRef Omodaka, K., et al., 3D evaluation of the lamina cribrosa with swept-source optical coherence tomography in normal tension glaucoma. PLoS One, 2015. 10(4): p. e0122347.CrossRef
49.
go back to reference Wang, B., et al., In vivo lamina cribrosa micro-architecture in healthy and glaucomatous eyes as assessed by optical coherence tomography. Invest Ophthalmol Vis Sci, 2013. 54(13): p. 8270-4. Wang, B., et al., In vivo lamina cribrosa micro-architecture in healthy and glaucomatous eyes as assessed by optical coherence tomography. Invest Ophthalmol Vis Sci, 2013. 54(13): p. 8270-4.
50.
go back to reference Sigal, I.A., et al., Recent advances in OCT imaging of the lamina cribrosa. Br J Ophthalmol, 2014. 98 Suppl 2: p. ii34-9. Sigal, I.A., et al., Recent advances in OCT imaging of the lamina cribrosa. Br J Ophthalmol, 2014. 98 Suppl 2: p. ii34-9.
51.
go back to reference Hermann, B., et al., Adaptive-optics ultrahigh-resolution optical coherence tomography. Opt Lett, 2004. 29(18): p. 2142-4. Hermann, B., et al., Adaptive-optics ultrahigh-resolution optical coherence tomography. Opt Lett, 2004. 29(18): p. 2142-4.
52.
go back to reference Girard, M.J., et al., Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head. Invest Ophthalmol Vis Sci, 2011. 52(10): p. 7738-48. Girard, M.J., et al., Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head. Invest Ophthalmol Vis Sci, 2011. 52(10): p. 7738-48.
53.
go back to reference Mari, J.M., et al., Enhancement of lamina cribrosa visibility in optical coherence tomography images using adaptive compensation. Invest Ophthalmol Vis Sci, 2013. 54(3): p. 2238-47. Mari, J.M., et al., Enhancement of lamina cribrosa visibility in optical coherence tomography images using adaptive compensation. Invest Ophthalmol Vis Sci, 2013. 54(3): p. 2238-47.
54.
go back to reference Kim, T.W., et al., Imaging of the lamina cribrosa in glaucoma: perspectives of pathogenesis and clinical applications. Curr Eye Res, 2013. 38(9): p. 903-9. Kim, T.W., et al., Imaging of the lamina cribrosa in glaucoma: perspectives of pathogenesis and clinical applications. Curr Eye Res, 2013. 38(9): p. 903-9.
55.
go back to reference Sigal, I.A., et al., Eye-specific IOP-induced displacements and deformations of human lamina cribrosa. Invest Ophthalmol Vis Sci, 2014. 55(1): p. 1-15. Sigal, I.A., et al., Eye-specific IOP-induced displacements and deformations of human lamina cribrosa. Invest Ophthalmol Vis Sci, 2014. 55(1): p. 1-15.
56.
go back to reference Girard, M.J., et al., In vivo optic nerve head biomechanics: performance testing of a three-dimensional tracking algorithm. J R Soc Interface, 2013. 10(87): p. 20130459. Girard, M.J., et al., In vivo optic nerve head biomechanics: performance testing of a three-dimensional tracking algorithm. J R Soc Interface, 2013. 10(87): p. 20130459.
57.
go back to reference Midgett, D.E., et al., The pressure-induced deformation response of the human lamina cribrosa: Analysis of regional variations. Acta Biomater, 2017. 53: p. 123-139. Midgett, D.E., et al., The pressure-induced deformation response of the human lamina cribrosa: Analysis of regional variations. Acta Biomater, 2017. 53: p. 123-139.
58.
go back to reference Strouthidis, N.G. and M.J. Girard, Altering the way the optic nerve head responds to intraocular pressure-a potential approach to glaucoma therapy. Curr Opin Pharmacol, 2013. 13(1): p. 83-9. Strouthidis, N.G. and M.J. Girard, Altering the way the optic nerve head responds to intraocular pressure-a potential approach to glaucoma therapy. Curr Opin Pharmacol, 2013. 13(1): p. 83-9.
Metadata
Title
The Next Frontier of Imaging in Ophthalmology: Machine Learning and Tissue Biomechanics
Authors
Jenna Tauber
Larry Kagemann
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-25886-3_23

Premium Partners