Skip to main content
Top
Published in: Optical and Quantum Electronics 11/2023

01-11-2023

The optoelectronic enhancement in perovskite solar cells using plasmonic metal-dielectric core-shell and nanorod nanoparticles

Authors: Ihsan Ullah, Md. Amzad Hossain, Ammar Armghan, Md. Shohel Rana, Md. Abdullah Al Asad

Published in: Optical and Quantum Electronics | Issue 11/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This report systematically demonstrated the plasmonic and localized surface plasmon resonance (LSPR) effect in the perovskite solar cells (PSCs) using MAPbI3 as an active layer. The finite element method (FEM) was employed for the entire simulation of PSCs. Various light trapping and smooth charge carrier dynamics geometries with tailored nanoparticles (NPs) radius and core-shell thickness like Au NPs, Au@TiO2 core-shell, and Au@TiO2 nanorods (NR) were incorporated in the active layer. We observed their effect on PSC's optical absorption, charge carrier generation, and power conversion efficiency (PCE). The light absorption, generation rate, and short-circuit current density (JSC) were improved after embedding Au NPs with varying radii in the active layer. The best PCE achieved for Au NPs with a radius (AuNPs = 50 nm) was compared to the reference model without Au NPs (14.32 %). This increment in PCE is dedicated to the strong LSPR effect and improved JSC. The other cases, like Au@TiO2 core-shell and Au@TiO2 NR, also performed better than the reference model and Au NPs-based PSCs. The highest PCEs achieved for Au@TiO2 core-shell and Au@TiO2 NR were 16.52 % and 18.47 % Which is 15.53 %, and 28.98 %, higher than the reference model. This improvement in the performance of Au@TiO2 core-shell and Au@TiO2 NR-based PSCs is due to the strong LSPR effect, near-field enhancement, far-field scattering, increase in the generation rate of the exciton, and the overall performance of PSCs. These investigations contribute to further exploring the emerging technology of plasmonic-based PSCs and propose promising techniques to enhance photon energy and charge carrier dynamic management.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abdelraouf, O.A., Allam, N.K.: Nanostructuring for enhanced absorption and carrier collection in CZTS-based solar cells: coupled optical and electrical modeling. Opt. Mater. 54, 84–88 (2016)ADS Abdelraouf, O.A., Allam, N.K.: Nanostructuring for enhanced absorption and carrier collection in CZTS-based solar cells: coupled optical and electrical modeling. Opt. Mater. 54, 84–88 (2016)ADS
go back to reference Aeineh, N., Barea, E.M., Behjat, A., Sharifi, N., Mora-Seró, I.: Inorganic surface engineering to enhance perovskite solar cell efficiency. ACS Appl. Mater. Interfaces. 9(15), 13181–13187 (2017) Aeineh, N., Barea, E.M., Behjat, A., Sharifi, N., Mora-Seró, I.: Inorganic surface engineering to enhance perovskite solar cell efficiency. ACS Appl. Mater. Interfaces. 9(15), 13181–13187 (2017)
go back to reference Ai, B., Fan, Z., Wong, Z.J.: Plasmonic–perovskite solar cells, light emitters, and sensors. Microsyst. Nanoeng. 8(1), 1–28 (2022)ADS Ai, B., Fan, Z., Wong, Z.J.: Plasmonic–perovskite solar cells, light emitters, and sensors. Microsyst. Nanoeng. 8(1), 1–28 (2022)ADS
go back to reference Alkhalayfeh, M.A., Aziz, A.A., Pakhuruddin, M.Z.: An overview of enhanced polymer solar cells with embedded plasmonic nanoparticles. Renewable Sustain. Energy Rev. 141, 110726 (2021a) Alkhalayfeh, M.A., Aziz, A.A., Pakhuruddin, M.Z.: An overview of enhanced polymer solar cells with embedded plasmonic nanoparticles. Renewable Sustain. Energy Rev. 141, 110726 (2021a)
