Skip to main content
Top

2019 | OriginalPaper | Chapter

The Paradigm of Pit - Stop Manufacturing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The context in which manufacturing companies are operating is more and more dynamic. Technological and digital innovations are continuously pushing manufacturing systems to change and adapt to new conditions. Therefore, traditional planning strategies tend to be inadequate because both the context and short - term targets are continuously changing. Indeed, one of the goals of manufacturing companies is to keep manufacturing systems efficiently running, and reduce and control the impact of disruptive events, that may originate from different sources, not always known or well defined. In order to do so, manufacturing systems should be kept relatively close to the current optimal condition, while, at the same time, taking into account information about future possible events, which may require new optimal conditions. In fact, the reaction time to the change must be short, in order to remain competitive in the market. In addition companies to be competitive should lead the introduction of changes therefore they have to be both reactive and proactive. From this analysis, the new paradigm of ‘pit - stop manufacturing’ is introduced, in which the overall goal is to dynamically keep the manufacturing system close to an improvement trajectory, instead of statically optimizing the system. It is shown how the ‘pit - stop manufacturing’ deals with various aspects of current manufacturing systems, therefore providing novel research questions and challenges.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gershwin, S.B.: The future of manufacturing systems engineering. Int. J. Prod. Res. 56(1-2), 224–237 (2018)CrossRef Gershwin, S.B.: The future of manufacturing systems engineering. Int. J. Prod. Res. 56(1-2), 224–237 (2018)CrossRef
2.
go back to reference De Mauro, A., Greco, M., Grimaldi, M.: What is big data? a consensual definition and a review of key research topics. In: AIP Conference Proceedings, vol. 1644, no. 1. AIP (2015) De Mauro, A., Greco, M., Grimaldi, M.: What is big data? a consensual definition and a review of key research topics. In: AIP Conference Proceedings, vol. 1644, no. 1. AIP (2015)
3.
go back to reference Tolio, T., et al.: SPECIES - co-evolution of products, processes and production systems. CIRP Ann. 59(2), 672–693 (2010)CrossRef Tolio, T., et al.: SPECIES - co-evolution of products, processes and production systems. CIRP Ann. 59(2), 672–693 (2010)CrossRef
4.
go back to reference Colledani, M., et al.: Design and management of manufacturing systems for production quality. CIRP Ann. 63(2) 773–796 (2014) Colledani, M., et al.: Design and management of manufacturing systems for production quality. CIRP Ann. 63(2) 773–796 (2014)
5.
go back to reference Tao, F., et al.: Data-driven smart manufacturing. J. Manufact. Syst. 48, 157–169 (2018) Tao, F., et al.: Data-driven smart manufacturing. J. Manufact. Syst. 48, 157–169 (2018)
6.
go back to reference Monostori, L., et al.: Cyber-physical systems in manufacturing. CIRP Ann. 65(2) 621–641 (2016) Monostori, L., et al.: Cyber-physical systems in manufacturing. CIRP Ann. 65(2) 621–641 (2016)
7.
go back to reference Colledani, M., Tolio, T., Yemane, A.: Production quality improvement during manufacturing systems ramp-up. CIRP J. Manuf. Sci. Technol. 23, 197–206 (2018)CrossRef Colledani, M., Tolio, T., Yemane, A.: Production quality improvement during manufacturing systems ramp-up. CIRP J. Manuf. Sci. Technol. 23, 197–206 (2018)CrossRef
8.
go back to reference Djurdjanovic, D., Ni, J.: Stream-of-variation (SoV)-based measurement scheme analysis in multistation machining systems. IEEE Trans. Autom. Sci. Eng. 3(4), 407–422 (2006)CrossRef Djurdjanovic, D., Ni, J.: Stream-of-variation (SoV)-based measurement scheme analysis in multistation machining systems. IEEE Trans. Autom. Sci. Eng. 3(4), 407–422 (2006)CrossRef
9.
go back to reference Djurdjanović, D., Jiao, Y., Majstorović, V.: Multistage manufacturing process control robust to inaccurate knowledge about process noise. CIRP Ann. 66(1), 437–440 (2017)CrossRef Djurdjanović, D., Jiao, Y., Majstorović, V.: Multistage manufacturing process control robust to inaccurate knowledge about process noise. CIRP Ann. 66(1), 437–440 (2017)CrossRef
10.
go back to reference Umeda, Y., et al.: Product modularity for life cycle design. CIRP Ann. 57(1) 13–16 (2008) Umeda, Y., et al.: Product modularity for life cycle design. CIRP Ann. 57(1) 13–16 (2008)
11.