go back to reference Alkhalayfeh, M.A., Aziz, A.A., Pakhuruddin, M.Z., Katubi, K.M.M.: Recent advances of perovskite solar cells embedded with plasmonic nanoparticles. Physica Status Solidi 218(17), 2100310 (2021)ADS Alkhalayfeh, M.A., Aziz, A.A., Pakhuruddin, M.Z., Katubi, K.M.M.: Recent advances of perovskite solar cells embedded with plasmonic nanoparticles. Physica Status Solidi 218(17), 2100310 (2021)ADS
go back to reference Alkhalayfeh, M.A., Aziz, A.A., Pakhuruddin, M.Z.: Enhancing the efficiency of polymer solar cells by embedding Au@AgNPs Durian shape in buffer layer. Sol. Energy 214, 565–574 (2021c)ADS Alkhalayfeh, M.A., Aziz, A.A., Pakhuruddin, M.Z.: Enhancing the efficiency of polymer solar cells by embedding Au@AgNPs Durian shape in buffer layer. Sol. Energy 214, 565–574 (2021c)ADS
go back to reference Alkhalayfeh, M.A., Abdul Aziz, A., Pakhuruddin, M.Z., Katubi, K.M.M.: Spiky durian-shaped Au@Ag nanoparticles in PEDOT: PSS for improved efficiency of organic solar cells. Materials 14(19), 5591 (2021)ADS Alkhalayfeh, M.A., Abdul Aziz, A., Pakhuruddin, M.Z., Katubi, K.M.M.: Spiky durian-shaped Au@Ag nanoparticles in PEDOT: PSS for improved efficiency of organic solar cells. Materials 14(19), 5591 (2021)ADS
go back to reference Alkhalayfeh, M.A., Abdul Aziz, A., Pakhuruddin, M.Z., Katubi, K.M.M., Ahmadi, N.: Recent development of indoor organic photovoltaics. Physica Status Solidi (a) 219(5), 2100639 (2022)ADS Alkhalayfeh, M.A., Abdul Aziz, A., Pakhuruddin, M.Z., Katubi, K.M.M., Ahmadi, N.: Recent development of indoor organic photovoltaics. Physica Status Solidi (a) 219(5), 2100639 (2022)ADS
go back to reference Alkhalayfeh, M.A., Aziz, A.A., Pakhuruddin, M.Z., Katubi, K.M.M.: Plasmonic effects of Au@Ag nanoparticles in buffer and active layers of polymer solar cells for efficiency enhancement. Materials 15(16), 5472 (2022b)ADS Alkhalayfeh, M.A., Aziz, A.A., Pakhuruddin, M.Z., Katubi, K.M.M.: Plasmonic effects of Au@Ag nanoparticles in buffer and active layers of polymer solar cells for efficiency enhancement. Materials 15(16), 5472 (2022b)ADS
go back to reference Anaya, M., Lozano, G., Calvo, M.E., Míguez, H.: ABX3 perovskites for tandem solar cells. Joule 1(4), 769–793 (2017) Anaya, M., Lozano, G., Calvo, M.E., Míguez, H.: ABX3 perovskites for tandem solar cells. Joule 1(4), 769–793 (2017)
go back to reference Baum, M., Alexeev, I., Latzel, M., Christiansen, S.H., Schmidt, M.: Determination of the effective refractive index of nanoparticulate ITO layers. Opt. Expr. 21(19), 22754–22761 (2013)ADS Baum, M., Alexeev, I., Latzel, M., Christiansen, S.H., Schmidt, M.: Determination of the effective refractive index of nanoparticulate ITO layers. Opt. Expr. 21(19), 22754–22761 (2013)ADS
go back to reference Bhandari, S., Roy, A., Ghosh, A., Mallick, T.K., Sundaram, S.: Performance of WO3-incorporated carbon electrodes for ambient mesoscopic perovskite solar cells. ACS Omega 5(1), 422–429 (2019) Bhandari, S., Roy, A., Ghosh, A., Mallick, T.K., Sundaram, S.: Performance of WO3-incorporated carbon electrodes for ambient mesoscopic perovskite solar cells. ACS Omega 5(1), 422–429 (2019)
go back to reference Brittman, S., Adhyaksa, G.W.P., Garnett, E.C.: The expanding world of hybrid perovskites: materials properties and emerging applications. MRS Communications 5(1), 7–26 (2015) Brittman, S., Adhyaksa, G.W.P., Garnett, E.C.: The expanding world of hybrid perovskites: materials properties and emerging applications. MRS Communications 5(1), 7–26 (2015)
go back to reference Carretero-Palacios, S., Calvo, M.E., Míguez, H.: Absorption enhancement in organic–inorganic halide perovskite films with embedded plasmonic gold nanoparticles. J. Phys. Chem. C 119(32), 18635–18640 (2015) Carretero-Palacios, S., Calvo, M.E., Míguez, H.: Absorption enhancement in organic–inorganic halide perovskite films with embedded plasmonic gold nanoparticles. J. Phys. Chem. C 119(32), 18635–18640 (2015)
go back to reference Carretero-Palacios, S., Jiménez-Solano, A., Míguez, H.: Plasmonic nanoparticles as light-harvesting enhancers in perovskite solar cells: a user’s guide. ACS Energy Lett. 1(1), 323–331 (2016) Carretero-Palacios, S., Jiménez-Solano, A., Míguez, H.: Plasmonic nanoparticles as light-harvesting enhancers in perovskite solar cells: a user’s guide. ACS Energy Lett. 1(1), 323–331 (2016)
go back to reference Casas, G., Cappelletti, M.Á., Cedola, A.P., Soucase, B.M., y Blancá, E.P.: Analysis of the power conversion efficiency of perovskite solar cells with different materials as Hole-Transport Layer by numerical simulations. Superlatt. Microstruct. 107, 136–143 (2017)ADS Casas, G., Cappelletti, M.Á., Cedola, A.P., Soucase, B.M., y Blancá, E.P.: Analysis of the power conversion efficiency of perovskite solar cells with different materials as Hole-Transport Layer by numerical simulations. Superlatt. Microstruct. 107, 136–143 (2017)ADS
go back to reference Chaiyachate, P., Dasri, T.: Optical absorption and scattering properties of the active layer of perovskite solar cells incorporated silver nanoparticles. Orient. J. Chem 33(2), 807 (2017) Chaiyachate, P., Dasri, T.: Optical absorption and scattering properties of the active layer of perovskite solar cells incorporated silver nanoparticles. Orient. J. Chem 33(2), 807 (2017)
go back to reference Cheng, P.-J., et al.: Full-spectrum analysis of perovskite-based surface plasmon nanolasers. Nanoscale Res. Lett. 15(1), 1–9 (2020)ADS Cheng, P.-J., et al.: Full-spectrum analysis of perovskite-based surface plasmon nanolasers. Nanoscale Res. Lett. 15(1), 1–9 (2020)ADS
go back to reference Fan, R., et al.: Tailored Au@ TiO2 nanostructures for the plasmonic effect in planar perovskite solar cells. J. Mater. Chem. A 5(24), 12034–12042 (2017)ADS Fan, R., et al.: Tailored Au@ TiO2 nanostructures for the plasmonic effect in planar perovskite solar cells. J. Mater. Chem. A 5(24), 12034–12042 (2017)ADS
go back to reference Gavrilov, S., Dronov, A., Shevyakov, V., Belov, A., Poltoratskii, E.: Ways to increase the efficiency of solar cells with extremely thin absorption layers. Nanotechnol. Russ. 4(3), 237–243 (2009) Gavrilov, S., Dronov, A., Shevyakov, V., Belov, A., Poltoratskii, E.: Ways to increase the efficiency of solar cells with extremely thin absorption layers. Nanotechnol. Russ. 4(3), 237–243 (2009)
go back to reference Grinberg, I., et al.: Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503(7477), 509–512 (2013)ADS Grinberg, I., et al.: Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503(7477), 509–512 (2013)ADS
go back to reference Hajjiah, A., Kandas, I., Shehata, N.: Efficiency enhancement of perovskite solar cells with plasmonic nanoparticles: a simulation study. Materials 11(9), 1626 (2018)ADS Hajjiah, A., Kandas, I., Shehata, N.: Efficiency enhancement of perovskite solar cells with plasmonic nanoparticles: a simulation study. Materials 11(9), 1626 (2018)ADS
go back to reference Heidarzadeh, H.: Comprehensive investigation of core-shell dimer nanoparticles size, distance and thicknesses on performance of a hybrid organic-inorganic halide perovskite solar cell. Mater. Res. Expr. 5(3), 036208 (2018)ADS Heidarzadeh, H.: Comprehensive investigation of core-shell dimer nanoparticles size, distance and thicknesses on performance of a hybrid organic-inorganic halide perovskite solar cell. Mater. Res. Expr. 5(3), 036208 (2018)ADS