go back to reference Ijomah, W.L., et al.: Development of design for remanufacturing guidelines to support sustainable manufacturing. Robot. Comput.-Integr. Manuf. 23(6) 712–719 (2007) Ijomah, W.L., et al.: Development of design for remanufacturing guidelines to support sustainable manufacturing. Robot. Comput.-Integr. Manuf. 23(6) 712–719 (2007)
12.
go back to reference Eger, F., et al.: Zero defect manufacturing strategies for reduction of scrap and inspection effort in multi-stage production systems. Procedia CIRP 67, 368–373 (2018)CrossRef Eger, F., et al.: Zero defect manufacturing strategies for reduction of scrap and inspection effort in multi-stage production systems. Procedia CIRP 67, 368–373 (2018)CrossRef
13.
go back to reference Laipple, G., et al.: Aggregated hierarchical modeling and simulation in semiconductor supply chains. In: 2018 Winter Simulation Conference (WSC). IEEE (2018) Laipple, G., et al.: Aggregated hierarchical modeling and simulation in semiconductor supply chains. In: 2018 Winter Simulation Conference (WSC). IEEE (2018)
14.
go back to reference Tolio, T., Copani, G., Terkaj, W.: Key research priorities for factories of the future—part II: pilot plants and funding mechanisms. In: Factories of the Future, pp. 475–494. Springer, Cham (2019) Tolio, T., Copani, G., Terkaj, W.: Key research priorities for factories of the future—part II: pilot plants and funding mechanisms. In: Factories of the Future, pp. 475–494. Springer, Cham (2019)
15.
go back to reference Terkaj, W., Tullio T., Valente, A.: Designing manufacturing flexibility in dynamic production contexts. In: Design of Flexible Production Systems, pp. 1–18. Springer, Heidelberg (2009) Terkaj, W., Tullio T., Valente, A.: Designing manufacturing flexibility in dynamic production contexts. In: Design of Flexible Production Systems, pp. 1–18. Springer, Heidelberg (2009)
16.
go back to reference Ilyas, M., Mahgoub, I.: Smart Dust: Sensor Network Applications. Architecture and Design. CRC Press, Boca Raton (2018)CrossRef Ilyas, M., Mahgoub, I.: Smart Dust: Sensor Network Applications. Architecture and Design. CRC Press, Boca Raton (2018)CrossRef
17.
go back to reference Esmaeilian, B., Behdad, S., Wang, B.: The evolution and future of manufacturing: a review. J. Manuf. Syst. 39, 79–100 (2016)CrossRef Esmaeilian, B., Behdad, S., Wang, B.: The evolution and future of manufacturing: a review. J. Manuf. Syst. 39, 79–100 (2016)CrossRef
18.
go back to reference Colledani, M., Magnanini, M.C., Tolio, T.: Impact of opportunistic maintenance on manufacturing system performance. CIRP Ann. 67(1) 499–502 (2018) Colledani, M., Magnanini, M.C., Tolio, T.: Impact of opportunistic maintenance on manufacturing system performance. CIRP Ann. 67(1) 499–502 (2018)
19.
go back to reference Jeschke, S., et al.: Industrial internet of things and cyber manufacturing systems. In: Industrial Internet of Things, pp. 3–19. Springer, Cham (2017) Jeschke, S., et al.: Industrial internet of things and cyber manufacturing systems. In: Industrial Internet of Things, pp. 3–19. Springer, Cham (2017)
20.
go back to reference Koren, Y., Wang, W., Xi, G.: Value creation through design for scalability of reconfigurable manufacturing systems. Int. J. Prod. Res. 55(5), 1227–1242 (2017)CrossRef Koren, Y., Wang, W., Xi, G.: Value creation through design for scalability of reconfigurable manufacturing systems. Int. J. Prod. Res. 55(5), 1227–1242 (2017)CrossRef
21.
go back to reference Gu, X., et al.: Manufacturing system design for resilience. Procedia CIRP 36, 135–140 (2015)CrossRef Gu, X., et al.: Manufacturing system design for resilience. Procedia CIRP 36, 135–140 (2015)CrossRef
22.
go back to reference Koren, Y., Xi, G., Guo, W.: Reconfigurable manufacturing systems: principles, design, and future trends. Front. Mech. Eng. 13(2), 121–136 (2018)CrossRef Koren, Y., Xi, G., Guo, W.: Reconfigurable manufacturing systems: principles, design, and future trends. Front. Mech. Eng. 13(2), 121–136 (2018)CrossRef
23.