go back to reference Hirasawa, M., Ishihara, T., Goto, T., Uchida, K., Miura, N.: Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3. Physica B 201, 427–430 (1994)ADS Hirasawa, M., Ishihara, T., Goto, T., Uchida, K., Miura, N.: Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3. Physica B 201, 427–430 (1994)ADS
go back to reference Jaffe, J.E., Kaspar, T.C., Droubay, T.C., Varga, T., Bowden, M.E., Exarhos, G.J.: Electronic and defect structures of CuSCN. J. Phys. Chem. C 114(19), 9111–9117 (2010) Jaffe, J.E., Kaspar, T.C., Droubay, T.C., Varga, T., Bowden, M.E., Exarhos, G.J.: Electronic and defect structures of CuSCN. J. Phys. Chem. C 114(19), 9111–9117 (2010)
go back to reference Jamal, M., et al.: Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: a review. Renew. Sustain. Energy Rev. 98, 469–488 (2018) Jamal, M., et al.: Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: a review. Renew. Sustain. Energy Rev. 98, 469–488 (2018)
go back to reference Khan, D., Sajid, S., Khan, S., Park, J., Ullah, I.: Identifying the potentials for charge transport layers free np homojunction-based perovskite solar cells. Sol. Energy 238, 69–77 (2022)ADS Khan, D., Sajid, S., Khan, S., Park, J., Ullah, I.: Identifying the potentials for charge transport layers free np homojunction-based perovskite solar cells. Sol. Energy 238, 69–77 (2022)ADS
go back to reference Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009) Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)
go back to reference Kordrostami, Z., Yadollahi, A.: High absorption enhancement of invert funnel and conical nanowire solar cells with forward scattering. Optics Commun. 459, 125059 (2020) Kordrostami, Z., Yadollahi, A.: High absorption enhancement of invert funnel and conical nanowire solar cells with forward scattering. Optics Commun. 459, 125059 (2020)
go back to reference Lee, S.-W., et al.: Perovskites fabricated on textured silicon surfaces for tandem solar cells. Commun. Chem. 3(1), 1–11 (2020)MathSciNet Lee, S.-W., et al.: Perovskites fabricated on textured silicon surfaces for tandem solar cells. Commun. Chem. 3(1), 1–11 (2020)MathSciNet
go back to reference Luo, Q., et al.: Plasmonic effects of metallic nanoparticles on enhancing performance of perovskite solar cells. ACS Appl. Mater. Interfaces 9(40), 34821–34832 (2017) Luo, Q., et al.: Plasmonic effects of metallic nanoparticles on enhancing performance of perovskite solar cells. ACS Appl. Mater. Interfaces 9(40), 34821–34832 (2017)
go back to reference Mahmood, K., Sarwar, S., Mehran, M.T.: Current status of electron transport layers in perovskite solar cells: materials and properties. RSC Adv. 7(28), 17044–17062 (2017)ADS Mahmood, K., Sarwar, S., Mehran, M.T.: Current status of electron transport layers in perovskite solar cells: materials and properties. RSC Adv. 7(28), 17044–17062 (2017)ADS
go back to reference Min, H., et al.: Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598(7881), 444–450 (2021)ADS Min, H., et al.: Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598(7881), 444–450 (2021)ADS
go back to reference Minemoto, T., Murata, M.: Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells. J. Appl. Phys. 116(5), 054505 (2014)ADS Minemoto, T., Murata, M.: Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells. J. Appl. Phys. 116(5), 054505 (2014)ADS
go back to reference Mohammadi, M.H., Eskandari, M., Fathi, D.: Improving the efficiency of perovskite solar cells via embedding random plasmonic nanoparticles: optical–electrical study on device architectures. Sol. Energy 221, 162–175 (2021a)ADS Mohammadi, M.H., Eskandari, M., Fathi, D.: Improving the efficiency of perovskite solar cells via embedding random plasmonic nanoparticles: optical–electrical study on device architectures. Sol. Energy 221, 162–175 (2021a)ADS
go back to reference Mohammadi, M.H., Fathi, D., Eskandari, M.: Light trapping in perovskite solar cells with plasmonic core/shell nanorod array: a numerical study. Energy Rep. 7, 1404–1415 (2021b) Mohammadi, M.H., Fathi, D., Eskandari, M.: Light trapping in perovskite solar cells with plasmonic core/shell nanorod array: a numerical study. Energy Rep. 7, 1404–1415 (2021b)
go back to reference Noh, J.H., Im, S.H., Heo, J.H., Mandal, T.N., Seok, S.I.: Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13(4), 1764–1769 (2013)ADS Noh, J.H., Im, S.H., Heo, J.H., Mandal, T.N., Seok, S.I.: Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13(4), 1764–1769 (2013)ADS
go back to reference Pathak, N.K., Sharma, R.: Study of surface plasmon resonance of core-shell nanogeometry under the influence of perovskite dielectric environment: electrostatic approximation. AIP Conf. Proceed. 1731(1), 050063 (2016) Pathak, N.K., Sharma, R.: Study of surface plasmon resonance of core-shell nanogeometry under the influence of perovskite dielectric environment: electrostatic approximation. AIP Conf. Proceed. 1731(1), 050063 (2016)
go back to reference Pattanasattayavong, P., et al.: Hole-transporting transistors and circuits based on the transparent inorganic semiconductor copper (I) thiocyanate (CuSCN) processed from solution at room temperature. Adv. Mater. 25(10), 1504–1509 (2013) Pattanasattayavong, P., et al.: Hole-transporting transistors and circuits based on the transparent inorganic semiconductor copper (I) thiocyanate (CuSCN) processed from solution at room temperature. Adv. Mater. 25(10), 1504–1509 (2013)
go back to reference Qin, P., et al.: Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat. Commun. 5(1), 1–6 (2014) Qin, P., et al.: Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat. Commun. 5(1), 1–6 (2014)
go back to reference Roß, M., et al.: Co-evaporated pin perovskite solar cells beyond 20% efficiency: impact of substrate temperature and hole-transport layer. ACS Appl. Mater. Interfaces. 12(35), 39261–39272 (2020) Roß, M., et al.: Co-evaporated pin perovskite solar cells beyond 20% efficiency: impact of substrate temperature and hole-transport layer. ACS Appl. Mater. Interfaces. 12(35), 39261–39272 (2020)
go back to reference Sajid, S., et al.: Breakthroughs in NiOx-HTMs towards stable, low-cost and efficient perovskite solar cells. Nano Energy 51, 408–424 (2018a) Sajid, S., et al.: Breakthroughs in NiOx-HTMs towards stable, low-cost and efficient perovskite solar cells. Nano Energy 51, 408–424 (2018a)
go back to reference Sajid, S., et al.: Computational study of ternary devices: stable, low-cost, and efficient planar perovskite solar cells. Nano-Micro Letters 10(3), 1–11 (2018b)ADS Sajid, S., et al.: Computational study of ternary devices: stable, low-cost, and efficient planar perovskite solar cells. Nano-Micro Letters 10(3), 1–11 (2018b)ADS
go back to reference Sajid, S., et al.: NiO@ carbon spheres: a promising composite electrode for scalable fabrication of planar perovskite solar cells at low cost. Nano Energy 55, 470–476 (2019) Sajid, S., et al.: NiO@ carbon spheres: a promising composite electrode for scalable fabrication of planar perovskite solar cells at low cost. Nano Energy 55, 470–476 (2019)