go back to reference Rossi, F., et al.: A systematic methodology for the modularization of manufacturing systems during early design. Flex. Serv. Manuf. J. 1–44 (2019) Rossi, F., et al.: A systematic methodology for the modularization of manufacturing systems during early design. Flex. Serv. Manuf. J. 1–44 (2019)
24.
go back to reference Battaïa, O., et al.: Design for manufacturing and assembly/disassembly: joint design of products and production systems. Int. J. Prod. Res. 56(24), 7181–7189 (2018)CrossRef Battaïa, O., et al.: Design for manufacturing and assembly/disassembly: joint design of products and production systems. Int. J. Prod. Res. 56(24), 7181–7189 (2018)CrossRef
25.
go back to reference Tan, C., et al.: Product personalization enabled by assembly architecture and cyber physical systems. CIRP Ann. 66(1), 33–36 (2017)CrossRef Tan, C., et al.: Product personalization enabled by assembly architecture and cyber physical systems. CIRP Ann. 66(1), 33–36 (2017)CrossRef
26.
go back to reference Wang, L., Törngren, M., Onori, M.: Current status and advancement of cyber-physical systems in manufacturing. J. Manuf. Syst. 37, 517–527 (2015)CrossRef Wang, L., Törngren, M., Onori, M.: Current status and advancement of cyber-physical systems in manufacturing. J. Manuf. Syst. 37, 517–527 (2015)CrossRef
27.
go back to reference Babiceanu, R.F., Seker, R.: Big data and virtualization for manufacturing cyber-physical systems: a survey of the current status and future outlook. Comput. Ind. 81, 128–137 (2016)CrossRef Babiceanu, R.F., Seker, R.: Big data and virtualization for manufacturing cyber-physical systems: a survey of the current status and future outlook. Comput. Ind. 81, 128–137 (2016)CrossRef
28.
go back to reference Tomiyama, T., Moyen, F.: Resilient architecture for cyber-physical production systems. CIRP Ann. 67(1), 161–164 (2018)CrossRef Tomiyama, T., Moyen, F.: Resilient architecture for cyber-physical production systems. CIRP Ann. 67(1), 161–164 (2018)CrossRef
29.
go back to reference Kozjek, D., et al.: Distributed control with rationally bounded agents in cyber-physical production systems. CIRP Ann. 67(1), 507–510 (2018)CrossRef Kozjek, D., et al.: Distributed control with rationally bounded agents in cyber-physical production systems. CIRP Ann. 67(1), 507–510 (2018)CrossRef
30.
go back to reference Tsukune, H., et al.: Modular manufacturing. J. Intel. Manuf. 4(2), 163–181 (1993)CrossRef Tsukune, H., et al.: Modular manufacturing. J. Intel. Manuf. 4(2), 163–181 (1993)CrossRef
31.
go back to reference Wu, K., Zhou, Y., Zhao, N.: Variability and the fundamental properties of production lines. Comput. Ind. Eng. 99, 364–371 (2016)CrossRef Wu, K., Zhou, Y., Zhao, N.: Variability and the fundamental properties of production lines. Comput. Ind. Eng. 99, 364–371 (2016)CrossRef
32.
go back to reference Ni, J., Xi, G., Jin, X.: Preventive maintenance opportunities for large production systems. CIRP Ann. 64(1), 447–450 (2015)CrossRef Ni, J., Xi, G., Jin, X.: Preventive maintenance opportunities for large production systems. CIRP Ann. 64(1), 447–450 (2015)CrossRef
33.
go back to reference Glock, C.H., Grosse, E.H.: Decision support models for production ramp-up: a systematic literature review. Int. J. Prod. Res. 53(21), 6637–6651 (2015)CrossRef Glock, C.H., Grosse, E.H.: Decision support models for production ramp-up: a systematic literature review. Int. J. Prod. Res. 53(21), 6637–6651 (2015)CrossRef
34.
go back to reference Xu, Y., Helal, A.: Scalable cloud–sensor architecture for the Internet of Things. IEEE Internet Things J. 3(3), 285–298 (2016)CrossRef Xu, Y., Helal, A.: Scalable cloud–sensor architecture for the Internet of Things. IEEE Internet Things J. 3(3), 285–298 (2016)CrossRef
Metadata
Title
The Paradigm of Pit - Stop Manufacturing
Authors
Tullio A. M. Tolio
Maria Chiara Magnanini
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-18180-2_3

Premium Partners