go back to reference Sajid, S., et al.: Quest for robust electron transporting materials towards efficient, hysteresis-free and stable perovskite solar cells. Renew. Sustain. Energy Rev. 152, 111689 (2021) Sajid, S., et al.: Quest for robust electron transporting materials towards efficient, hysteresis-free and stable perovskite solar cells. Renew. Sustain. Energy Rev. 152, 111689 (2021)
go back to reference Sajid, S., Alzahmi, S., Salem, I.B., Obaidat, I.M.: Perovskite-surface-confined grain growth for high-performance perovskite solar cells. Nanomaterials 12(19), 3352 (2022) Sajid, S., Alzahmi, S., Salem, I.B., Obaidat, I.M.: Perovskite-surface-confined grain growth for high-performance perovskite solar cells. Nanomaterials 12(19), 3352 (2022)
go back to reference Singh, B.K., Bijalwan, A., Rastogi, V.: Enhancement of light harvesting efficiency of perovskite solar cells by using one-dimensional photonic crystals. Appl. Opt. 58(29), 8046–8054 (2019)ADS Singh, B.K., Bijalwan, A., Rastogi, V.: Enhancement of light harvesting efficiency of perovskite solar cells by using one-dimensional photonic crystals. Appl. Opt. 58(29), 8046–8054 (2019)ADS
go back to reference Stoumpos, C.C., Malliakas, C.D., Kanatzidis, M.G.: Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52(15), 9019–9038 (2013) Stoumpos, C.C., Malliakas, C.D., Kanatzidis, M.G.: Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52(15), 9019–9038 (2013)
go back to reference Tang, M., et al.: Fine-tuning the metallic core-shell nanostructures for plasmonic perovskite solar cells. Appl. Phys. Lett. 109(18), 183901 (2016)ADS Tang, M., et al.: Fine-tuning the metallic core-shell nanostructures for plasmonic perovskite solar cells. Appl. Phys. Lett. 109(18), 183901 (2016)ADS
go back to reference Tang, Z.-K., Xu, Z.-F., Zhang, D.-Y., Hu, S.-X., Lau, W.-M., Liu, L.-M.: Enhanced optical absorption via cation doping hybrid lead iodine perovskites. Sci. Rep. 7(1), 1–7 (2017)ADS Tang, Z.-K., Xu, Z.-F., Zhang, D.-Y., Hu, S.-X., Lau, W.-M., Liu, L.-M.: Enhanced optical absorption via cation doping hybrid lead iodine perovskites. Sci. Rep. 7(1), 1–7 (2017)ADS
go back to reference Tooghi, A., Fathi, D., Eskandari, M.: High-performance perovskite solar cell using photonic– plasmonic nanostructure. Sci. Rep. 10(1), 1–13 (2020) Tooghi, A., Fathi, D., Eskandari, M.: High-performance perovskite solar cell using photonic– plasmonic nanostructure. Sci. Rep. 10(1), 1–13 (2020)
go back to reference Ullah, I., Saghaei, H., Khan, J., Shah, S.K.: The role of plasmonic metal-oxides core-shell nanoparticles on the optical absorption of Perovskite solar cells. Opt. Quant. Electron. 54(10), 1–13 (2022a) Ullah, I., Saghaei, H., Khan, J., Shah, S.K.: The role of plasmonic metal-oxides core-shell nanoparticles on the optical absorption of Perovskite solar cells. Opt. Quant. Electron. 54(10), 1–13 (2022a)
go back to reference Ullah, I., Saghaei, H., Khan, J., Shah, S.K.: The role of plasmonic metal-oxides core-shell nanoparticles on the optical absorption of Perovskite solar cells. Opt. Quantum Electron. 54(10), 675 (2022) Ullah, I., Saghaei, H., Khan, J., Shah, S.K.: The role of plasmonic metal-oxides core-shell nanoparticles on the optical absorption of Perovskite solar cells. Opt. Quantum Electron. 54(10), 675 (2022)
go back to reference Vafapoor, B., Fathi, D., Eskandari, M.: ZnS/Al2S3 layer as a blocking layer in quantum dot sensitized solar cells. J. Electron. Mater. 47(3), 1932–1936 (2018)ADS Vafapoor, B., Fathi, D., Eskandari, M.: ZnS/Al2S3 layer as a blocking layer in quantum dot sensitized solar cells. J. Electron. Mater. 47(3), 1932–1936 (2018)ADS
go back to reference Vodenicharov, C., Parvanov, S., Vodenicharova, M.: Bulk—limited conductivity in germanium monoselenide films. Mater. Chem. Phys. 21(5), 455–461 (1989) Vodenicharov, C., Parvanov, S., Vodenicharova, M.: Bulk—limited conductivity in germanium monoselenide films. Mater. Chem. Phys. 21(5), 455–461 (1989)
go back to reference Wang, X., Wu, G., Zhou, B., Shen, J.: Optical constants of crystallized TiO2 coatings prepared by sol-gel process. Materials 6(7), 2819–2830 (2013)ADS Wang, X., Wu, G., Zhou, B., Shen, J.: Optical constants of crystallized TiO2 coatings prepared by sol-gel process. Materials 6(7), 2819–2830 (2013)ADS
go back to reference Wang, D.-L., Cui, H.-J., Hou, G.-J., Zhu, Z.-G., Yan, Q.-B., Su, G.: Highly efficient light management for perovskite solar cells. Sci. Rep. 6(1), 1–10 (2016) Wang, D.-L., Cui, H.-J., Hou, G.-J., Zhu, Z.-G., Yan, Q.-B., Su, G.: Highly efficient light management for perovskite solar cells. Sci. Rep. 6(1), 1–10 (2016)
go back to reference Wang, B., Zhu, X., Li, S., Chen, M., Lu, H., Yang, Y.: Ag@ SiO2 core-shell nanoparticles embedded in a TiO2 mesoporous layer substantially improve the performance of perovskite solar cells. Nanomaterials 8(9), 701 (2018)ADS Wang, B., Zhu, X., Li, S., Chen, M., Lu, H., Yang, Y.: Ag@ SiO2 core-shell nanoparticles embedded in a TiO2 mesoporous layer substantially improve the performance of perovskite solar cells. Nanomaterials 8(9), 701 (2018)ADS
go back to reference Xiang, W., Pan, J., Chen, Q.: In situ formation of NiO x interlayer for efficient n–i–p inorganic perovskite solar cells. ACS Appl. Energy Mater. 3(6), 5977–5983 (2020) Xiang, W., Pan, J., Chen, Q.: In situ formation of NiO x interlayer for efficient n–i–p inorganic perovskite solar cells. ACS Appl. Energy Mater. 3(6), 5977–5983 (2020)
go back to reference Xie, Z., et al.: Simulation study on improving efficiencies of perovskite solar cell: introducing nano textures on it. Optics Communications 410, 117–122 (2018)ADS Xie, Z., et al.: Simulation study on improving efficiencies of perovskite solar cell: introducing nano textures on it. Optics Communications 410, 117–122 (2018)ADS
go back to reference Yue, L., Yan, B., Attridge, M., Wang, Z.: Light absorption in perovskite solar cell: fundamentals and plasmonic enhancement of infrared band absorption. Sol. Energy 124, 143–152 (2016)ADS Yue, L., Yan, B., Attridge, M., Wang, Z.: Light absorption in perovskite solar cell: fundamentals and plasmonic enhancement of infrared band absorption. Sol. Energy 124, 143–152 (2016)ADS
go back to reference Zardari, P., Rostami, A.: Construction of 1D perovskite nanowires by Urotropin passivation towards efficient and stable perovskite solar cell. Sol. Energy Mater. Sol. Cells 227, 111119 (2021) Zardari, P., Rostami, A.: Construction of 1D perovskite nanowires by Urotropin passivation towards efficient and stable perovskite solar cell. Sol. Energy Mater. Sol. Cells 227, 111119 (2021)
go back to reference Zhu, Z., Chang, J.-L., Wu, R.-J.: Fast ozone detection by using a core–shell Au@TiO2 sensor at room temperature. Sens. Actuators, B Chem. 214, 56–62 (2015) Zhu, Z., Chang, J.-L., Wu, R.-J.: Fast ozone detection by using a core–shell Au@TiO2 sensor at room temperature. Sens. Actuators, B Chem. 214, 56–62 (2015)
Metadata
Title
The optoelectronic enhancement in perovskite solar cells using plasmonic metal-dielectric core-shell and nanorod nanoparticles
Authors
Ihsan Ullah
Md. Amzad Hossain
Ammar Armghan
Md. Shohel Rana
Md. Abdullah Al Asad
Publication date
01-11-2023
Publisher
Springer US
Published in
Optical and Quantum Electronics / Issue 11/2023
Print ISSN: 0306-8919
Electronic ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-023-05252-3

Other articles of this Issue 11/2023

Optical and Quantum Electronics 11/2023 Go to the issue